Temperature measurement during blanking with enhanced speeds

Temperature measurement during blanking with enhanced speeds

Agnes Schrepfer, Markus Welm, Philipp Tröber, Florian Steinlehner, Wolfram Volk

download PDF

Abstract. Shear cutting is one of the most important manufacturing processes due to its high productivity and process stability. The advantages of shear cutting also obtain in high-speed cutting and cutting with enhanced speed. In addition, further advantages such as high dimensional accuracy and a predominant fracture zone accompany it. At the same time, according to literature, high cutting speeds lead to increased temperatures in the shear zone, which can entail tool damage and wear in the short or long term. Knowledge of the temperatures is therefore indispensable for forward planning and economical production processes. Therefore, measurement of temperature in the shear zone has already been approached by a wide variety of methods. In this paper, the temperatures are determined by recording the thermoelectric voltages occurring during shear cutting with enhanced speed up to 270 mm/s and converting these voltages into temperature values using knowledge of the Seebeck coefficients of the punch and sheet material.

Keywords
Sheet Metal, Temperature, Enhanced-Speed Cutting

Published online 3/17/2023, 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Agnes Schrepfer, Markus Welm, Philipp Tröber, Florian Steinlehner, Wolfram Volk, Temperature measurement during blanking with enhanced speeds, Materials Research Proceedings, Vol. 25, pp 3-10, 2023

DOI: https://doi.org/10.21741/9781644902417-1

The article was published as article 1 of the book Sheet Metal 2023

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] F. P. Michalenko, Einfluss der Pressengeschwindigkeit und der Größe des Spiels auf die Kräfteverteilung und den Werkzeugverschleiß beim Lochen und Ausschneiden von Elektroblechen, Kuz.-Stamp-Proizvod, 11 (1969) 23-26.
[2] P. Huml, Der Einfluss der hohen Geschwindigkeit auf das Schneiden von Metallen, Annals of the CIRP, 23-1 (1974) 61-62. https://doi.org/10.1007/s11340-013-9738-1
[3] C. Gaudillière, N. Ranc, A. Larue, A. Maillard, High speed blanking: An experimental method to measure induced cutting forces, Experimental Mechanics, 53 (2013) 1117-1126. https://doi.org/10.1007/BF02327503
[3] D. Macdougall, Determination of the plastic work converted to heat using radiometry, Experimental Mechanics, 40-3 (2000) 298-306.
[4] A. T. Zehnder, A model for the heating due to plastic work, Mechanics Research Communications, 18-1 (1991) 23-28. https://doi.org/10.1016/0093-6413(91)90023-P
[5] R. Ebner, W. Ecker, S. Marsoner, S. Eck, P. Gruber, P. Raninger and M. Krobarth, Methodology for advanced tool load analysis and lifetime prediction of tools, Proceedings of the 9th International Tooling Conference (2012) 3-21.
[6] M. Schüßler, Hochgeschwindigkeits-Scherschneiden im geschlossenen Schnitt zur Verbesserung der Schnitteilequalität, Technical University Darmstadt, 1990.
[7] R. Dies, Die Vorgänge beim Lochen von Stahl und Nichteisenmetallen mit runden Stempeln, Der Maschinenmarkt, 69 (1960).
[8] D. Ugues, M. Pellizzari, A. Pisa, R. Trotti, V. Sisti, Thermal cracking and soldering on PVD coated steel with edges and different surface finishing, Proceedings of the 9th International Tooling Conference (2012) 571-580.
[9] M. Obst, Feinschneidöl – die Lösung für spezielle Prozesse, in: Blech in Form 4, Carl Hanser Verlag, Munich, (2007).
[10] M. Welm, P. Tröber, H.A. Weiss, P. Demmel, R. Golle and W. Volk, Thermoelectrically Based Approaches to Reduce Adhesive Wear During Blanking, The Journal of The Minerals, Metals & Materials Society, 72 (2020). https://doi.org/10.1007/s11837-020-04191-8
[11] C. Rentsch, Feinschneiden mit beschichteten Werkzeugen, Fortschritt-Berichte VDI, Reihe 2: Fertigungstechnik 413 (1996)
[12] Z. H. Chen, L. C. Chan, T. C. Lee, C. Y. Tang, An investigation on the formation and propagation of shear band in fine-blanking process, Journal of Materials Processing Technology 138 (2003) 610-614. https://doi.org/10.1016/S0924-0136(03)00141-9
[13] K. Lange, Umformtechnik, Handbuch für Industrie und Wissenschaft, Band 3: Blechbearbeitung, second ed., Springer-Verlag, Berlin, 1990.
[14] M. Gruner, R. Mauermann, Erweiterte Möglichkeiten in der Anwendung von Servospindelpressen, Kongress Stanztechnik, Dortmund, 2009.
[15] P. Demmel, P. Tröber, T. Kopp, R. Golle, W. Volk and H. Hoffmann, Characterization of the thermoelectric behavior of plastically deformed steels by means of relative Seebeck coefficient, Materials Science Forum, 755 (2013) 1-7. https://doi.org/10.4028/www.scientific.net/MSF.755.1
[16] P. Demmel, In-situ Temperaturmessung beim Scherschneiden, TU München (2014)
[17] P. Tröber, M. Welm, H. A. Weiss, P. Demmel, R. Golle and W. Volk, Temperature, thermoelectric current and adhesion formation during deep drawing, WEAR, 447 (2021). https://doi.org/10.1016/j.wear.2021.203839
[18] P. Tröber, M. Welm, H. A. Weiss, P. Demmel, R. Golle and W. Volk, The influence of process parameters and sheet material on the temperature development in the forming zone during cold forming, Manufacturing Review, 6 (2019). https://doi.org/10.1051/matecconf/201819014004, creative commons license 4.0 (CC BY 4.0)