Electromagnetic Properties of Cobalt Ferrite (CoFe2O4) with and without Addition of Niobium Pentoxide

$30.00

Electromagnetic Properties of Cobalt Ferrite (CoFe2O4) with and without Addition of Niobium Pentoxide

F.E. Carvalho, A.C.C. Migliano, J.P.B. Machado, R.C. Pullar, R.B. Jotania

This chapter compares the electromagnetic behavior of CoFe2O4 with and without addition of Nb2O5 in order to find biomedical applications of these compositions. Taking into account that their electromagnetic behavior is affected by their morphological structure, a structural analysis of samples prepared with different stoichiometries and sintered at different temperatures was performed. The formation of a new phase and the presence of lamellar veins crystallographically oriented by their magnetic domains were identified. In addition, complex measurements of electrical permittivity and magnetic permeability allowed us to infer that maximum absorption frequency increases with the addition of niobium pentoxide, while hysteresis cycles indicated a decrease in saturation magnetization and an increase in coercive force.

Keywords
Electromagnetic Behavior, Niobium Pentoxide, Cobalt Ferrite, Biomedical Application

Published online , 29 pages

Citation: F.E. Carvalho, A.C.C. Migliano, J.P.B. Machado, R.C. Pullar, R.B. Jotania, Electromagnetic Properties of Cobalt Ferrite (CoFe2O4) with and without Addition of Niobium Pentoxide, Materials Research Foundations, Vol. 143, pp 170-198, 2023

DOI: https://doi.org/10.21741/9781644902332-6

Part of the book on Magnetic Nanoparticles for Biomedical Applications

References
[1] M A. Almessiere, A. V. Trukhanov, F.A. Khan, Y. Slimani, N. Tashkandi, V. A. Turchenko, T. I. Zubar, D.I. Tishkevich, S. V. Trukhanov, L. V. Panina, A. Baykal, Correlation between microstructure parameters and anti-cancer activity of the [Mn0.5Zn0.5](EuxNdxFe2-2x)O4nanoferrites produced by modified sol-gel and ultrasonic methods, Ceram Int. 46 (2020) 7346-7354 https://doi.org/10.1016/j.ceramint.2019.11.230
[2] D. I. Tishkevich, I. V. Korolkov, A. L. Kozlovskiy, M. Anisovich, D. A. Vinnik, A. E. Ermekova, A. I. Vorobjova, E. E. Shumskaya, T.I. Zubar, S. V. Trukhanov, M. V. Zdorovets, A. V. Trukhanov, Immobilization of boron-rich compound on Fe3O4 nanoparticles: Stability and cytotoxicity, J Alloys Compd. 797 (2019) 573-581 https://doi.org/10.1016/j.jallcom.2019.05.075
[3] J. Smit, H. P. J. Wijn, Ferrites: Physical Properties of Ferrimagnetic Oxides in Relation to Their Technical Application, Philips Technical Library, Eindhoven, The Netherlands, 1959
[4] D. A. Vinnik, V. E. Zhivulin, D. P. Sherstyuk, A. Y. Starikov, P. A. Zezyulina, S. A. Gudkova, D. A. Zherebtsov, K. N. Rozanov, S. V. Trukhanov, K. A. Astapovich, V. A. Turchenko, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A. V. Trukhanov, Electromagnetic properties of zinc-nickel ferrites in the frequency range of 0.05-10 GHz, Mater Today Chem.20 (2021) 100460 https://doi.org/10.1016/j.mtchem.2021.100460
[5] F. Chen, X. Wang, Y. Nie, Q. Li, J. Ouyang, Z. Feng, Y. Chen, V.G. Harris, Ferromagnetic resonance induced large microwave magnetodielectric effect in cerium doped Y3Fe5O12 ferrites, Scientific Reports 2016, 6(2016) 1-8 https://doi.org/10.1038/srep28206
[6] F.E. Carvalho, L. V. Lemos, A. C .C. Migliano, J. P. B. Machado, R. C. Pullar, Structural and complex electromagnetic properties of cobalt ferrite (CoFe2O4) with an addition of niobium pentoxide, Ceram Int. 44 (2018) 915-921 https://doi.org/10.1016/j.ceramint.2017.10.023
[7] A. S. Sedra, K. C. Smith, Microelectronic Circuits, Oxford series in Electrical and Computer Engineering, 2000
[8] A. R. Hippel, Dielectric Materials and Applications, The MIT Press, Cambridge, USA, 1966.
[9] R M Bozorth, Ferromagnetism, Van Nostrand, New York, USA, 1951.
[10] I.C. Nlebedim, N. Ranvah, P. I. Williams, Y. Melikhov, F. Anayi, J. E. Snyder, A. J. Moses, D. C. Jiles, Influence of vacuum sintering on microstructure and magnetic properties of magnetostrictive cobalt ferrite, J MagnMagn Mater. 321 (2009) 2528-2532 https://doi.org/10.1016/j.jmmm.2009.03.021
[11] D.P. Masse, A. Muan, Phase Equilibria at Liquidus Temperatures in the System Cobalt Oxide-Iron Oxide-Silica in Air, J. Am. Ceram. Soc.48 (1965) 466-469 https://doi.org/10.1111/j.1151-2916.1965.tb14800.x
[12] B. ParvatheeswaraRao, C. Kim, Effect of Nb2O5 additions on the power loss of NiZn ferrites, J. Mater. Sci.42 (2007) 8433-8437 https://doi.org/10.1007/s10853-007-1789-1
[13] K. Sun, Z. Lan, Z. Yu, L. Li, J. Huang, Grain growth and magnetic properties of Nb2O5-doped NiZn ferrites, Jpn. J. Appl. Phys.47 (2008) 7871-7875 https://doi.org/10.1143/JJAP.47.7871
[14] V. Ribeiro, C. S. P. Mendonca, v. D. De Oliveira, A. C. Baldim. M. R. Da Silva, A. F. Oliveira, Investigation of the microstructure and the magnetic properties of the copper and niobium ferrite, CiênciaTecnol.Mater.27 (2015) 1-80
[15] R. Rakhikrishna, J. Isaac, J. Philip, Magneto-electric coupling in multiferroicnanocomposites of the type x(Na0.5K0.5)0.94Li0.06NbO3-(1−x)CoFe2O4: Role of ferrite phase, Ceram. Int. 43 (2017) 664-671 https://doi.org/10.1016/j.ceramint.2016.09.212
[16] C. E. Ciomaga, C. Galassi, F. Prihor, I. Dumitru, L. Mitoseriu, A.R. Iordan, M. Airimioaei, M.N. Palamaru, Preparation and properties of the CoFe2O4-Nb-Pb (Zr,Ti)O3 multiferroic composites prepared in situ by gel-combustion method, J. Alloy. Compd. 485 (2009) 372-378 https://doi.org/10.1016/j.jallcom.2009.05.101
[17] C. S. C. Lekha, A. S. Kumar, S. Vivek, U. P. M. Rasi, K. V. Saravanan, K. Nandakumar, S. S. Nair, High voltage generation from lead-free magnetoelectric coaxial nanotube arrays and their applications in nano energy harvesters, Nanotechnology 28 (2016) 055402 https://doi.org/10.1088/1361-6528/28/5/055402
[18] R.C. Pullar, Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci.57 (2012) 1191-1334 https://doi.org/10.1016/j.pmatsci.2012.04.001
[19] L. Jia, H. Zhang, Z. Zhong, Y. Liu, Effects of different sintering temperature and Nb2O5 content on structural and magnetic properties of Z-type hexaferrites, J. Magn. Magn.Mater.310 (2007) 92-97 https://doi.org/10.1016/j.jmmm.2006.07.034
[20] V. L. O . de Brito, S. A. Cunha, L. V. Lemos, C. Bormio-Nunes, Magnetic Properties of Liquid-Phase Sintered CoFe2O4 for Application in Magnetoelastic and Magnetoelectric Transducers, Sensors 12 (2012) 10086-10096 https://doi.org/10.3390/s120810086
[21] Z. Ullah, S. Atiq, S. Naseem, Influence of Pb doping on structural, electrical and magnetic properties of Sr-hexaferrites, J. Alloy. Compd. 555 (2013) 263-267 https://doi.org/10.1016/j.jallcom.2012.12.061
[22] A. Cortes, A. Carlos, C. Migliano, V. Lúcia, O. de Brito, A. Côrtes, A.C.C. Migliano, V.L.O. Brito, A.J.F. Orlando, Practical aspects of the characterization of ferrite absorber using one-port device at RF frequencies,Proceedings of Progress In Electromagnetics Research Symposium, Beijing, 2007
[23] D. Jiles, Introduction to Magnetism and Magnetic Materials, 2nd edition, CRC Press, 2015 https://doi.org/10.1201/b18948
[24] L.F. Chen, C. K. Ong, C. P. Varadan, V. V. Varadan, V. K. Varadan, Microwave electronics : measurement and materials characterization, John Wiley and Sons, 552 2004 https://doi.org/10.1002/0470020466
[25] S-Parameter Measurements, Basics of High Speed Digital Engineers, Keysight Technologies Manual. https://www.keysight.com/us/en/assets/7018-06743/application-notes/5952-1087.pdf
[26] R. N. Clarke, A. P. Gregory, D. Cannell, M. Patrick, S. Wylie, I.Youngs, G.Hill, A guide to the characterisation of dielectric materials at RF and microwave frequencies, National Physical Laboratory 2003
[27] E. J. Rothwell, J. L. Frasch, S. M. Ellison, P. Chahal, R. O. Ouedraogo, Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials, Prog. Electromag. Res. 157 (2016) 31-47. https://doi.org/10.2528/PIER16071706
[28] J. Clarke, A. I. Braginski, The SQUID handbook: Fundamentals and Technology of SQUIDs and SQUID systems, Willey 2 2004 https://doi.org/10.1002/3527603646
[29] D. Zhang, Z. Hao, Y. Qian, Y. Huang, Bizeng, Z. Yang, W. Qibai, Simulation and measurement of optimized microwave reflectivity for carbon nanotube absorber by controlling electromagnetic factors, Sci. Rep.7 (2017) 1-8 https://doi.org/10.1038/s41598-016-0028-x
[30] P. R. Rios, G. S. Fonseca, Grain Boundary Pinning by Particles, Mater. Sci. For. 638-642 (2010) 3907-3912 https://doi.org/10.4028/www.scientific.net/MSF.638-642.3907
[31] A. C. C Migliano, Y. C. De Polli, F. R. Daro, A. K. Hirata, F.E.Carvalho, G.P.Zanella, V.L.O Brito, F.F. Araujo, M.C.Salvadori, Microstructural Analysis of Ceramics with Applications in Sensors and Biosensors. In: III IEAV Science and Technology Symposium 2014, São José dos Campos. Proceedings of the III Symposium on Science and Technology of the Institute for Advanced Studies, São José dos Campos: Instituo de EstudosAvançados, 2014