Numerical analysis of failure modeling in clinching process chain simulation

Numerical analysis of failure modeling in clinching process chain simulation

Christian R. Bielak, Max Böhnke, Johannes Friedlein, Mathias Bobbert, Julia Mergheim, Paul Steinmann, Gerson Meschut

download PDF

Abstract. The application of the mechanical joining process clinching allows the assembly of different sheet metal materials with a wide range of material thickness configurations, which is of interest for lightweight multi-material structures. In order to be able to predict the clinched joint properties as a function of the individual manufacturing steps, current studies focus on numerical modeling of the entire clinching process chain. It is essential to be able to take into account the influence of the joining process-induced damage on the load-bearing capacity of the joint during the loading phase. This study presents a numerical damage accumulation in the clinching process based on an implemented Hosford-Coulomb failure model using a 3D clinching process model applied on the aluminum alloy EN AW-6014 in temper T4. A correspondence of the experimentally determined failure location with the element of the highest numerically determined damage accumulation is shown. Moreover, the experimentally determined failure behavior is predicted to be in agreement in the numerical loading simulation with transferred pre-damage from the process simulation.

Keywords
Finite Element Method, Damage, Joining

Published online 3/17/2023, 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Christian R. Bielak, Max Böhnke, Johannes Friedlein, Mathias Bobbert, Julia Mergheim, Paul Steinmann, Gerson Meschut, Numerical analysis of failure modeling in clinching process chain simulation, Materials Research Proceedings, Vol. 25, pp 263-270, 2023

DOI: https://doi.org/10.21741/9781644902417-33

The article was published as article 33 of the book Sheet Metal 2023

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] G. Meschut, V. Janzen, T. Olfermann, Innovative and Highly Productive Joining Technologies for Multi-Material Lightweight Car Body Structures, J. of Materi Eng and Perform 23 (2014) 1515–1523. https://doi.org/10.1007/s11665-014-0962-3
[2] R. Kupfer, D. Köhler, D. Römisch, S. Wituschek, L. Ewenz, J. Kalich, D. Weiß, B. Sadeghian, M. Busch, J. Krüger, M. Neuser, O. Grydin, M. Böhnke, C.-R. Bielak, J. Troschitz, Clinching of Aluminum Materials – Methods for the Continuous Characterization of Process, Microstructure and Properties, Journal of Advanced Joining Processes 5 (2022) 100108. https://doi.org/10.1016/j.jajp.2022.100108
[3] C.R. Bielak, M. Böhnke, R. Beck, M. Bobbert, G. Meschut, Numerical analysis of the robustness of clinching process considering the pre-forming of the parts, Journal of Advanced Joining Processes 3 (2021) 100038. https://doi.org/10.1016/j.jajp.2020.100038
[4] C.R. Bielak, M. Böhnke, M. Bobbert, G. Meschut, Development of a Numerical 3D Model for Analyzing Clinched Joints in Versatile Process Chains, in: K. Inal, J. Levesque, M. Worswick, C. Butcher (Eds.), NUMISHEET 2022, Springer International Publishing, Cham, 2022, pp. 165–172. https://doi.org/10.1007/978-3-031-06212-4_15
[5] E. Roux, P.-O. Bouchard, Kriging metamodel global optimization of clinching joining processes accounting for ductile damage, Journal of Materials Processing Technology 213 (2013) 1038–1047. https://doi.org/10.1016/j.jmatprotec.2013.01.018
[6] P.O. Bouchard, T. Laurent, L. Tollier, Numerical modeling of self-pierce riveting—From riveting process modeling down to structural analysis, Journal of Materials Processing Technology 202 (2008) 290–300. https://doi.org/10.1016/j.jmatprotec.2007.08.077
[7] M. Jäckel, T. Grimm, R. Niegsch, W.-G. Drossel, Overview of Current Challenges in Self-Pierce Riveting of Lightweight Materials, in: The 18th International Conference on Experimental Mechanics, MDPI, Basel Switzerland, p. 384.
[8] M. Otroshi, M. Rossel, G. Meschut, Stress state dependent damage modeling of self-pierce riveting process simulation using GISSMO damage model, Journal of Advanced Joining Processes 1 (2020) 100015. https://doi.org/10.1016/j.jajp.2020.100015
[9] A. Rusia, S. Weihe, Development of an end-to-end simulation process chain for prediction of self-piercing riveting joint geometry and strength, Journal of Manufacturing Processes 57 (2020) 519–532. https://doi.org/10.1016/j.jmapro.2020.07.004
[10] Böhnke M., Bielak C. R., Friedlein J. Bobbert M. Mergheim J., Meschut G., Steinmann P. (Ed.), A calibration method for damage modeling in clinching process simulations, The 20th International Conference on Sheet Metal, Nuremberg, 2023.
[11] D. Mohr, S.J. Marcadet, Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities, International Journal of Solids and Structures 67-68 (2015) 40–55. https://doi.org/10.1016/j.ijsolstr.2015.02.024
[12] M. Böhnke, M. Rossel, C.R. Bielak, M. Bobbert, G. Meschut, Concept development of a method for identifying friction coefficients for the numerical simulation of clinching processes, Int J Adv Manuf Technol 118 (2022) 1627–1639. https://doi.org/10.1007/s00170-021-07986-4
[13] L. Sprave, A. Menzel, A large strain gradient-enhanced ductile damage model: finite element formulation, experiment and parameter identification, Acta Mech 231 (2020) 5159–5192. https://doi.org/10.1007/s00707-020-02786-5
[14] J. Friedlein, J. Mergheim, P. Steinmann, Efficient Gradient-Enhancement of Ductile Damage for Implicit Time Integration. Extended abstract of presentation, 16th LS-DYNA Forum 2022, Bamberg, Germany.
[15] M. Böhnke, F. Kappe, M. Bobbert, G. Meschut, Influence of various procedures for the determination of flow curves on the predictive accuracy of numerical simulations for mechanical joining processes, Materials Testing 63 (2021) 493–500. https://doi.org/10.1515/mt-2020-0082
[16] M. Dunand, D. Mohr, Effect of Lode parameter on plastic flow localization after proportional loading at low stress triaxialities, Journal of the Mechanics and Physics of Solids 66 (2014) 133–153. https://doi.org/10.1016/j.jmps.2014.01.008
[17] J. Papasidero, V. Doquet, D. Mohr, Ductile fracture of aluminum 2024-T351 under proportional and non-proportional multi-axial loading: Bao–Wierzbicki results revisited, International Journal of Solids and Structures 69-70 (2015) 459–474. https://doi.org/10.1016/j.ijsolstr.2015.05.006
[18] M. Nahrmann, A. Matzenmiller, Modelling of nonlocal damage and failure in ductile steel sheets under multiaxial loading, International Journal of Solids and Structures 232 (2021) 111166. https://doi.org/10.1016/j.ijsolstr.2021.111166
[19] A.M. Habraken, Modelling the plastic anisotropy of metals, ARCO 11 (2004) 3–96. https://doi.org/10.1007/BF02736210
[20] J. Friedlein, J. Mergheim, P. Steinmann, A Finite Plasticity Gradient-Damage Model for Sheet Metals during Forming and Clinching, KEM 883 (2021) 57–64. https://doi.org/10.4028/www.scientific.net/KEM.883.57

[1] G. Meschut, V. Janzen, T. Olfermann, Innovative and Highly Productive Joining Technologies for Multi-Material Lightweight Car Body Structures, J. of Materi Eng and Perform 23 (2014) 1515–1523. https://doi.org/10.1007/s11665-014-0962-3
[2] R. Kupfer, D. Köhler, D. Römisch, S. Wituschek, L. Ewenz, J. Kalich, D. Weiß, B. Sadeghian, M. Busch, J. Krüger, M. Neuser, O. Grydin, M. Böhnke, C.-R. Bielak, J. Troschitz, Clinching of Aluminum Materials – Methods for the Continuous Characterization of Process, Microstructure and Properties, Journal of Advanced Joining Processes 5 (2022) 100108. https://doi.org/10.1016/j.jajp.2022.100108
[3] C.R. Bielak, M. Böhnke, R. Beck, M. Bobbert, G. Meschut, Numerical analysis of the robustness of clinching process considering the pre-forming of the parts, Journal of Advanced Joining Processes 3 (2021) 100038. https://doi.org/10.1016/j.jajp.2020.100038
[4] C.R. Bielak, M. Böhnke, M. Bobbert, G. Meschut, Development of a Numerical 3D Model for Analyzing Clinched Joints in Versatile Process Chains, in: K. Inal, J. Levesque, M. Worswick, C. Butcher (Eds.), NUMISHEET 2022, Springer International Publishing, Cham, 2022, pp. 165–172. https://doi.org/10.1007/978-3-031-06212-4_15
[5] E. Roux, P.-O. Bouchard, Kriging metamodel global optimization of clinching joining processes accounting for ductile damage, Journal of Materials Processing Technology 213 (2013) 1038–1047. https://doi.org/10.1016/j.jmatprotec.2013.01.018
[6] P.O. Bouchard, T. Laurent, L. Tollier, Numerical modeling of self-pierce riveting—From riveting process modeling down to structural analysis, Journal of Materials Processing Technology 202 (2008) 290–300. https://doi.org/10.1016/j.jmatprotec.2007.08.077
[7] M. Jäckel, T. Grimm, R. Niegsch, W.-G. Drossel, Overview of Current Challenges in Self-Pierce Riveting of Lightweight Materials, in: The 18th International Conference on Experimental Mechanics, MDPI, Basel Switzerland, p. 384.
[8] M. Otroshi, M. Rossel, G. Meschut, Stress state dependent damage modeling of self-pierce riveting process simulation using GISSMO damage model, Journal of Advanced Joining Processes 1 (2020) 100015. https://doi.org/10.1016/j.jajp.2020.100015
[9] A. Rusia, S. Weihe, Development of an end-to-end simulation process chain for prediction of self-piercing riveting joint geometry and strength, Journal of Manufacturing Processes 57 (2020) 519–532. https://doi.org/10.1016/j.jmapro.2020.07.004
[10] Böhnke M., Bielak C. R., Friedlein J. Bobbert M. Mergheim J., Meschut G., Steinmann P. (Ed.), A calibration method for damage modeling in clinching process simulations, The 20th International Conference on Sheet Metal, Nuremberg, 2023.
[11] D. Mohr, S.J. Marcadet, Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities, International Journal of Solids and Structures 67-68 (2015) 40–55. https://doi.org/10.1016/j.ijsolstr.2015.02.024
[12] M. Böhnke, M. Rossel, C.R. Bielak, M. Bobbert, G. Meschut, Concept development of a method for identifying friction coefficients for the numerical simulation of clinching processes, Int J Adv Manuf Technol 118 (2022) 1627–1639. https://doi.org/10.1007/s00170-021-07986-4
[13] L. Sprave, A. Menzel, A large strain gradient-enhanced ductile damage model: finite element formulation, experiment and parameter identification, Acta Mech 231 (2020) 5159–5192. https://doi.org/10.1007/s00707-020-02786-5
[14] J. Friedlein, J. Mergheim, P. Steinmann, Efficient Gradient-Enhancement of Ductile Damage for Implicit Time Integration. Extended abstract of presentation, 16th LS-DYNA Forum 2022, Bamberg, Germany.
[15] M. Böhnke, F. Kappe, M. Bobbert, G. Meschut, Influence of various procedures for the determination of flow curves on the predictive accuracy of numerical simulations for mechanical joining processes, Materials Testing 63 (2021) 493–500. https://doi.org/10.1515/mt-2020-0082
[16] M. Dunand, D. Mohr, Effect of Lode parameter on plastic flow localization after proportional loading at low stress triaxialities, Journal of the Mechanics and Physics of Solids 66 (2014) 133–153. https://doi.org/10.1016/j.jmps.2014.01.008
[17] J. Papasidero, V. Doquet, D. Mohr, Ductile fracture of aluminum 2024-T351 under proportional and non-proportional multi-axial loading: Bao–Wierzbicki results revisited, International Journal of Solids and Structures 69-70 (2015) 459–474. https://doi.org/10.1016/j.ijsolstr.2015.05.006
[18] M. Nahrmann, A. Matzenmiller, Modelling of nonlocal damage and failure in ductile steel sheets under multiaxial loading, International Journal of Solids and Structures 232 (2021) 111166. https://doi.org/10.1016/j.ijsolstr.2021.111166
[19] A.M. Habraken, Modelling the plastic anisotropy of metals, ARCO 11 (2004) 3–96. https://doi.org/10.1007/BF02736210
[20] J. Friedlein, J. Mergheim, P. Steinmann, A Finite Plasticity Gradient-Damage Model for Sheet Metals during Forming and Clinching, KEM 883 (2021) 57–64. https://doi.org/10.4028/www.scientific.net/KEM.883.57