Hard Ferrites for Permanent Magnets

$30.00

Hard Ferrites for Permanent Magnets

Rohit Jasrotia, Suman, Ankit Verma, Sachin Kumar Godara, Shubham Sharma, Kirti, Rahul Kalia Pooja Puri and Gagan Kumar

The hard ferrites called hexaferrites or hexagonal ferrites show excellent characteristics which makes them suitable for many potential applications. The magnetic characteristics of these hexaferrites must be tweaked to meet the needs of a certain potential application. This can be fulfilled by making few modifications within the crystal structure of hexagonal ferrites such as reduction of the size at the nanoscale, changes in the morphology, substitution of divalent as well as trivalent metal cations for increasing magnetization, and many more. In the current chapter, the requirement for excellent hexaferrite-based magnets, we evaluate the most promising ways for improving the performance of hexaferrite-based materials for utilization in permanent magnets, as well as their latest results. Then, we have provided a comprehensive study on the suggested modifications such as size reduction, substitution, shape and many more, which helps in the improvement of magnetic characteristics of hexagonal ferrites for their commercial use for permanent magnets application. Lastly, the concluding remarks have been presented.

Keywords
Hard Ferrites, Permanent Magnets, Size Reduction, Substitution

Published online 2/1/2023, 31 pages

Citation: Rohit Jasrotia, Suman, Ankit Verma, Sachin Kumar Godara, Shubham Sharma, Kirti, Rahul Kalia Pooja Puri and Gagan Kumar, Hard Ferrites for Permanent Magnets, Materials Research Foundations, Vol. 142, pp 121-151, 2023

DOI: https://doi.org/10.21741/9781644902318-5

Part of the book on An Introduction to Hard Ferrites

References
[1] J.S. Smart, Effective field theories of magnetism, Saunders, 1966. https://doi.org/10.1063/1.3048415
[2] S. Elliott, The physics and chemistry of solids, Wiley, 1998.
[3] W. Nolting, A. Ramakanth, Quantum theory of magnetism, Springer Science & Business Media, 2009. https://doi.org/10.1007/978-3-540-85416-6
[4] A. Aharoni, Introduction to the Theory of Ferromagnetism, Clarendon Press, 2000.
[5] P. Weiss, Hypothesis of the molecular field and ferromagnetic properties, J. Phys. 6 (1907) 661-690. https://doi.org/10.1051/jphystap:019070060066100
[6] K.H.J. Buschow, F.R. Boer, Physics of magnetism and magnetic materials, Springer, 2003. https://doi.org/10.1007/b100503
[7] B.D. Cullity, C.D. Graham, Introduction to magnetic materials, John Wiley & Sons, 2011.
[8] J.B. Carlson, Lodestone compass: Chinese or olmec primacy?: Multidisciplinary analysis of an olmec hematite artifact from san lorenzo, veracruz, mexico, Science. 189 (1975) 753-760. https://doi.org/10.1126/science.189.4205.753
[9] K.H.J. Buschow, New permanent magnet materials, Materials Science Reports. 1 (1986) 1-63. https://doi.org/10.1016/0920-2307(86)90003-4
[10] R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science. 57 (2012) 1191-1334. https://doi.org/10.1016/j.pmatsci.2012.04.001
[11] V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, Recent advances in processing and applications of microwave ferrites, Journal of Magnetism and Magnetic Materials. 321 (2009) 2035-2047. https://doi.org/10.1016/j.jmmm.2009.01.004
[12] Ü. Özgür, Y. Alivov, H. Morkoç, Microwave ferrites, part 1: fundamental properties, Journal of Materials Science: Materials in Electronics. 20 (2009) 789-834. https://doi.org/10.1007/s10854-009-9923-2
[13] Ü. Özgür, Y. Alivov, H. Morkoç, Microwave ferrites, part 2: passive components and electrical tuning, Journal of Materials Science: Materials in Electronics. 20 (2009) 911-952. https://doi.org/10.1007/s10854-009-9924-1
[14] C. de Julian Fernandez, C. Sangregorio, J. de la Figuera, B. Belec, D. Makovec, A. Quesada, Topical review: progress and prospects of hard hexaferrites for permanent magnet applications, Journal of Physics D: Applied Physics. (2020). https://doi.org/10.1088/1361-6463/abd272
[15] X. Obradors, X. Solans, A. Collomb, D. Samaras, J. Rodriguez, M. Pernet, M. Font-Altaba, Crystal structure of strontium hexaferrite SrFe12O19, Journal of Solid State Chemistry. 72 (1988) 218-224. https://doi.org/10.1016/0022-4596(88)90025-4
[16] D. Holtstam, U. Hålenius, Nomenclature of the magnetoplumbite group, Mineralogical Magazine. 84 (2020) 376-380. https://doi.org/10.1180/mgm.2020.20
[17] D. Makovec, B. Belec, T. Goršak, D. Lisjak, M. Komelj, G. Dražić, S. Gyergyek, Discrete evolution of the crystal structure during the growth of Ba-hexaferrite nanoplatelets, Nanoscale. 10 (2018) 14480-14491. https://doi.org/10.1039/C8NR03815E
[18] G.D. Soria, P. Jenus, J.F. Marco, A. Mandziak, M. Sanchez-Arenillas, F. Moutinho, J.E. Prieto, P. Prieto, J. Cerdá, C. Tejera-Centeno, Strontium hexaferrite platelets: a comprehensive soft X-ray absorption and Mössbauer spectroscopy study, Scientific Reports. 9 (2019) 1-13. https://doi.org/10.1038/s41598-019-48010-w
[19] K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis, Journal of Applied Crystallography. 41 (2008) 653-658. https://doi.org/10.1107/S0021889808012016
[20] S.H. Mahmood, I. Abu-Aljarayesh, Hexaferrite permanent magnetic materials, in: Materials Research Forum LLC, 2016. https://doi.org/10.21741/9781945291074
[21] J.J. Becker, Rare-Earth-Compound Permanent Magnets, Journal of Applied Physics. 41 (1970) 1055-1064. https://doi.org/10.1063/1.1658811
[22] I.A. Al-Omari, R. Skomski, R.A. Thomas, D. Leslie-Pelecky, D.J. Sellmyer, High-temperature magnetic properties of mechanically alloyed SmCo 5 and YCo 5 magnets, IEEE Transactions on Magnetics. 37 (2001) 2534-2536. https://doi.org/10.1109/20.951226
[23] S.H. Mahmood, High performance permanent magnets, in: Hexaferrite Permanent Magnetic Materials, Materials Research Forum LLC, Millersville, PA, 2016: pp. 47-73. https://doi.org/10.21741/9781945291074
[24] K.J. Strnat, Modern permanent magnets for applications in electro-technology, Proceedings of the IEEE. 78 (1990) 923-946. https://doi.org/10.1109/5.56908
[25] K. Kamino, Y. Kimura, T. Suzuki, Y. Itayama, Variation of the Magnetic Properties of Sm (Co, Cu) 5 Alloys with Temperature, Transactions of the Japan Institute of Metals. 14 (1973) 135-139. https://doi.org/10.2320/matertrans1960.14.135
[26] J.J. Croat, J.F. Herbst, Melt-spun R0. 4Fe0. 6 alloys: Dependence of coercivity on quench rate, Journal of Applied Physics. 53 (1982) 2404-2406. https://doi.org/10.1063/1.330826
[27] N. Koon, B. Das, J. Geohegan, Composition dependence of the coercive force and microstructure of crystallized amorphous (Fe x B 1-x) 0.9 Tb 0.05 La 0.05 alloys, IEEE Transactions on Magnetics. 18 (1982) 1448-1450. https://doi.org/10.1109/TMAG.1982.1061968
[28] N.C. Koon, B.N. Das, Magnetic properties of amorphous and crystallized (Fe0. 82B0. 18) 0.9 Tb0. 05La0. 05, Applied Physics Letters. 39 (1981) 840-842. https://doi.org/10.1063/1.92578
[29] G.C. Hadjipanayis, R.C. Hazelton, K.R. Lawless, New iron-rare-earth based permanent magnet materials, Applied Physics Letters. 43 (1983) 797-799. https://doi.org/10.1063/1.94459
[30] M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, Y. Matsuura, New material for permanent magnets on a base of Nd and Fe, Journal of Applied Physics. 55 (1984) 2083-2087. https://doi.org/10.1063/1.333572
[31] J.J. Croat, Observation of large room-temperature coercivity in melt-spun Nd0. 4Fe0. 6, Applied Physics Letters. 39 (1981) 357-358. https://doi.org/10.1063/1.92728
[32] M.A. Sweeney, F.C. Perry, J.R. Asay, M.M. Widner, Shock effects in particle beam fusion targets, in: AIP Conference Proceedings, American Institute of Physics, 1982: pp. 188-192. https://doi.org/10.1063/1.33357
[33] M.J. Kramer, R.W. McCallum, I.A. Anderson, S. Constantinides, Prospects for non-rare earth permanent magnets for traction motors and generators, Jom. 64 (2012) 752-763. https://doi.org/10.1007/s11837-012-0351-z
[34] O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient, Advanced Materials. 23 (2011) 821-842. https://doi.org/10.1002/adma.201002180
[35] L.H. Lewis, F. Jiménez-Villacorta, Perspectives on permanent magnetic materials for energy conversion and power generation, Metallurgical and Materials Transactions A. 44 (2013) 2-20. https://doi.org/10.1007/s11661-012-1278-2
[36] J.M. González, C. De Julian, A.K. Giri, S. Castro, M. Gayoso, J. Rivas, Magnetic viscosity and microstructure: Particle size dependence of the activation volume, Journal of Applied Physics. 79 (1996) 5955-5957. https://doi.org/10.1063/1.362118
[37] T. Chang, J.-G. Zhu, J.H. Judy, Method for investigating the reversal properties of isolated barium ferrite fine particles utilizing magnetic force microscopy (mfm), Journal of Applied Physics. 73 (1993) 6716-6718. https://doi.org/10.1063/1.352512
[38] J. Dho, E.K. Lee, J.Y. Park, N.H. Hur, Effects of the grain boundary on the coercivity of barium ferrite BaFe12O19, Journal of Magnetism and Magnetic Materials. 285 (2005) 164-168. https://doi.org/10.1016/j.jmmm.2004.07.033
[39] E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 240 (1948) 599-642. https://doi.org/10.1098/rsta.1948.0007
[40] O. Kubo, T. Ido, H. Yokoyama, Y. Koike, Particle size effects on magnetic properties of BaFe12- 2 x Ti x Co x O19 fine particles, Journal of Applied Physics. 57 (1985) 4280-4282. https://doi.org/10.1063/1.334585
[41] T.T.V. Nga, N.P. Duong, T.T. Loan, T.D. Hien, Key step in the synthesis of ultrafine strontium ferrite powders (SrFe12O19) by sol-gel method, Journal of Alloys and Compounds. 610 (2014) 630-634. https://doi.org/10.1016/j.jallcom.2014.04.193
[42] M. Saura-Múzquiz, C. Granados-Miralles, H.L. Andersen, M. Stingaciu, M. Avdeev, M. Christensen, Nanoengineered high-performance hexaferrite magnets by morphology-induced alignment of tailored nanoplatelets, ACS Applied Nano Materials. 1 (2018) 6938-6949. https://doi.org/10.1021/acsanm.8b01748
[43] P. Jing, J. Du, J. Wang, L. Pan, J. Li, Q. Liu, Width-controlled M-type hexagonal strontium ferrite (SrFe 12 O 19) nanoribbons with high saturation magnetization and superior coercivity synthesized by electrospinning, Scientific Reports. 5 (2015) 1-10. https://doi.org/10.9734/JSRR/2015/14076
[44] J. Zhang, J. Fu, F. Li, E. Xie, D. Xue, N.J. Mellors, Y. Peng, BaFe12O19 single-particle-chain nanofibers: preparation, characterization, formation principle, and magnetization reversal mechanism, Acs Nano. 6 (2012) 2273-2280. https://doi.org/10.1021/nn204342m
[45] H. Kojima, Fundamental properties of hexagonal ferrites with magnetoplumbite structure, Handbook of Ferromagnetic Materials. 3 (1982) 305-391. https://doi.org/10.1016/S1574-9304(05)80091-4
[46] D. Lisjak, A. Mertelj, Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications, Progress in Materials Science. 95 (2018) 286-328. https://doi.org/10.1016/j.pmatsci.2018.03.003
[47] G.F. Dionne, Magnetic oxides, Springer, 2009. https://doi.org/10.1007/978-1-4419-0054-8
[48] V. Dixit, S.-G. Kim, J. Park, Y.-K. Hong, Effect of ionic substitutions on the magnetic properties of strontium hexaferrite: A first principles study, AIP Advances. 7 (2017) 115209. https://doi.org/10.1063/1.4995309
[49] M. Wang, Q. Xu, J. Liu, Z. Wang, N. Ma, P. Du, Extra up-spin magnetic moments and extraordinary high saturation magnetization of Ni2+ doped barium ferrite in 4f2 site, Materials Research Express. 6 (2019) 086104. https://doi.org/10.1088/2053-1591/ab1a0c
[50] G. Albanese, A. Deriu, Magnetic properties of Al, Ga, Sc, In substituted barium ferrites: a comparative analysis, Ceramurgia International. 5 (1979) 3-10. https://doi.org/10.1016/0390-5519(79)90002-4
[51] M. Awawdeh, I. Bsoul, S.H. Mahmood, Magnetic properties and Mössbauer spectroscopy on Ga, Al, and Cr substituted hexaferrites, Journal of Alloys and Compounds. 585 (2014) 465-473. https://doi.org/10.1016/j.jallcom.2013.09.174
[52] T.B. Ghzaiel, W. Dhaoui, A. Pasko, F. Mazaleyrat, Effect of non-magnetic and magnetic trivalent ion substitutions on BaM-ferrite properties synthesized by hydrothermal method, Journal of Alloys and Compounds. 671 (2016) 245-253. https://doi.org/10.1016/j.jallcom.2016.02.071