Future Applications and Perspective of ZnO

$30.00

Future Applications and Perspective of ZnO

Pawan Kumar, Nikhil Thakur, Pankaj Sharma, Raman Kumar

Zinc Oxide (ZnO) is recognized as an outstanding material for preparation of highly specific electrochemical sensors as well as biosensors because of their attractive characteristics like large specific surface area, powerful adsorption ability, and large catalytic efficiency. As a result, ZnO nanostructures are frequently employed to make effective electrochemical sensors as well as biosensors for detecting several analytes. ZnO is a versatile material that has a wide range of applications. The present chapter emphasizes on the current advancements of ZnO-based nanomaterials in the area of energy conversion & storage as well as biological applications. Supercapacitors, Li-ion batteries, and also biomedical applications have all been given special consideration. Lastly, future applications of ZnO-derived materials in fields of energy as well as biological sciences are thoroughly studied.

Keywords
ZnO, Batteries, Biosensors, Supercapacitors, Biomedical, Biological Applications

Published online , 29 pages

Citation: Pawan Kumar, Nikhil Thakur, Pankaj Sharma, Raman Kumar, Future Applications and Perspective of ZnO, Materials Research Foundations, Vol. 146, pp 294-322, 2023

DOI: https://doi.org/10.21741/9781644902394-10

Part of the book on ZnO and Their Hybrid Nano-Structures

References
[1] V. Medawar-Aguilar, C.F. Jofre, M.A. Fernández-Baldo, A. Alonso, S. Angel, J. Raba, S.V. Pereira, G.A. Messina, Serological diagnosis of Toxoplasmosis disease using a fluorescent immunosensor with chitosan-ZnO-nanoparticles, Analytical biochemistry, 564 (2019) 116-122. https://doi.org/10.1016/j.ab.2018.10.025
[2] M.R. Willner, P.J. Vikesland, Nanomaterial enabled sensors for environmental contaminants, Journal of nanobiotechnology, 16 (2018) 1-16. https://doi.org/10.1186/s12951-018-0419-1
[3] D. Sharma, C.M. Hussain, Smart nanomaterials in pharmaceutical analysis, Arabian Journal of Chemistry, 13 (2020) 3319-3343. https://doi.org/10.1016/j.arabjc.2018.11.007
[4] V.D. Krishna, K. Wu, D. Su, M.C. Cheeran, J.-P. Wang, A. Perez, Nanotechnology: Review of concepts and potential application of sensing platforms in food safety, Food microbiology, 75 (2018) 47-54. https://doi.org/10.1016/j.fm.2018.01.025
[5] F. Emadi, A. Amini, Y. Ghasemi, A. Gholami, Graphene: recent advances in engineering, medical and biological sciences, and future prospective, Trends in Pharmaceutical Sciences, 4 (2018) 131-138.
[6] K.R. Reddy, H.M. Jeong, Y. Lee, A.V. Raghu, Synthesis of MWCNTs‐core/thiophene polymer‐sheath composite nanocables by a cationic surfactant‐assisted chemical oxidative polymerization and their structural properties, Journal of Polymer Science Part A: Polymer Chemistry, 48 (2010) 1477-1484. https://doi.org/10.1002/pola.23883
[7] Y.-Y. Hu, Z. Liu, K.-W. Nam, O.J. Borkiewicz, J. Cheng, X. Hua, M.T. Dunstan, X. Yu, K.M. Wiaderek, L.-S. Du, Origin of additional capacities in metal oxide lithium-ion battery electrodes, Nature materials, 12 (2013) 1130-1136. https://doi.org/10.1038/nmat3784
[8] K. Rekha, M. Nirmala, M.G. Nair, A. Anukaliani, Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles, Physica B: Condensed Matter, 405 (2010) 3180-3185. https://doi.org/10.1016/j.physb.2010.04.042
[9] W. Jeong, S. Kim, G. Park, Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell, Thin Solid Films, 506 (2006) 180-183. https://doi.org/10.1016/j.tsf.2005.08.213
[10] D. Vanmaekelbergh, L.K. Van Vugt, ZnO nanowire lasers, Nanoscale, 3 (2011) 2783-2800. https://doi.org/10.1039/c1nr00013f
[11] S. Nair, A. Sasidharan, V. Divya Rani, D. Menon, S. Nair, K. Manzoor, S. Raina, Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells, Journal of Materials Science: Materials in Medicine, 20 (2009) 235-241. https://doi.org/10.1007/s10856-008-3548-5
[12] A.A. Reinert, C. Payne, L. Wang, J. Ciston, Y. Zhu, P.G. Khalifah, Synthesis and characterization of visible light absorbing (GaN) 1-x (ZnO) x semiconductor nanorods, Inorganic chemistry, 52 (2013) 8389-8398. https://doi.org/10.1021/ic400011n
[13] K. Thiagarajan, J. Theerthagiri, R. Senthil, J. Madhavan, Simple and low cost electrode material based on Ca2V2O7/PANI nanoplatelets for supercapacitor applications, Journal of Materials Science: Materials in Electronics, 28 (2017) 17354-17362. https://doi.org/10.1007/s10854-017-7668-x
[14] K. Thiagarajan, J. Theerthagiri, R. Senthil, P. Arunachalam, J. Madhavan, M.A. Ghanem, Synthesis of Ni3V2O8@ graphene oxide nanocomposite as an efficient electrode material for supercapacitor applications, Journal of Solid State Electrochemistry, 22 (2018) 527-536. https://doi.org/10.1007/s10008-017-3788-8
[15] J. Theerthagiri, K. Thiagarajan, B. Senthilkumar, Z. Khan, R.A. Senthil, P. Arunachalam, J. Madhavan, M. Ashokkumar, Synthesis of hierarchical cobalt phosphate nanoflakes and their enhanced electrochemical performances for supercapacitor applications, ChemistrySelect, 2 (2017) 201-210. https://doi.org/10.1002/slct.201601628
[16] M.A. Ghanem, P. Arunachalam, M.S. Amer, A.M. Al-Mayouf, Mesoporous titanium dioxide photoanodes decorated with gold nanoparticles for boosting the photoelectrochemical alkali water oxidation, Materials Chemistry and Physics, 213 (2018) 56-66. https://doi.org/10.1016/j.matchemphys.2018.04.037
[17] N.S. Ridhuan, K. Abdul Razak, Z. Lockman, A. Abdul Aziz, Structural and morphology of ZnO nanorods synthesized using ZnO seeded growth hydrothermal method and its properties as UV sensing, PloS one, 7 (2012) e50405. https://doi.org/10.1371/journal.pone.0050405
[18] P. Tamilarasan, S. Ramaprabhu, Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte, Energy, 51 (2013) 374-381. https://doi.org/10.1016/j.energy.2012.11.037
[19] D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nature nanotechnology, 3 (2008) 101-105. https://doi.org/10.1038/nnano.2007.451
[20] Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials, Energy & Environmental Science, 4 (2011) 1113-1132. https://doi.org/10.1039/c0ee00683a
[21] Y. Haldorai, W. Voit, J.-J. Shim, Nano ZnO@ reduced graphene oxide composite for high performance supercapacitor: Green synthesis in supercritical fluid, Electrochimica Acta, 120 (2014) 65-72. https://doi.org/10.1016/j.electacta.2013.12.063
[22] G. Du, Y. Li, L. Zhang, X. Wang, P. Liu, Y. Feng, X. Sun, Facile self-assembly of honeycomb ZnO particles decorated reduced graphene oxide, Materials Letters, 128 (2014) 242-244. https://doi.org/10.1016/j.matlet.2014.04.126
[23] M. Saranya, R. Ramachandran, F. Wang, Graphene-zinc oxide (G-ZnO) nanocomposite for electrochemical supercapacitor applications, Journal of Science: Advanced Materials and Devices, 1 (2016) 454-460. https://doi.org/10.1016/j.jsamd.2016.10.001
[24] Z. Li, P. Liu, G. Yun, K. Shi, X. Lv, K. Li, J. Xing, B. Yang, 3D (Three-dimensional) sandwich-structured of ZnO (zinc oxide)/rGO (reduced graphene oxide)/ZnO for high performance supercapacitors, Energy, 69 (2014) 266-271. https://doi.org/10.1016/j.energy.2014.03.003
[25] J. Jayachandiran, J. Yesuraj, M. Arivanandhan, A. Raja, S.A. Suthanthiraraj, R. Jayavel, D. Nedumaran, Synthesis and electrochemical studies of rGO/ZnO nanocomposite for supercapacitor application, Journal of Inorganic and Organometallic Polymers and Materials, 28 (2018) 2046-2055. https://doi.org/10.1007/s10904-018-0873-0
[26] V. Rajeswari, R. Jayavel, A.C. Dhanemozhi, Synthesis and characterization of graphene-zinc oxide nanocomposite electrode material for supercapacitor applications, Materials Today: Proceedings, 4 (2017) 645-652. https://doi.org/10.1016/j.matpr.2017.01.068
[27] Y. Ito, M. Nyce, R. Plivelich, M. Klein, D. Steingart, S. Banerjee, Zinc morphology in zinc-nickel flow assisted batteries and impact on performance, Journal of Power Sources, 196 (2011) 2340-2345. https://doi.org/10.1016/j.jpowsour.2010.09.065
[28] X. Li, Z. Wang, Y. Qiu, Q. Pan, P. Hu, 3D graphene/ZnO nanorods composite networks as supercapacitor electrodes, Journal of Alloys and Compounds, 620 (2015) 31-37. https://doi.org/10.1016/j.jallcom.2014.09.105
[29] Y. Zhang, X. Sun, L. Pan, H. Li, Z. Sun, C. Sun, B.K. Tay, Carbon nanotube-ZnO nanocomposite electrodes for supercapacitors, Solid State Ionics, 180 (2009) 1525-1528. https://doi.org/10.1016/j.ssi.2009.10.001
[30] D. Kalpana, K. Omkumar, S.S. Kumar, N. Renganathan, A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor, Electrochimica Acta, 52 (2006) 1309-1315. https://doi.org/10.1016/j.electacta.2006.07.032
[31] M. Selvakumar, D.K. Bhat, A.M. Aggarwal, S.P. Iyer, G. Sravani, Nano ZnO-activated carbon composite electrodes for supercapacitors, Physica B: Condensed Matter, 405 (2010) 2286-2289. https://doi.org/10.1016/j.physb.2010.02.028
[32] C. Sasirekha, S. Arumugam, G. Muralidharan, Green synthesis of ZnO/carbon (ZnO/C) as an electrode material for symmetric supercapacitor devices, Applied Surface Science, 449 (2018) 521-527. https://doi.org/10.1016/j.apsusc.2018.01.172
[33] Y. Li, X. Liu, Activated carbon/ZnO composites prepared using hydrochars as intermediate and their electrochemical performance in supercapacitor, Materials Chemistry and Physics, 148 (2014) 380-386. https://doi.org/10.1016/j.matchemphys.2014.07.058
[34] X. Xiao, B. Han, G. Chen, L. Wang, Y. Wang, Preparation and electrochemical performances of carbon sphere@ ZnO core-shell nanocomposites for supercapacitor applications, Scientific reports, 7 (2017) 1-13. https://doi.org/10.1038/srep40167
[35] M. Huang, F. Li, F. Dong, Y.X. Zhang, L.L. Zhang, MnO 2-based nanostructures for high-performance supercapacitors, Journal of Materials Chemistry A, 3 (2015) 21380-21423. https://doi.org/10.1039/C5TA05523G
[36] W. Zilong, Z. Zhu, J. Qiu, S. Yang, High performance flexible solid-state asymmetric supercapacitors from MnO 2/ZnO core-shell nanorods//specially reduced graphene oxide, Journal of Materials Chemistry C, 2 (2014) 1331-1336. https://doi.org/10.1039/C3TC31476F
[37] P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems, ACS nano, 7 (2013) 2617-2626. https://doi.org/10.1021/nn306044d
[38] X. Sun, Q. Li, Y. Lü, Y. Mao, Three-dimensional ZnO@ MnO 2 core@ shell nanostructures for electrochemical energy storage, Chemical communications, 49 (2013) 4456-4458. https://doi.org/10.1039/c3cc41048j
[39] A. Radhamani, K. Shareef, M.R. Rao, ZnO@ MnO2 core-shell nanofiber cathodes for high performance asymmetric supercapacitors, ACS Applied Materials & Interfaces, 8 (2016) 30531-30542. https://doi.org/10.1021/acsami.6b08082
[40] M. Huang, C. Gu, X. Ge, X. Wang, J. Tu, NiO nanoflakes grown on porous graphene frameworks as advanced electrochemical pseudocapacitor materials, Journal of power sources, 259 (2014) 98-105. https://doi.org/10.1016/j.jpowsour.2014.02.088
[41] P. Arunachalam, M.A. Ghanem, A.M. Al-Mayouf, M. Al-shalwi, O.H. Abd-Elkader, Microwave assisted synthesis and characterization of Ni/NiO nanoparticles as electrocatalyst for methanol oxidation in alkaline solution, Materials Research Express, 4 (2017) 025035. https://doi.org/10.1088/2053-1591/aa5ed8
[42] B.L. Ellis, P. Knauth, T. Djenizian, Three‐dimensional self‐supported metal oxides for advanced energy storage, Advanced Materials, 26 (2014) 3368-3397. https://doi.org/10.1002/adma.201306126
[43] H. Pang, Y. Ma, G. Li, J. Chen, J. Zhang, H. Zheng, W. Du, Facile synthesis of porous ZnO-NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials, Dalton transactions, 41 (2012) 13284-13291. https://doi.org/10.1039/c2dt31916k
[44] M. Sreejesh, S. Dhanush, F. Rossignol, H. Nagaraja, Microwave assisted synthesis of rGO/ZnO composites for non-enzymatic glucose sensing and supercapacitor applications, Ceramics International, 43 (2017) 4895-4903. https://doi.org/10.1016/j.ceramint.2016.12.140
[45] S. Li, J. Wen, X. Mo, H. Long, H. Wang, J. Wang, G. Fang, Three-dimensional MnO2 nanowire/ZnO nanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode, Journal of Power Sources, 256 (2014) 206-211. https://doi.org/10.1016/j.jpowsour.2014.01.066
[46] S. Sinha, H.V. Ramasamy, D.K. Nandi, P.N. Didwal, J.Y. Cho, C.-J. Park, Y.-S. Lee, S.-H. Kim, J. Heo, Atomic layer deposited zinc oxysulfide anodes in Li-ion batteries: an efficient solution for electrochemical instability and low conductivity, Journal of Materials Chemistry A, 6 (2018) 16515-16528. https://doi.org/10.1039/C8TA04129F
[47] J. Zhang, P. Gu, J. Xu, H. Xue, H. Pang, High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium-sulfur batteries, Nanoscale, 8 (2016) 18578-18595. https://doi.org/10.1039/C6NR07207K
[48] Y. Hu, J. Yao, Z. Zhao, M. Zhu, Y. Li, H. Jin, H. Zhao, J. Wang, ZnO-doped LiFePO4 cathode material for lithium-ion battery fabricated by hydrothermal method, Materials Chemistry and Physics, 141 (2013) 835-841. https://doi.org/10.1016/j.matchemphys.2013.06.012
[49] V. Dall’Asta, C. Tealdi, A. Resmini, U.A. Tamburini, P. Mustarelli, E. Quartarone, Influence of the ZnO nanoarchitecture on the electrochemical performances of binder-free anodes for Li storage, Journal of Solid State Chemistry, 247 (2017) 31-38. https://doi.org/10.1016/j.jssc.2016.12.016
[50] E. Quartarone, V. Dall’Asta, A. Resmini, C. Tealdi, I.G. Tredici, U.A. Tamburini, P. Mustarelli, Graphite-coated ZnO nanosheets as high-capacity, highly stable, and binder-free anodes for lithium-ion batteries, Journal of Power Sources, 320 (2016) 314-321. https://doi.org/10.1016/j.jpowsour.2016.04.107
[51] Y. Feng, Y. Zhang, X. Song, Y. Wei, V.S. Battaglia, Facile hydrothermal fabrication of ZnO-graphene hybrid anode materials with excellent lithium storage properties, Sustainable Energy & Fuels, 1 (2017) 767-779. https://doi.org/10.1039/C7SE00102A
[52] C. Xiao, S. Zhang, S. Wang, Y. Xing, R. Lin, X. Wei, W. Wang, ZnO nanoparticles encapsulated in a 3D hierarchical carbon framework as anode for lithium ion battery, Electrochimica Acta, 189 (2016) 245-251. https://doi.org/10.1016/j.electacta.2015.11.045
[53] Q. Zhao, H. Xie, H. Ning, J. Liu, H. Zhang, L. Wang, X. Wang, Y. Zhu, S. Li, M. Wu, Intercalating petroleum asphalt into electrospun ZnO/Carbon nanofibers as enhanced free-standing anode for lithium-ion batteries, Journal of Alloys and Compounds, 737 (2018) 330-336. https://doi.org/10.1016/j.jallcom.2017.12.091
[54] T. Kim, H. Kim, J.-M. Han, J. Kim, ZnO-embedded N-doped porous carbon nanocomposite as a superior anode material for lithium-ion batteries, Electrochimica Acta, 253 (2017) 190-199. https://doi.org/10.1016/j.electacta.2017.09.079
[55] L. Xiao, E. Li, J. Yi, W. Meng, S. Wang, B. Deng, J. Liu, Enhancing the performance of nanostructured ZnO as an anode material for lithium-ion batteries by polydopamine-derived carbon coating and confined crystallization, Journal of Alloys and Compounds, 764 (2018) 545-554. https://doi.org/10.1016/j.jallcom.2018.06.081
[56] F. Sun, J. Gao, H. Wu, X. Liu, L. Wang, X. Pi, Y. Lu, Confined growth of small ZnO nanoparticles in a nitrogen-rich carbon framework: advanced anodes for long-life Li-ion batteries, Carbon, 113 (2017) 46-54. https://doi.org/10.1016/j.carbon.2016.11.039
[57] J.W. Rasmussen, E. Martinez, P. Louka, D.G. Wingett, Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications, Expert opinion on drug delivery, 7 (2010) 1063-1077. https://doi.org/10.1517/17425247.2010.502560
[58] H.M. Xiong, ZnO nanoparticles applied to bioimaging and drug delivery, Advanced Materials, 25 (2013) 5329-5335. https://doi.org/10.1002/adma.201301732
[59] H. Peng, B. Cui, G. Li, Y. Wang, N. Li, Z. Chang, Y. Wang, A multifunctional β-CD-modified Fe3O4@ ZnO: Er3+, Yb3+ nanocarrier for antitumor drug delivery and microwave-triggered drug release, Materials Science and Engineering: C, 46 (2015) 253-263. https://doi.org/10.1016/j.msec.2014.10.022
[60] H. Sharma, K. Kumar, C. Choudhary, P.K. Mishra, B. Vaidya, Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug, Artificial cells, nanomedicine, and biotechnology, 44 (2016) 672-679. https://doi.org/10.3109/21691401.2014.978980
[61] Y. Zhang, T. R Nayak, H. Hong, W. Cai, Biomedical applications of zinc oxide nanomaterials, Current molecular medicine, 13 (2013) 1633-1645. https://doi.org/10.2174/1566524013666131111130058
[62] M. Martínez-Carmona, Y. Gun’Ko, M. Vallet-Regí, ZnO nanostructures for drug delivery and theranostic applications, Nanomaterials, 8 (2018) 268. https://doi.org/10.3390/nano8040268
[63] V. Sharma, D. Anderson, A. Dhawan, Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2), Apoptosis, 17 (2012) 852-870. https://doi.org/10.1007/s10495-012-0705-6
[64] Y. Deng, H. Zhang, The synergistic effect and mechanism of doxorubicin-ZnO nanocomplexes as a multimodal agent integrating diverse anticancer therapeutics, International Journal of Nanomedicine, 8 (2013) 1835. https://doi.org/10.2147/IJN.S43657
[65] N. Tripathy, R. Ahmad, H.A. Ko, G. Khang, Y.-B. Hahn, Enhanced anticancer potency using an acid-responsive ZnO-incorporated liposomal drug-delivery system, Nanoscale, 7 (2015) 4088-4096. https://doi.org/10.1039/C4NR06979J
[66] K.-J. Bai, K.-J. Chuang, C.-M. Ma, T.-Y. Chang, H.-C. Chuang, Human lung adenocarcinoma cells with an EGFR mutation are sensitive to non-autophagic cell death induced by zinc oxide and aluminium-doped zinc oxide nanoparticles, The Journal of Toxicological Sciences, 42 (2017) 437-444. https://doi.org/10.2131/jts.42.437
[67] Y. Cao, M. Roursgaard, A. Kermanizadeh, S. Loft, P. Møller, Synergistic effects of zinc oxide nanoparticles and fatty acids on toxicity to caco-2 cells, International Journal of Toxicology, 34 (2015) 67-76. https://doi.org/10.1177/1091581814560032
[68] X. Fang, L. Jiang, Y. Gong, J. Li, L. Liu, Y. Cao, The presence of oleate stabilized ZnO nanoparticles (NPs) and reduced the toxicity of aged NPs to Caco-2 and HepG2 cells, Chemico-Biological Interactions, 278 (2017) 40-47. https://doi.org/10.1016/j.cbi.2017.10.002
[69] J. Liu, X. Ma, S. Jin, X. Xue, C. Zhang, T. Wei, W. Guo, X.-J. Liang, Zinc oxide nanoparticles as adjuvant to facilitate doxorubicin intracellular accumulation and visualize pH-responsive release for overcoming drug resistance, Molecular pharmaceutics, 13 (2016) 1723-1730. https://doi.org/10.1021/acs.molpharmaceut.6b00311
[70] N. Puvvada, S. Rajput, B. Kumar, S. Sarkar, S. Konar, K.R. Brunt, R.R. Rao, A. Mazumdar, S.K. Das, R. Basu, Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression, Scientific reports, 5 (2015) 1-15. https://doi.org/10.1038/srep11760
[71] R. Dhivya, J. Ranjani, J. Rajendhran, J. Mayandi, J. Annaraj, Enhancing the anti-gastric cancer activity of curcumin with biocompatible and pH sensitive PMMA-AA/ZnO nanoparticles, Materials Science and Engineering: C, 82 (2018) 182-189. https://doi.org/10.1016/j.msec.2017.08.058
[72] R. Dhivya, J. Ranjani, P.K. Bowen, J. Rajendhran, J. Mayandi, J. Annaraj, Biocompatible curcumin loaded PMMA-PEG/ZnO nanocomposite induce apoptosis and cytotoxicity in human gastric cancer cells, Materials Science and Engineering: C, 80 (2017) 59-68. https://doi.org/10.1016/j.msec.2017.05.128
[73] Z.-Y. Zhang, H.-M. Xiong, Photoluminescent ZnO nanoparticles and their biological applications, Materials, 8 (2015) 3101-3127. https://doi.org/10.3390/ma8063101
[74] L.-E. Shi, Z.-H. Li, W. Zheng, Y.-F. Zhao, Y.-F. Jin, Z.-X. Tang, Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review, Food Additives & Contaminants: Part A, 31 (2014) 173-186. https://doi.org/10.1080/19440049.2013.865147
[75] Y. Jiang, L. Zhang, D. Wen, Y. Ding, Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli, Materials Science and Engineering: C, 69 (2016) 1361-1366. https://doi.org/10.1016/j.msec.2016.08.044
[76] R. Dutta, B.P. Nenavathu, M.K. Gangishetty, A. Reddy, Antibacterial effect of chronic exposure of low concentration ZnO nanoparticles on E. coli, Journal of Environmental Science and Health, Part A, 48 (2013) 871-878. https://doi.org/10.1080/10934529.2013.761489
[77] S. Sarwar, S. Chakraborti, S. Bera, I.A. Sheikh, K.M. Hoque, P. Chakrabarti, The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: Variation in response depends on biotype, Nanomedicine: Nanotechnology, Biology and Medicine, 12 (2016) 1499-1509. https://doi.org/10.1016/j.nano.2016.02.006
[78] K. Ghule, A.V. Ghule, B.-J. Chen, Y.-C. Ling, Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study, Green Chemistry, 8 (2006) 1034-1041. https://doi.org/10.1039/b605623g
[79] I. Matai, A. Sachdev, P. Dubey, S.U. Kumar, B. Bhushan, P. Gopinath, Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli, Colloids and Surfaces B: Biointerfaces, 115 (2014) 359-367. https://doi.org/10.1016/j.colsurfb.2013.12.005
[80] X. Bellanger, P. Billard, R. Schneider, L. Balan, C. Merlin, Stability and toxicity of ZnO quantum dots: Interplay between nanoparticles and bacteria, Journal of Hazardous Materials, 283 (2015) 110-116. https://doi.org/10.1016/j.jhazmat.2014.09.017
[81] M. Ramani, S. Ponnusamy, C. Muthamizhchelvan, J. Cullen, S. Krishnamurthy, E. Marsili, Morphology-directed synthesis of ZnO nanostructures and their antibacterial activity, Colloids and Surfaces B: Biointerfaces, 105 (2013) 24-30. https://doi.org/10.1016/j.colsurfb.2012.12.056
[82] M. Divya, B. Vaseeharan, M. Abinaya, S. Vijayakumar, M. Govindarajan, N.S. Alharbi, S. Kadaikunnan, J.M. Khaled, G. Benelli, Biopolymer gelatin-coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity, Journal of Photochemistry and Photobiology B: Biology, 178 (2018) 211-218. https://doi.org/10.1016/j.jphotobiol.2017.11.008
[83] K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, A. Punnoose, Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems, Applied physics letters, 90 (2007) 213902. https://doi.org/10.1063/1.2742324
[84] L. Ferrero-Miliani, O. Nielsen, P. Andersen, S. Girardin, Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1β generation, Clinical & Experimental Immunology, 147 (2007) 227-235. https://doi.org/10.1111/j.1365-2249.2006.03261.x
[85] P. Nagajyothi, S.J. Cha, I.J. Yang, T. Sreekanth, K.J. Kim, H.M. Shin, Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract, Journal of Photochemistry and Photobiology B: Biology, 146 (2015) 10-17. https://doi.org/10.1016/j.jphotobiol.2015.02.008
[86] P. Thatoi, R.G. Kerry, S. Gouda, G. Das, K. Pramanik, H. Thatoi, J.K. Patra, Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications, Journal of Photochemistry and Photobiology B: Biology, 163 (2016) 311-318. https://doi.org/10.1016/j.jphotobiol.2016.07.029
[87] M. Ilves, J. Palomäki, M. Vippola, M. Lehto, K. Savolainen, T. Savinko, H. Alenius, Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model, Particle and fibre toxicology, 11 (2014) 1-12. https://doi.org/10.1186/s12989-014-0038-4
[88] C. Wiegand, U.-C. Hipler, S. Boldt, J. Strehle, U. Wollina, Skin-protective effects of a zinc oxide-functionalized textile and its relevance for atopic dermatitis, Clinical, Cosmetic and Investigational Dermatology, 6 (2013) 115. https://doi.org/10.2147/CCID.S44865
[89] S. Yao, X. Feng, J. Lu, Y. Zheng, X. Wang, A.A. Volinsky, L.-N. Wang, Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO2 nanotubes, Nanotechnology, 29 (2018) 244003. https://doi.org/10.1088/1361-6528/aabac1
[90] J. Li, H. Chen, B. Wang, C. Cai, X. Yang, Z. Chai, W. Feng, ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling, Scientific Reports, 7 (2017) 1-11. https://doi.org/10.1038/srep43126
[91] V.A. Coleman, C. Jagadish, Zinc oxide bulk, thin films and nanostructures, UK, Elsevier, (2006) 1-5. https://doi.org/10.1016/B978-008044722-3/50001-4
[92] S. Tarish, Y. Xu, Z. Wang, F. Mate, A. Al-Haddad, W. Wang, Y. Lei, Highly efficient biosensors by using well-ordered ZnO/ZnS core/shell nanotube arrays, Nanotechnology, 28 (2017) 405501. https://doi.org/10.1088/1361-6528/aa82b0
[93] U.D. Kamaci, M. Kamaci, Selective and sensitive zno quantum dots based fluorescent biosensor for detection of cysteine, Journal of Fluorescence, 31 (2021) 401-414. https://doi.org/10.1007/s10895-020-02671-3
[94] L. Zhao, H. Li, J. Meng, A.C. Wang, P. Tan, Y. Zou, Z. Yuan, J. Lu, C. Pan, Y. Fan, Reversible conversion between schottky and ohmic contacts for highly sensitive, multifunctional biosensors, Advanced Functional Materials, 30 (2020) 1907999. https://doi.org/10.1002/adfm.201907999
[95] M. Zhao, J. Shang, H. Qu, R. Gao, H. Li, S. Chen, Fabrication of the Ni/ZnO/BiOI foam for the improved electrochemical biosensing performance to glucose, Analytica Chimica Acta, 1095 (2020) 93-98. https://doi.org/10.1016/j.aca.2019.10.033
[96] H.-M. Kim, J.-H. Park, S.-K. Lee, Fiber optic sensor based on ZnO nanowires decorated by Au nanoparticles for improved plasmonic biosensor, Scientific reports, 9 (2019) 1-9. https://doi.org/10.1038/s41598-019-52056-1
[97] F. Xue, J. Liang, H. Han, Synthesis and spectroscopic characterization of water-soluble Mn-doped ZnOxS1− x quantum dots, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83 (2011) 348-352. https://doi.org/10.1016/j.saa.2011.08.045
[98] H.-M. Xiong, Y. Xu, Q.-G. Ren, Y.-Y. Xia, Stable aqueous ZnO@ polymer core− shell nanoparticles with tunable photoluminescence and their application in cell imaging, Journal of the American Chemical Society, 130 (2008) 7522-7523. https://doi.org/10.1021/ja800999u
[99] Y. Liu, K. Ai, Q. Yuan, L. Lu, Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging, Biomaterials, 32 (2011) 1185-1192. https://doi.org/10.1016/j.biomaterials.2010.10.022
[100] S.P. Singh, Multifunctional magnetic quantum dots for cancer theranostics, Journal of Biomedical Nanotechnology, 7 (2011) 95-97. https://doi.org/10.1166/jbn.2011.1219
[101] N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms, FEMS microbiology letters, 279 (2008) 71-76. https://doi.org/10.1111/j.1574-6968.2007.01012.x
[102] N.-H. Cho, T.-C. Cheong, J.H. Min, J.H. Wu, S.J. Lee, D. Kim, J.-S. Yang, S. Kim, Y.K. Kim, S.-Y. Seong, A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy, Nature nanotechnology, 6 (2011) 675-682. https://doi.org/10.1038/nnano.2011.149
[103] X. Huang, X. Zheng, Z. Xu, C. Yi, ZnO-based nanocarriers for drug delivery application: From passive to smart strategies, International journal of pharmaceutics, 534 (2017) 190-194. https://doi.org/10.1016/j.ijpharm.2017.10.008
[104] S. Kim, S.Y. Lee, H.-J. Cho, Doxorubicin-wrapped zinc oxide nanoclusters for the therapy of colorectal adenocarcinoma, Nanomaterials, 7 (2017) 354. https://doi.org/10.3390/nano7110354
[105] E. Taylor, T.J. Webster, Reducing infections through nanotechnology and nanoparticles, International journal of nanomedicine, 6 (2011) 1463. https://doi.org/10.2147/IJN.S22021