Nano ZnO: Structure, Synthesis Routes, and Properties

$30.00

Nano ZnO: Structure, Synthesis Routes, and Properties

Mojdeh Rahnama Ghahfarokhi, Minoo Alizadeh Pirposhte, Debjita Mukherjee, Azadeh Jafarizadeh Dehaghani, Jhaleh Amirian, Agnese Brangule, Dace Bandere

Nanoscale zinc oxide (ZnO) is one of the most important materials in semiconductor applications today. The ZnO nanoparticles (ZnO-NPs) have received the most interest among the various nanoparticles. The ZnO nanostructures are composed mainly of ZnO and have at least one dimension on the nanometer scale (1-100 nm). ZnO is a wide-bandgap semiconductor with an energy gap of 3.37 eV at room temperature. Different methods have been used to synthesize ZnO NPs, which has led to different physical and chemical properties. The high surface energy of the particles produced in most of these methods tends to accumulate them. Therefore, nanoparticles of ZnO are used in biosensors, gas sensors, solar cells, ceramics, nanogenerators, photodetectors, catalysts, and active fillers in rubber and plastic due to their unique properties. As a UV absorber, it can also be used in cosmetics, photocatalysis, electrical and optoelectronic systems, and as an additive in a wide variety of industrial products.

Keywords
Zinc Oxide (ZnO), Nanoparticles (NPs), Semiconductor, Synthesis, Structure, Properties

Published online , 34 pages

Citation: Mojdeh Rahnama Ghahfarokhi, Minoo Alizadeh Pirposhte, Debjita Mukherjee, Azadeh Jafarizadeh Dehaghani, Jhaleh Amirian, Agnese Brangule, Dace Bandere, Nano ZnO: Structure, Synthesis Routes, and Properties, Materials Research Foundations, Vol. 146, pp 1-34, 2023

DOI: https://doi.org/10.21741/9781644902394-1

Part of the book on ZnO and Their Hybrid Nano-Structures

References
[1] S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles, International Nano Letters, 3 (2013) 1-6. https://doi.org/10.1186/2228-5326-3-30
[2] K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Iwata, K. Matsubara, R. Hunger, S. Niki, Interactions between gallium and nitrogen dopants in ZnO films grown by radical-source molecular-beam epitaxy, Applied physics letters, 79 (2001) 4139-4141. https://doi.org/10.1063/1.1424066
[3] Y. Zhang, Y.-R. Leu, R.J. Aitken, M. Riediker, Inventory of engineered nanoparticle-containing consumer products available in the Singapore retail market and likelihood of release into the aquatic environment, International journal of environmental research and public health, 12 (2015) 8717-8743. https://doi.org/10.3390/ijerph120808717
[4] F. Piccinno, F. Gottschalk, S. Seeger, B. Nowack, Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world, Journal of Nanoparticle Research, 14 (2012) 1-11. https://doi.org/10.1007/s11051-012-1109-9
[5] B. Das, S. Patra, Chapter 1 – Antimicrobials: Meeting the Challenges of Antibiotic Resistance Through Nanotechnology, in: A. Ficai, A.M. Grumezescu (Eds.) Nanostructures for Antimicrobial Therapy, Elsevier, 2017, pp. 1-22. https://doi.org/10.1016/B978-0-323-46152-8.00001-9
[6] C.Ş. Iosub, E. Olăreţ, A.M. Grumezescu, A.M. Holban, E. Andronescu, Toxicity of nanostructures-a general approach, in: Nanostructures for Novel Therapy, Elsevier, 2017, pp. 793-809. https://doi.org/10.1016/B978-0-323-46142-9.00029-3
[7] R. Kessler, Engineered nanoparticles in consumer products: understanding a new ingredient, in, National Institute of Environmental Health Sciences, 2011. https://doi.org/10.1289/ehp.119-a120
[8] M. Zare, K. Namratha, S. Ilyas, A. Sultana, A. Hezam, S. L, M.A. Surmeneva, R.A. Surmenev, M.B. Nayan, S. Ramakrishna, S. Mathur, K. Byrappa, Emerging Trends for ZnO Nanoparticles and Their Applications in Food Packaging, ACS Food Science & Technology, 2 (2022) 763-781. https://doi.org/10.1021/acsfoodscitech.2c00043
[9] G.R. Khan, Crystallographic, structural and compositional parameters of Cu-ZnO nanocrystallites, Applied Physics A, 126 (2020) 311. https://doi.org/10.1007/s00339-020-03480-y
[10] P.J. Borm, D. Robbins, S. Haubold, T. Kuhlbusch, H. Fissan, K. Donaldson, R. Schins, V. Stone, W. Kreyling, J. Lademann, The potential risks of nanomaterials: a review carried out for ECETOC, Particle and fibre toxicology, 3 (2006) 1-35. https://doi.org/10.1186/1743-8977-3-11
[11] C. Sioutas, R.J. Delfino, M. Singh, Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research, Environmental health perspectives, 113 (2005) 947-955. https://doi.org/10.1289/ehp.7939
[12] D. Dimova-Malinovska, Nanostructured ZnO thin films: properties and applications, in: Nanotechnological Basis for Advanced Sensors, Springer, 2011, pp. 157-166. https://doi.org/10.1007/978-94-007-0903-4_16
[13] Markets, Markets, Zinc Oxide Market by Process (French Process, Wet Process, American Process), Grade (Standard, Treated, USP, FCC), Application (Rubber, Ceramics, Chemicals, Agriculture, Cosmetics & Personal Care, Pharmaceuticals), Region-Global Forecast to 2024, in, MarketsandMarkets™ Research Private Ltd. Hadapsar, India, 2019.
[14] G. Heideman, R. Datta, J.W. Noordermeer, B.v. Baarle, Influence of zinc oxide during different stages of sulfur vulcanization. Elucidated by model compound studies, Journal of applied polymer science, 95 (2005) 1388-1404. https://doi.org/10.1002/app.21364
[15] D.P. Norton, Y. Heo, M. Ivill, K. Ip, S. Pearton, M.F. Chisholm, T. Steiner, ZnO: growth, doping & processing, Materials today, 7 (2004) 34-40. https://doi.org/10.1016/S1369-7021(04)00287-1
[16] K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO, Journal of Alloys and Compounds, 727 (2017) 792-820. https://doi.org/10.1016/j.jallcom.2017.08.142
[17] H. Yang, C. Liu, D. Yang, H. Zhang, Z. Xi, Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition, Journal of applied Toxicology, 29 (2009) 69-78. https://doi.org/10.1002/jat.1385
[18] T.M. Allen, P.R. Cullis, Drug delivery systems: entering the mainstream, Science, 303 (2004) 1818-1822. https://doi.org/10.1126/science.1095833
[19] G.-C. Yi, C. Wang, W.I. Park, ZnO nanorods: synthesis, characterization and applications, Semiconductor science and technology, 20 (2005) S22. https://doi.org/10.1088/0268-1242/20/4/003
[20] Q. Zhao, M. Willander, R. Morjan, Q. Hu, E. Campbell, Optical recombination of ZnO nanowires grown on sapphire and Si substrates, Applied Physics Letters, 83 (2003) 165-167. https://doi.org/10.1063/1.1591069
[21] P. Gao, Y. Ding, Z. Wang, Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst, Nano Letters, 3 (2003) 1315-1320. https://doi.org/10.1021/nl034548q
[22] G. Shen, J.H. Cho, J.K. Yoo, G.-C. Yi, C.J. Lee, Synthesis and optical properties of S-doped ZnO nanostructures: nanonails and nanowires, The Journal of Physical Chemistry B, 109 (2005) 5491-5496. https://doi.org/10.1021/jp045237m
[23] E.A. Meulenkamp, Synthesis and growth of ZnO nanoparticles, The journal of physical chemistry B, 102 (1998) 5566-5572. https://doi.org/10.1021/jp980730h
[24] R. Wahab, S. Ansari, Y.-S. Kim, H.-K. Seo, H.-S. Shin, Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method, Applied Surface Science, 253 (2007) 7622-7626. https://doi.org/10.1016/j.apsusc.2007.03.060
[25] X.Y. Kong, Y. Ding, R. Yang, Z.L. Wang, Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts, Science, 303 (2004) 1348-1351. https://doi.org/10.1126/science.1092356
[26] Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides, science, 291 (2001) 1947-1949. https://doi.org/10.1126/science.1058120
[27] Y. Xing, Z. Xi, Z. Xue, X. Zhang, J. Song, R. Wang, J. Xu, Y. Song, S.-L. Zhang, D. Yu, Optical properties of the ZnO nanotubes synthesized via vapor phase growth, Applied Physics Letters, 83 (2003) 1689-1691. https://doi.org/10.1063/1.1605808
[28] B. Zhang, N. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, H. Koinuma, Formation of highly aligned ZnO tubes on sapphire (0001) substrates, Applied physics letters, 84 (2004) 4098-4100. https://doi.org/10.1063/1.1753061
[29] Y.-B. Hahn, Zinc oxide nanostructures and their applications, Korean Journal of Chemical Engineering, 28 (2011) 1797-1813. https://doi.org/10.1007/s11814-011-0213-3
[30] B. Nikoobakht, X. Wang, A. Herzing, J. Shi, Scalable synthesis and device integration of self-registered one-dimensional zinc oxide nanostructures and related materials, Chemical Society Reviews, 42 (2013) 342-365. https://doi.org/10.1039/C2CS35164A
[31] L. Tien, S. Pearton, D. Norton, F. Ren, Synthesis and microstructure of vertically aligned ZnO nanowires grown by high-pressure-assisted pulsed-laser deposition, Journal of Materials Science, 43 (2008) 6925-6932. https://doi.org/10.1007/s10853-008-2988-0
[32] J. Cui, Zinc oxide nanowires, Materials Characterization, 64 (2012) 43-52. https://doi.org/10.1016/j.matchar.2011.11.017
[33] T. Xu, P. Ji, M. He, J. Li, Growth and structure of pure ZnO micro/nanocombs, Journal of Nanomaterials, 2012 (2012). https://doi.org/10.1155/2012/797935
[34] S. Jeong, B. Park, S.-B. Lee, J.-H. Boo, Metal-doped ZnO thin films: synthesis and characterizations, Surface and Coatings Technology, 201 (2007) 5318-5322. https://doi.org/10.1016/j.surfcoat.2006.07.185
[35] T.M. Shang, J.H. Sun, Q.F. Zhou, M.Y. Guan, Controlled synthesis of various morphologies of nanostructured zinc oxide: flower, nanoplate, and urchin, Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 42 (2007) 1002-1006. https://doi.org/10.1002/crat.200710959
[36] V. Polshettiwar, B. Baruwati, R.S. Varma, Self-assembly of metal oxides into three-dimensional nanostructures: synthesis and application in catalysis, ACS nano, 3 (2009) 728-736. https://doi.org/10.1021/nn800903p
[37] Q. Xie, Z. Dai, J. Liang, L. Xu, W. Yu, Y. Qian, Synthesis of ZnO three-dimensional architectures and their optical properties, Solid state communications, 136 (2005) 304-307. https://doi.org/10.1016/j.ssc.2005.07.023
[38] J. Liu, X. Huang, Y. Li, K. Sulieman, F. Sun, X. He, Selective growth and properties of zinc oxide nanostructures, Scripta materialia, 55 (2006) 795-798. https://doi.org/10.1016/j.scriptamat.2006.07.010
[39] M. Bitenc, Z.C. Orel, Synthesis and characterization of crystalline hexagonal bipods of zinc oxide, Materials Research Bulletin, 44 (2009) 381-387. https://doi.org/10.1016/j.materresbull.2008.05.005
[40] Z.L. Wang, Nanostructures of zinc oxide, Materials today, 7 (2004) 26-33. https://doi.org/10.1016/S1369-7021(04)00286-X
[41] A. Umar, Y. Hahn, Aligned hexagonal coaxial-shaped ZnO nanocolumns on steel alloy by thermal evaporation, Applied physics letters, 88 (2006) 173120. https://doi.org/10.1063/1.2200472
[42] B.H. Juárez, P.D. García, D. Golmayo, A. Blanco, C. Lopez, ZnO inverse opals by chemical vapor deposition, Advanced Materials, 17 (2005) 2761-2765. https://doi.org/10.1002/adma.200500569
[43] L. Znaidi, Sol-gel-deposited ZnO thin films: A review, Materials Science and Engineering: B, 174 (2010) 18-30. https://doi.org/10.1016/j.mseb.2010.07.001
[44] Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, H. Zhang, Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells, small, 6 (2010) 307-312. https://doi.org/10.1002/smll.200901968
[45] S. Pearton, D. Norton, K. Ip, Y. Heo, T. Steiner, RETRACTED: Recent progress in processing and properties of ZnO, Progress in materials science, 50 (2005) 293-340. https://doi.org/10.1016/j.pmatsci.2004.04.001
[46] A. Mamalis, Recent advances in nanotechnology, Journal of Materials Processing Technology, 181 (2007) 52-58. https://doi.org/10.1016/j.jmatprotec.2006.03.052
[47] L. Shao, J. Chen, Synthesis and application of nanoparticles by a high gravity method, China Particuology, 3 (2005) 134-135. https://doi.org/10.1016/S1672-2515(07)60180-8
[48] A. Khaleel, P.N. Kapoor, K.J. Klabunde, Nanocrystalline metal oxides as new adsorbents for air purification, Nanostructured Materials, 11 (1999) 459-468. https://doi.org/10.1016/S0965-9773(99)00329-3
[49] M. Tokumoto, V. Briois, C.V. Santilli, S.H. Pulcinelli, Preparation of ZnO nanoparticles: structural study of the molecular precursor, Journal of Sol-Gel Science and Technology, 26 (2003) 547-551. https://doi.org/10.1023/A:1020711702332
[50] H. Oh, J. Krantz, I. Litzov, T. Stubhan, L. Pinna, C.J. Brabec, Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells, Solar Energy Materials and Solar Cells, 95 (2011) 2194-2199. https://doi.org/10.1016/j.solmat.2011.03.023
[51] X. Zhao, B. Zheng, C. Li, H. Gu, Acetate-derived ZnO ultrafine particles synthesized by spray pyrolysis, Powder technology, 100 (1998) 20-23. https://doi.org/10.1016/S0032-5910(98)00047-3
[52] T. Tani, L. Mädler, S.E. Pratsinis, Homogeneous ZnO nanoparticles by flame spray pyrolysis, Journal of Nanoparticle Research, 4 (2002) 337-343. https://doi.org/10.1023/A:1021153419671
[53] X. Li, G. He, G. Xiao, H. Liu, M. Wang, Synthesis and morphology control of ZnO nanostructures in microemulsions, Journal of Colloid and Interface Science, 333 (2009) 465-473. https://doi.org/10.1016/j.jcis.2009.02.029
[54] Z.R. Dai, Z.W. Pan, Z. Wang, Novel nanostructures of functional oxides synthesized by thermal evaporation, Advanced Functional Materials, 13 (2003) 9-24. https://doi.org/10.1002/adfm.200390013
[55] I. Amarilio-Burshtein, S. Tamir, Y. Lifshitz, Growth modes of ZnO nanostructures from laser ablation, Applied Physics Letters, 96 (2010) 103104. https://doi.org/10.1063/1.3340948
[56] W.I. Park, C.H. Lee, J.H. Chae, D.H. Lee, G.C. Yi, Ultrafine ZnO nanowire electronic device arrays fabricated by selective metal-organic chemical vapor deposition, Small, 5 (2009) 181-184. https://doi.org/10.1002/smll.200800617
[57] L. Damonte, L.M. Zélis, B.M. Soucase, M.H. Fenollosa, Nanoparticles of ZnO obtained by mechanical milling, Powder Technology, 148 (2004) 15-19. https://doi.org/10.1016/j.powtec.2004.09.014
[58] S. Komarneni, M. Bruno, E. Mariani, Synthesis of ZnO with and without microwaves, Materials research bulletin, 35 (2000) 1843-1847. https://doi.org/10.1016/S0025-5408(00)00385-8
[59] M. Bitenc, P. Podbršček, Z. Crnjak Orel, M.A. Cleveland, J.A. Paramo, R.M. Peters, Y.M. Strzhemechny, Correlation between morphology and defect luminescence in precipitated ZnO nanorod powders, Crystal Growth and Design, 9 (2009) 997-1001. https://doi.org/10.1021/cg8008078
[60] P. Banerjee, S. Chakrabarti, S. Maitra, B.K. Dutta, Zinc oxide nano-particles-sonochemical synthesis, characterization and application for photo-remediation of heavy metal, Ultrasonics sonochemistry, 19 (2012) 85-93. https://doi.org/10.1016/j.ultsonch.2011.05.007
[61] L. Pyskło, W. Parasiewicz, P. Pawłowski, K. Niciński, Zinc Oxide in Rubber Compounds, Instytut Przemyslu Gumowego: Piastow, Poland, (2007).
[62] S. Mahmud, M. Johar Abdullah, G.A. Putrus, J. Chong, A. Karim Mohamad, Nanostructure of ZnO fabricated via French process and its correlation to electrical properties of semiconducting varistors, Synthesis and Reactivity in Inorganic and Metal-Organic and Nano-Metal Chemistry, 36 (2006) 155-159. https://doi.org/10.1080/15533170500524462
[63] T. Tsuzuki, P.G. McCormick, Mechanochemical synthesis of nanoparticles, Journal of materials science, 39 (2004) 5143-5146. https://doi.org/10.1023/B:JMSC.0000039199.56155.f9
[64] Z. Zhou, J. Wang, C.G. Jhun, ZnO Nanospheres Fabricated by Mechanochemical Method with Photocatalytic Properties, Catalysts, 11 (2021) 572. https://doi.org/10.3390/catal11050572
[65] F. Elmi, H. Alinezhad, Z. Moulana, F. Salehian, S. Mohseni Tavakkoli, F. Asgharpour, H. Fallah, M.M. Elmi, The use of antibacterial activity of ZnO nanoparticles in the treatment of municipal wastewater, Water Science and Technology, 70 (2014) 763-770. https://doi.org/10.2166/wst.2014.232
[66] H. Çolak, E. Karaköse, Y. Derin, Properties of ZnO nanostructures produced by mechanochemical-solid state combustion method using different precursors, Materials Chemistry and Physics, 193 (2017) 427-437. https://doi.org/10.1016/j.matchemphys.2017.03.009
[67] A. Kołodziejczak-Radzimska, T. Jesionowski, A. Krysztafkiewicz, Obtaining zinc oxide from aqueous solutions of KOH and Zn (CH3COO) 2, Physicochemical Problems of Mineral Processing, 44 (2010) 93-102.
[68] R. Hong, T. Pan, J. Qian, H. Li, Synthesis and surface modification of ZnO nanoparticles, Chemical Engineering Journal, 119 (2006) 71-81. https://doi.org/10.1016/j.cej.2006.03.003
[69] J. Xu, Q. Pan, Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor, Sensors and Actuators B: Chemical, 66 (2000) 277-279. https://doi.org/10.1016/S0925-4005(00)00381-6
[70] A.S. Lanje, S.J. Sharma, R.S. Ningthoujam, J.-S. Ahn, R.B. Pode, Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method, Advanced Powder Technology, 24 (2013) 331-335. https://doi.org/10.1016/j.apt.2012.08.005
[71] Y. Wang, C. Zhang, S. Bi, G. Luo, Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor, Powder Technology, 202 (2010) 130-136. https://doi.org/10.1016/j.powtec.2010.04.027
[72] W. Jia, S. Dang, H. Liu, Z. Zhang, C. Yu, X. Liu, B. Xu, Evidence of the formation mechanism of ZnO in aqueous solution, Materials Letters, 82 (2012) 99-101. https://doi.org/10.1016/j.matlet.2012.05.013
[73] Z. Cao, Z. Zhang, F. Wang, G. Wang, Synthesis and UV shielding properties of zinc oxide ultrafine particles modified with silica and trimethyl siloxane, Colloids and surfaces A: physicochemical and engineering aspects, 340 (2009) 161-167. https://doi.org/10.1016/j.colsurfa.2009.03.024
[74] S. Bu, Z. Jin, X. Liu, T. Yin, Z. Cheng, Preparation of nanocrystalline TiO2 porous films from terpineol-ethanol-PEG system, Journal of materials science, 41 (2006) 2067-2073. https://doi.org/10.1007/s10853-006-8000-y
[75] R. Campostrini, M. Ischia, L. Palmisano, Pyrolysis study of sol-gel derived TiO 2 powders: part I. TiO 2-anatase prepared by reacting titanium (IV) isopropoxide with formic acid, Journal of thermal analysis and calorimetry, 71 (2003) 997-1010.
[76] R. Campostrini, M. Ischia, L. Palmisano, Pyrolysis study of Sol-gel derived TiO 2 Powders: Part II. TiO 2-anatase prepared by reacting titanium (IV) isopropoxide with oxalic acid, Journal of thermal analysis and calorimetry, 71 (2003) 1011-1022.
[77] A. Peng, E. Xie, C. Jia, R. Jiang, H. Lin, Photoluminescence properties of TiO2: Eu3+ thin films deposited on different substrates, Materials letters, 59 (2005) 3866-3869. https://doi.org/10.1016/j.matlet.2005.07.028
[78] S. Sivakumar, P.K. Pillai, P. Mukundan, K. Warrier, Sol-gel synthesis of nanosized anatase from titanyl sulfate, Materials letters, 57 (2002) 330-335. https://doi.org/10.1016/S0167-577X(02)00786-3
[79] S.S. Watson, D. Beydoun, J.A. Scott, R. Amal, The effect of preparation method on the photoactivity of crystalline titanium dioxide particles, Chemical Engineering Journal, 95 (2003) 213-220. https://doi.org/10.1016/S1385-8947(03)00107-4
[80] W. Xu, W. Hu, M. Li, Sol-gel derived hydroxyapatite/titania biocoatings on titanium substrate, Materials Letters, 60 (2006) 1575-1578. https://doi.org/10.1016/j.matlet.2005.11.072
[81] U. Schubert, Chemistry and fundamentals of the sol-gel process, The Sol‐Gel Handbook, (2015) 1-28. https://doi.org/10.1002/9783527670819.ch01
[82] J.D. Mackenzie, E.P. Bescher, Chemical routes in the synthesis of nanomaterials using the sol-gel process, Accounts of chemical research, 40 (2007) 810-818. https://doi.org/10.1021/ar7000149
[83] T. Mahato, G. Prasad, B. Singh, J. Acharya, A. Srivastava, R. Vijayaraghavan, Nanocrystalline zinc oxide for the decontamination of sarin, Journal of hazardous materials, 165 (2009) 928-932. https://doi.org/10.1016/j.jhazmat.2008.10.126
[84] H. Benhebal, M. Chaib, T. Salmon, J. Geens, A. Leonard, S.D. Lambert, M. Crine, B. Heinrichs, Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol-gel process, Alexandria Engineering Journal, 52 (2013) 517-523. https://doi.org/10.1016/j.aej.2013.04.005
[85] M. Ristić, S. Musić, M. Ivanda, S. Popović, Sol-gel synthesis and characterization of nanocrystalline ZnO powders, Journal of Alloys and Compounds, 397 (2005) L1-L4. https://doi.org/10.1016/j.jallcom.2005.01.045
[86] S. Yue, Z. Yan, Y. Shi, G. Ran, Synthesis of zinc oxide nanotubes within ultrathin anodic aluminum oxide membrane by sol-gel method, Materials Letters, 98 (2013) 246-249. https://doi.org/10.1016/j.matlet.2013.02.037
[87] P. Dhiman, J. Chand, A. Kumar, R.K. Kotnala, K.M. Batoo, M. Singh, Synthesis and characterization of novel Fe@ZnO nanosystem, Journal of Alloys and Compounds, 578 (2013) 235-241. https://doi.org/10.1016/j.jallcom.2013.05.015
[88] T. Sharma, M. Garg, Optical and morphological characterization of ZnO nano-sized powder synthesized using single step sol-gel technique, Optical Materials, 132 (2022) 112794. https://doi.org/10.1016/j.optmat.2022.112794
[89] S.A. Ayon, S. Hasan, M.M. Billah, S.S. Nishat, A. Kabir, Improved luminescence and photocatalytic properties of Sm3+-doped ZnO nanoparticles via modified sol-gel route: A unified experimental and DFT+U approach, Journal of Rare Earths, (2022). https://doi.org/10.21203/rs.3.rs-1079490/v1
[90] S. Arya, P. Mahajan, S. Mahajan, A. Khosla, R. Datt, V. Gupta, S.-J. Young, S.K. Oruganti, Review-Influence of Processing Parameters to Control Morphology and Optical Properties of Sol-Gel Synthesized ZnO Nanoparticles, ECS Journal of Solid State Science and Technology, 10 (2021) 023002. https://doi.org/10.1149/2162-8777/abe095
[91] K. Omri, I. Najeh, R. Dhahri, J. El Ghoul, L. El Mir, Effects of temperature on the optical and electrical properties of ZnO nanoparticles synthesized by sol-gel method, Microelectronic Engineering, 128 (2014) 53-58. https://doi.org/10.1016/j.mee.2014.05.029
[92] Y. Li, L. Xu, X. Li, X. Shen, A. Wang, Effect of aging time of ZnO sol on the structural and optical properties of ZnO thin films prepared by sol-gel method, Applied Surface Science, 256 (2010) 4543-4547. https://doi.org/10.1016/j.apsusc.2010.02.044
[93] A. B Djurisic, X. Y Chen, Y. H Leung, Recent progress in hydrothermal synthesis of zinc oxide nanomaterials, Recent patents on nanotechnology, 6 (2012) 124-134. https://doi.org/10.2174/187221012800270180
[94] B. Innes, T. Tsuzuki, H. Dawkins, J. Dunlop, G. Trotter, M. Nearn, P. McCornick, Nanotechnology and Cosmetic Chemistry, Cosmetics, Aerosols & Toiletries in Australia, 15 (5), 10, 24 (2002).
[95] R. Jing, A. Ibni Khursheed, J.a. Song, L. Sun, Z. Yu, Z. Nie, E. Cao, A comparative study on the acetone sensing properties of ZnO disk pairs, flowers, and walnuts prepared by hydrothermal method, Applied Surface Science, 591 (2022) 153218. https://doi.org/10.1016/j.apsusc.2022.153218
[96] A. Kołodziejczak-Radzimska, E. Markiewicz, T. Jesionowski, Structural characterisation of ZnO particles obtained by the emulsion precipitation method, Journal of Nanomaterials, 2012 (2012). https://doi.org/10.1155/2012/656353
[97] R. Hong, T. Pan, J. Qian, H. Li, Synthesis and surface modification of ZnO nanoparticles, Chemical Engineering Journal, 119 (2006) 71-81. https://doi.org/10.1016/j.cej.2006.03.003
[98] Y. Wang, C. Zhang, S. Bi, G. Luo, Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor, Powder Technology, 202 (2010) 130-136. https://doi.org/10.1016/j.powtec.2010.04.027
[99] Z. Cao, Z. Zhang, F. Wang, G. Wang, Synthesis and UV shielding properties of zinc oxide ultrafine particles modified with silica and trimethyl siloxane, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 340 (2009) 161-167. https://doi.org/10.1016/j.colsurfa.2009.03.024
[100] Z.M. Khoshhesab, M. Sarfaraz, Z. Houshyar, Influences of Urea on Preparation of Zinc Oxide Nanostructures Through Chemical Precipitation in Ammonium Hydrogencarbonate Solution, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 42 (2012) 1363-1368. https://doi.org/10.1080/15533174.2012.680119
[101] K. Mohan Kumar, B.K. Mandal, E. Appala Naidu, M. Sinha, K. Siva Kumar, P. Sreedhara Reddy, Synthesis and characterisation of flower shaped Zinc Oxide nanostructures and its antimicrobial activity, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 104 (2013) 171-174. https://doi.org/10.1016/j.saa.2012.11.025
[102] W. Ao, J. Li, H. Yang, X. Zeng, X. Ma, Mechanochemical synthesis of zinc oxide nanocrystalline, Powder Technology, 168 (2006) 148-151. https://doi.org/10.1016/j.powtec.2006.07.014
[103] A. Stanković, L. Veselinović, S.D. Škapin, S. Marković, D. Uskoković, Controlled mechanochemically assisted synthesis of ZnO nanopowders in the presence of oxalic acid, Journal of Materials Science, 46 (2011) 3716-3724. https://doi.org/10.1007/s10853-011-5273-6
[104] T. Tsuzuki, P.G. McCormick, ZnO nanoparticles synthesised by mechanochemical processing, Scripta Materialia, 44 (2001) 1731-1734. https://doi.org/10.1016/S1359-6462(01)00793-X
[105] M. Ristić, S. Musić, M. Ivanda, S. Popović, Sol-gel synthesis and characterization of nanocrystalline ZnO powders, Journal of Alloys and Compounds, 397 (2005) L1-L4. https://doi.org/10.1016/j.jallcom.2005.01.045
[106] T.H. Mahato, G.K. Prasad, B. Singh, J. Acharya, A.R. Srivastava, R. Vijayaraghavan, Nanocrystalline zinc oxide for the decontamination of sarin, Journal of Hazardous Materials, 165 (2009) 928-932. https://doi.org/10.1016/j.jhazmat.2008.10.126
[107] A.A. Ismail, A. El-Midany, E.A. Abdel-Aal, H. El-Shall, Application of statistical design to optimize the preparation of ZnO nanoparticles via hydrothermal technique, Materials Letters, 59 (2005) 1924-1928. https://doi.org/10.1016/j.matlet.2005.02.027
[108] S. Musić, Đ. Dragčević, S. Popović, M. Ivanda, Precipitation of ZnO particles and their properties, Materials Letters, 59 (2005) 2388-2393. https://doi.org/10.1016/j.matlet.2005.02.084
[109] S.-J. Chen, L.-H. Li, X.-T. Chen, Z. Xue, J.-M. Hong, X.-Z. You, Preparation and characterization of nanocrystalline zinc oxide by a novel solvothermal oxidation route, Journal of Crystal Growth, 252 (2003) 184-189. https://doi.org/10.1016/S0022-0248(02)02495-8
[110] J.J. Schneider, R.C. Hoffmann, J. Engstler, A. Klyszcz, E. Erdem, P. Jakes, R.-A. Eichel, L. Pitta-Bauermann, J. Bill, Synthesis, Characterization, Defect Chemistry, and FET Properties of Microwave-Derived Nanoscaled Zinc Oxide, Chemistry of Materials, 22 (2010) 2203-2212. https://doi.org/10.1021/cm902300q
[111] S.A. Vorobyova, A.I. Lesnikovich, V.V. Mushinskii, Interphase synthesis and characterization of zinc oxide, Materials Letters, 58 (2004) 863-866. https://doi.org/10.1016/j.matlet.2003.08.008
[112] M. Singhai, V. Chhabra, P. Kang, D.O. Shah, Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol ot microemulsion, Materials Research Bulletin, 32 (1997) 239-247. https://doi.org/10.1016/S0025-5408(96)00175-4
[113] Ö.A. Yıldırım, C. Durucan, Synthesis of zinc oxide nanoparticles elaborated by microemulsion method, Journal of Alloys and Compounds, 506 (2010) 944-949. https://doi.org/10.1016/j.jallcom.2010.07.125
[114] R. Moleski, E. Leontidis, F. Krumeich, Controlled production of ZnO nanoparticles from zinc glycerolate in a sol-gel silica matrix, Journal of Colloid and Interface Science, 302 (2006) 246-253. https://doi.org/10.1016/j.jcis.2006.07.030
[115] F.-Q. He, Y.-P. Zhao, Growth of ZnO nanotetrapods with hexagonal crown, Applied physics letters, 88 (2006) 193113. https://doi.org/10.1063/1.2202003
[116] Y. Dai, Y. Zhang, Q. Li, C. Nan, Synthesis and optical properties of tetrapod-like zinc oxide nanorods, Chemical Physics Letters, 358 (2002) 83-86. https://doi.org/10.1016/S0009-2614(02)00582-1
[117] Z.L. Wang, X. Kong, J. Zuo, Induced growth of asymmetric nanocantilever arrays on polar surfaces, Physical review letters, 91 (2003) 185502. https://doi.org/10.1103/PhysRevLett.91.185502
[118] H. Yan, R. He, J. Johnson, M. Law, R.J. Saykally, P. Yang, Dendritic nanowire ultraviolet laser array, Journal of the American Chemical Society, 125 (2003) 4728-4729. https://doi.org/10.1021/ja034327m
[119] P.X. Gao, Z.L. Wang, Nanoarchitectures of semiconducting and piezoelectric zinc oxide, Journal of Applied Physics, 97 (2005) 044304. https://doi.org/10.1063/1.1847701
[120] X. Wang, Y. Ding, C.J. Summers, Z.L. Wang, Large-scale synthesis of six-nanometer-wide ZnO nanobelts, The Journal of Physical Chemistry B, 108 (2004) 8773-8777. https://doi.org/10.1021/jp048482e
[121] L.M. Kukreja, S. Barik, P. Misra, Variable band gap ZnO nanostructures grown by pulsed laser deposition, Journal of crystal growth, 268 (2004) 531-535. https://doi.org/10.1016/j.jcrysgro.2004.04.086
[122] J. Chiou, K.K. Kumar, J. Jan, H. Tsai, C. Bao, W.-F. Pong, F. Chien, M.-H. Tsai, I.-H. Hong, R. Klauser, Diameter dependence of the electronic structure of ZnO nanorods determined by x-ray absorption spectroscopy and scanning photoelectron microscopy, Applied physics letters, 85 (2004) 3220-3222. https://doi.org/10.1063/1.1802373
[123] Z. Fan, J.G. Lu, Gate-refreshable nanowire chemical sensors, Applied Physics Letters, 86 (2005) 123510. https://doi.org/10.1063/1.1883715
[124] A. Kolmakov, M. Moskovits, Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures, Annu. Rev. Mater. Res., 34 (2004) 151-180. https://doi.org/10.1146/annurev.matsci.34.040203.112141
[125] Y. Zhang, A. Kolmakov, S. Chretien, H. Metiu, M. Moskovits, Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it, Nano Letters, 4 (2004) 403-407. https://doi.org/10.1021/nl034968f
[126] A. Asthana, K. Momeni, A. Prasad, Y.K. Yap, R.S. Yassar, In situ observation of size-scale effects on the mechanical properties of ZnO nanowires, Nanotechnology, 22 (2011) 265712. https://doi.org/10.1088/0957-4484/22/26/265712
[127] T.-H. Fang, W.-J. Chang, C.-M. Lin, Nanoindentation characterization of ZnO thin films, Materials Science and Engineering: A, 452-453 (2007) 715-720. https://doi.org/10.1016/j.msea.2006.11.008
[128] X. Bai, P. Gao, Z.L. Wang, E. Wang, Dual-mode mechanical resonance of individual ZnO nanobelts, Applied Physics Letters, 82 (2003) 4806-4808. https://doi.org/10.1063/1.1587878
[129] T.-T. Cao, Y.-J. Wang, Y.-Q. Zhang, Effect of Strongly Alkaline Electrolyzed Water on Silk Degumming and the Physical Properties of the Fibroin Fiber, PLOS ONE, 8 (2013) e65654. https://doi.org/10.1371/journal.pone.0065654
[130] P.-C. Chang, Z. Fan, C.-J. Chien, D. Stichtenoth, C. Ronning, J.G. Lu, High-performance ZnO nanowire field effect transistors, Applied physics letters, 89 (2006) 133113. https://doi.org/10.1063/1.2357013
[131] K.-K. Kim, H.-S. Kim, D.-K. Hwang, J.-H. Lim, S.-J. Park, Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant, Applied Physics Letters, 83 (2003) 63-65. https://doi.org/10.1063/1.1591064
[132] D. Banerjee, S.H. Jo, Z.F. Ren, Enhanced field emission of ZnO nanowires, Advanced Materials, 16 (2004) 2028-2032. https://doi.org/10.1002/adma.200400629
[133] Y.K. Tseng, C.J. Huang, H.M. Cheng, I.N. Lin, K.S. Liu, I.C. Chen, Characterization and field‐emission properties of needle‐like zinc oxide nanowires grown vertically on conductive zinc oxide films, Advanced functional materials, 13 (2003) 811-814. https://doi.org/10.1002/adfm.200304434
[134] H. Zhang, R. Wang, Y. Zhu, Effect of adsorbates on field-electron emission from ZnO nanoneedle arrays, Journal of applied physics, 96 (2004) 624-628. https://doi.org/10.1063/1.1757653
[135] Y. Li, Y. Bando, D. Golberg, ZnO nanoneedles with tip surface perturbations: Excellent field emitters, Applied Physics Letters, 84 (2004) 3603-3605. https://doi.org/10.1063/1.1738174
[136] T. Kim, J. Kim, S. Lee, H. Shim, E. Suh, K. Nahm, Characterization of ZnO needle-shaped nanostructures grown on NiO catalyst-coated Si substrates, Synthetic metals, 144 (2004) 61-68. https://doi.org/10.1016/j.synthmet.2004.01.010
[137] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, Nathan, Morris, J. Pham, R. He, and HJ Choi, Adv. Funct. Mater, 12 (2002) 323. https://doi.org/10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
[138] Z.L. Wang, X.Y. Kong, Y. Ding, P. Gao, W.L. Hughes, R. Yang, Y. Zhang, Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces, Advanced Functional Materials, 14 (2004) 943-956. https://doi.org/10.1002/adfm.200400180
[139] S. Han, X. Feng, Z. Lu, D. Johnson, R. Wood, Erratum:”Transparent-cathode for top-emission organic light-emitting diodes”[Appl. Phys. Lett. 82, 2715 (2003)], Applied Physics Letters, 83 (2003) 2719-2719. https://doi.org/10.1063/1.1614436
[140] W. Lee, M.-C. Jeong, J.-M. Myoung, Evolution of the morphology and optical properties of ZnO nanowires during catalyst-free growth by thermal evaporation, Nanotechnology, 15 (2004) 1441. https://doi.org/10.1088/0957-4484/15/11/010
[141] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers, science, 292 (2001) 1897-1899. https://doi.org/10.1126/science.1060367
[142] C. Liu, J.A. Zapien, Y. Yao, X. Meng, C.S. Lee, S. Fan, Y. Lifshitz, S.T. Lee, High‐Density, ordered ultraviolet light‐emitting ZnO nanowire arrays, Advanced materials, 15 (2003) 838-841. https://doi.org/10.1002/adma.200304430
[143] L. Liu, X. Liu, Roles of drug transporters in blood-retinal barrier, Drug Transporters in Drug Disposition, Effects and Toxicity, (2019) 467-504. https://doi.org/10.1007/978-981-13-7647-4_10
[144] Z. Fan, D. Wang, P.-C. Chang, W.-Y. Tseng, J.G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property, Applied Physics Letters, 85 (2004) 5923-5925. https://doi.org/10.1063/1.1836870
[145] Q. Li, T. Gao, Y. Wang, T. Wang, Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements, Applied Physics Letters, 86 (2005) 123117. https://doi.org/10.1063/1.1883711
[146] D.I. Florescu, L. Mourokh, F.H. Pollak, D.C. Look, G. Cantwell, X. Li, High spatial resolution thermal conductivity of bulk ZnO (0001), Journal of applied physics, 91 (2002) 890-892. https://doi.org/10.1063/1.1426234
[147] V. Coleman, Zinc Oxide Bulk, Thin Films and Nanostructures-Processing, Properties and Applications edited by C. Jagadish, S. Pearton, in, Elsevier, Amsterdam, 2007. https://doi.org/10.1016/B978-008044722-3/50001-4