Effect of Substitution on the Dielectric and Magnetic Properties of BaFe12O19

$30.00

Effect of Substitution on the Dielectric and Magnetic Properties of BaFe12O19

Hitanshu Kumar, Arashdeep Singh, Kavita Rana

Hexaferrites are composed of irons and many other divalent metal ions in various atomic ratios. They are classified as M, W, X, Y, Z, and U type according to the crystalline structure. They are also used as ferromagnetic compounds. These materials have been utilized as the permanent magnets, magnetic recording media and microwave absorbers due to their superior properties. These materials also have wide application in ferrofluids, sensors, loudspeakers, electric power generation, rotors in small direct current (DC) motors, automotive electronics, ferrite cores, fabrication of inductors, micro electro mechanical systems (MEMS), capacitors, transistors, microwave, and in magneto static and electromagnetic devices. BaFe12O19 has gain focus in recent years due to its large coercivity, high magneto crystalline anisotropy, relatively large saturation magnetization, electrical resistivity, low cost, and ability to resist corrosion. The Present chapter will focus on the effect of substitution on the dielectric and magnetic properties BaFe12O19. Morphology and properties of barium hexaferrites, effect of Co-Ti substitution on magnetic properties of nanocrystalline BaFe12O19 and effect of rare-earth materials substitution on the micro structural and magnetic properties of BaFe12O19 are covered.

Keywords
Hexaferites, Dielectric, Ferrofluids, Barium, Nanocrystalline

Published online 2/1/2023, 27 pages

Citation: Hitanshu Kumar, Arashdeep Singh, Kavita Rana, Effect of Substitution on the Dielectric and Magnetic Properties of BaFe12O19, Materials Research Foundations, Vol. 142, pp 66-92, 2023

DOI: https://doi.org/10.21741/9781644902318-3

Part of the book on An Introduction to Hard Ferrites

References
[1] Pullar, Robert C, Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science. 57 (2012) 1191-1334. https://doi.org/10.1016/j.pmatsci.2012.04.001
[2] Chen D, Harward I, Baptist J, Goldman S, Celinski Z, Curie temperature and magnetic properties of aluminum doped barium ferrite particles prepared by ball mill method, Journal of Magnetism and Magnetic Materials. 395 (2015) 350-3. https://doi.org/10.1016/j.jmmm.2015.07.076
[3] Niu X, Liu X, Feng S, Lv F, Huang F, Huang X, Ma Y, Huang K, Effects of presintering temperature on structural and magnetic properties of BaMg1. 8Cu0. 2Fe16O27 hexagonal ferrites, Optik. 126 (2015) 5513-6. https://doi.org/10.1016/j.ijleo.2015.09.044
[4] Rai, G. Murtaza, M. A. Iqbal, and K. T. Kubra, Effect of Ho3+ substitutions on the structural and magnetic properties of BaFe12O19 hexaferrites, Journal of alloys and compounds. 495 (2010) 229-233. https://doi.org/10.1016/j.jallcom.2010.01.133
[5] Mosleh Z, Kameli P, Poorbaferani A, Ranjbar M, Salamati H, Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite., Journal of Magnetism and Magnetic Materials. 397 (2016) 101-7. https://doi.org/10.1016/j.jmmm.2015.08.078
[6] Wang L, Zhang J, Zhang Q, Xu N, Song J, XAFS and XPS studies on site occupation of Sm3+ ions in Sm doped M-type BaFe12O19, Journal of Magnetism and Magnetic Materials.377 (2015) 362-7. https://doi.org/10.1016/j.jmmm.2014.10.097
[7] Shams MH, Rozatian AS, Yousefi MH, Valíček J, Šepelák V, Effect of Mg2+ and Ti4+ dopants on the structural, magnetic and high-frequency ferromagnetic properties of barium hexaferrite., Journal of Magnetism and Magnetic Materials.399 (2016) 10-8. https://doi.org/10.1016/j.jmmm.2015.08.099
[8] Shams MH, Rozatian AS, Yousefi MH, Valíček J, Šepelák V, Effect of Mg2+ and Ti4+ dopants on the structural, magnetic and high-frequency ferromagnetic properties of barium hexaferrites, Journal of Magnetism and Magnetic Materials. 399( 2016) 10-8. https://doi.org/10.1016/j.jmmm.2015.08.099
[9] Smit, J, H. P. J. Wijn. Ferrites: NV Philips’ Gloeilampenfabrieken. Eindhoven, Holland, (1959).
[10] Sözeri H, Deligöz H, Kavas H, Baykal A, Magnetic, dielectric and microwave properties of M-Ti substituted barium hexaferrites (M= Mn2+, Co2+, Cu2+, Ni2+, Zn2+), Ceramics International. 40 (2014) 8645-57. https://doi.org/10.1016/j.ceramint.2014.01.082
[11] Rane MV, Bahadur D, Kulkarni SD, Date SK, Magnetic properties of NiZr substituted barium ferrite, Journal of magnetism and magnetic materials.195 (1999) L256-60. https://doi.org/10.1016/S0304-8853(99)00041-4
[12] Vinnik DA, Zherebtsov DA, Mashkovtseva LS, Nemrava S, Semisalova AS, Galimov DM, Gudkova SA, Chumanov IV, Isaenko LI, Niewa R. Growth, structural and magnetic characterization of Co-and Ni-substituted barium hexaferrite single crystals, Journal of Alloys and Compounds.628 (2015) 480-4. https://doi.org/10.1016/j.jallcom.2014.12.124
[13] Gonzalez-Angeles, A., G. Mendoza-Suárez, A. Gruskova, I. Toth, V. Jančárik, M. Papanova, J. I. Escalante-Garcıa, Magnetic studies of NiSn-substituted barium hexaferrites processed by attrition milling, Journal of magnetism and magnetic materials . 270, (2004) 77-83. https://doi.org/10.1016/j.jmmm.2003.08.001
[14] Pullar, R. Hexagonal ferrites, A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57 (2012) 1191-1334. https://doi.org/10.1016/j.pmatsci.2012.04.001
[15] Lalegani, Zahra, Ali Nemati., Effects of Ce-Co substitution on structural, magnetic and dielectric properties of M-type barium hexaferrite nanoparticles synthetized by sol-gel auto-combustion route. Journal of Materials Science: Materials in Electronics . 26 (2015): 2134-2144. https://doi.org/10.1007/s10854-014-2658-8
[16] Nikmanesh, Hossein, Sedigheh Hoghoghifard, and Behnaz Hadi-Sichani, Study of the structural, magnetic, and microwave absorption properties of the simultaneous substitution of several cations in the barium hexaferrite structure, Journal of Alloys and Compounds. 775 (2019) 1101-1108. https://doi.org/10.1016/j.jallcom.2018.10.051
[17] Sanida, Aikaterini, Sotirios Stavropoulos, Thanassis Speliotis, and Georgios C. Psarras. Magneto-dielectric behaviour of M-Type hexaferrite/polymer nanocomposites. Materials. 11 (2018): 2551. https://doi.org/10.3390/ma11122551
[18] Charoensuk T, Thongsamrit W, Ruttanapun C, Jantaratana P, Sirisathitkul C, Loading effect of sol-gel derived barium hexaferrite on magnetic polymer composites, Nanomaterials. 11(2021) 558. https://doi.org/10.3390/nano11030558
[19] El-Shater, R. E, Exploring the annealing temperature impacting on the magnetic coupling of nanometer soft grain and microstructure hard grain nanocomposites.. Chinese journal of physics .57 (2019) 403-417. https://doi.org/10.1016/j.cjph.2018.10.028
[20] Makled, Mahmoud H, and E. Sheha, An attempt to utilize hard magnetic BaFe12O19 phase as a cathode for magnesium batteries, Journal of Electronic Materials .48 (2019) 1612-1616. https://doi.org/10.1007/s11664-018-06890-0
[21] Borin, Dmitry, Robert Müller, Stefan Odenbach, Magnetoviscosity of a magnetic fluid based on barium hexaferrite nanoplates, Materials. 14 (2021) 1870. https://doi.org/10.3390/ma14081870
[22] Asiri, Synthesis, S. Güner, A. Y. Ş. E. Demir, A. Yildiz, A. Manikandan, and Abdulhadi Baykal, Synthesis and magnetic characterization of Cu substituted barium hexaferrites, Journal of Inorganic and Organometallic Polymers and Materials.28 (2018) 1065-1071. https://doi.org/10.1007/s10904-017-0735-1
[23] Slimani, Y, M. A. Almessiere, A. Baykal, AC susceptibility study of Cu substituted BaFe12O19 nanohexaferrites, Ceramics International. 44(2018): 13097-13105. https://doi.org/10.1016/j.ceramint.2018.04.130
[24] Kumar, Sunil, Shampa Guha, Sweety Supriya, Lagen Kumar Pradhan, and Manoranjan Kar, Correlation between crystal structure parameters with magnetic and dielectric parameters of Cu-doped barium hexaferrites, Journal of Magnetism and Magnetic Materials, 499 (2020) 166213. https://doi.org/10.1016/j.jmmm.2019.166213
[25] Rafiq, M. A, Waqar, M, Muhammad, Q. K, Waleed, M, Saleem, M, Anwar, M. S. Conduction mechanism and magnetic behavior of Cu doped barium hexaferrite ceramics, Journal of Materials Science: Materials in Electronics. 29(2018) 5134-5142. https://doi.org/10.1007/s10854-017-8477-y
[26] Vadivelan, S, N. Victor Jaya, Investigation of magnetic and structural properties of copper substituted barium ferrite powder particles via co-precipitation method, Results in physics. 6 (2016) 843-850. https://doi.org/10.1016/j.rinp.2016.07.013
[27] Rekaby, M, H. Shehabi, R. Awad. Influence of cobalt addition and calcination temperature on the physical properties of BaFe12O19 hexaferrites nanoparticles, Materials Research Express, 71 (2020) 015057. https://doi.org/10.1088/2053-1591/ab65de
[28] Wang, L., Zhang, J., Zhang, Q., Xu, N., & Song, J. (2015). XAFS and XPS studies on site occupation of Sm3+ ions in Sm doped M-type BaFe12O19. Journal of Magnetism and Magnetic Materials, 377, 362-367. https://doi.org/10.1016/j.jmmm.2014.10.097
[29] Bsoul, I, S. H. Mahmood, Magnetic and structural properties of BaFe12− xGaxO19 nanoparticles, Journal of Alloys and Compounds, 489.1 (2010) 110-114. https://doi.org/10.1016/j.jallcom.2009.09.024
[30] Dhage, V. N., Mane, M. L, Babrekar, M. K, Kale, C. M, Jadhav, K. M, Influence of chromium substitution on structural and magnetic properties of BaFe12O19 powder prepared by sol-gel auto combustion method, Journal of Alloys and Compounds. 509(2011) 4394-4398. https://doi.org/10.1016/j.jallcom.2011.01.040
[31] Pawar, R. A., S. S. Desai, Q. Y. Tamboli, Sagar E. Shirsath, S. M. Patange, Ce3+ incorporated structural and magnetic properties of M type barium hexaferrites, Journal of Magnetism and Magnetic Materials, 378 (2015) 59-63. https://doi.org/10.1016/j.jmmm.2014.10.166
[32] Asghar, G, Asri, S, Khusro, S.N, Tariq, G.H, Awan, M.S, Irshad, M., Safeen, A, Iqbal, Y, Shah, W.H, Anis-Ur-Rehman, M, Enhanced Magnetic Properties of Barium Hexaferrite, J. Electron. Mater, 49 (2020) 4318-4323. https://doi.org/10.1007/s11664-020-08125-7
[33] Veisi, S. Shooshtary, M. Yousefi, M. M. Amini, A. R. Shakeri, and M. Bagherzadeh, Magnetic and microwave absorption properties of Cu/Zr doped M-type Ba/Sr hexaferrites prepared via sol-gel auto-combustion method, Journal of Alloys and Compounds .773 (2019) 1187-1194. https://doi.org/10.1016/j.jallcom.2018.09.189
[34] Mudsainiyan, R. K, S. K. Chawla, S. S. Meena, Correlation between site preference and magnetic properties of Co-Zr doped BaCoxZrxFe (12− 2x) O19 prepared under sol-gel and citrate precursor sol-gel conditions, Journal of alloys and compounds. 615 (2014): 875-881. https://doi.org/10.1016/j.jallcom.2014.07.035
[35] Alzaid, Meshal. Enhancement in optical properties of lanthanum-doped manganese barium hexaferrites under different substitutions.” Advances in Condensed Matter Physics. (2021). https://doi.org/10.1155/2021/8849595
[36] Dawar, Naini, Structural, magnetic and dielectric properties of pure and nickel-doped barium nanohexaferrites synthesized using chemical co-precipitation technique, Cogent Physics. 3.1 (2016): 1208450. https://doi.org/10.1080/23311940.2016.1208450
[37] Shao, L.H., Shen, S.Y., Zheng, H., Zheng, P., Wu, Q. Zheng, L, Effect of powder grain size on microstructure and magnetic properties of hexagonal barium ferrite ceramic. Journal of Electronic Materials, 47(2018) 4085-4089. https://doi.org/10.1007/s11664-018-6301-y
[38] Asiri,, Synthesis and magnetic characterization of Cu substituted barium hexaferrites, Journal of Inorganic and Organometallic Polymers and Materials 28.3 (2018) 1065-1071. https://doi.org/10.1007/s10904-017-0735-1
[39] Slimani, Y, M. A. Almessiere, A. Baykal, AC susceptibility study of Cu substituted BaFe12O19 nanohexaferrites. Ceramics International. 44.11 (2018) 13097-13105. https://doi.org/10.1016/j.ceramint.2018.04.130
[40] Kumar, Sunil, Shampa Guha, Sweety Supriya, Lagen Kumar Pradhan, and Manoranjan Kar, Correlation between crystal structure parameters with magnetic and dielectric parameters of Cu-doped barium hexaferrites, Journal of Magnetism and Magnetic Materials. 499 (2020) 166213. https://doi.org/10.1016/j.jmmm.2019.166213
[41] Rafiq, Muhammad Asif, Moaz Waqar, Qaisar Khushi Muhammad, Masam Waleed, Murtaza Saleem, Muhammad Sabieh Anwar, Conduction mechanism and magnetic behavior of Cu doped barium hexaferrite ceramics, Journal of Materials Science: Materials in Electronics . 29(2018) 5134-5142. https://doi.org/10.1007/s10854-017-8477-y
[42] Mohammed, Haetham G., Thar Mohammed Badri Albarody, Susilawati Susilawati, Soheil Gohari, Aris Doyan, Saiful Prayogi, Muhammad Roil Bilad, Reza Alebrahim, and Anwar Ameen Hezam Saeed, Process Optimization of in situ magnetic-anisotropy spark plasma sintering of M-type-based barium hexaferrite BaFe12O19, 14(2021) 2650. https://doi.org/10.3390/ma14102650
[43] Godara, Sachin Kumar, Rahul Kumar Dhaka, Navpreet Kaur, Parambir Singh Malhi, Varinder Kaur, Ashwani Kumar Sood, Shalini Bahel, Synthesis and characterization of Jamun pulp based M-type barium hexaferrite via sol-gel auto-combustion, Results in Physics. 22 (2021) 103903. https://doi.org/10.1016/j.rinp.2021.103903
[44] Coondoo, Indrani, Neeraj Panwar, Muhammad Asif Rafiq, Venkata S. Puli, Muhammad Nadeem Rafiq, and Ram S. Katiyar, Structural, dielectric and impedance spectroscopy studies in (Bi0. 90R0. 10) Fe0. 95Sc0. 05O3 [R= La, Nd] ceramics, Ceramics International . 7 (2014) 9895-9902. https://doi.org/10.1016/j.ceramint.2014.02.084
[45] Meng, Pingyuan, Kun Xiong, Lin Wang, Shengnan Li, Yankui Cheng, and Guangliang Xu, Tunable complex permeability and enhanced microwave absorption properties of BaNixCo1− xTiFe10O19, Journal of Alloys and Compounds. 628 (2015) 75-80. https://doi.org/10.1016/j.jallcom.2014.10.163
[46] Rafiq, Muhammad Asif, Alexander Tkach, Maria Elisabete Costa, Paula Maria Vilarinho., Defects and charge transport in Mn-doped K 0.5 Na 0.5 NbO 3 ceramics, Physical Chemistry Chemical Physics , 37 (2015) 24403-24411. https://doi.org/10.1039/C5CP02883C
[47] Sözeri, Hüseyin, Effect of pelletization on magnetic properties of BaFe12O19, Journal of alloys and compounds, 486 (2009): 809-814. https://doi.org/10.1016/j.jallcom.2009.07.072
[48] Topal, Ugur, Halil I. Bakan. Magnetic properties and remanence analysis in permanently magnetic BaFe12O19 foams, Journal of the European Ceramic Society, 30.15 (2010) 3167-3171. https://doi.org/10.1016/j.jeurceramsoc.2010.06.008
[49] Garcia-Casillas, P. E., A. M. Beesley, D. Bueno, J. A. Matutes-Aquino, and C. A. Martinez, Remanence properties of barium hexaferrites, Journal of alloys and compounds, 369 (2004) 185-189. https://doi.org/10.1016/j.jallcom.2003.09.100
[50] Dho, Joonghoe, E. K. Lee, J. Y. Park, N. H. Hur, Effects of the grain boundary on the coercivity of barium ferrite BaFe12O19, Journal of Magnetism and Magnetic Materials. 285 (2005) 164-168. https://doi.org/10.1016/j.jmmm.2004.07.033
[51] Rashad, M. M., M. Radwan, M. M. Hessien, Effect of Fe/Ba mole ratios and surface-active agents on the formation and magnetic properties of co-precipitated barium hexaferrites, Journal of Alloys and Compounds. 453 (2008) 304-308. https://doi.org/10.1016/j.jallcom.2006.11.080
[52] Topal, Ugur, Husnu Ozkan, Huseyin Sozeri, Synthesis and characterization of nanocrystalline BaFe12O19 obtained at 850 C by using ammonium nitrate melt, Journal of magnetism and magnetic materials. 284 (2004) 416-422. https://doi.org/10.1016/j.jmmm.2004.07.009
[53] Kerschla, P. R. Gr. ossingerb, C. Kussbachb, R. Sato-Turtellib, KHM Ullera, L. Schultza. J Magn Magn Mater. (2002) 1468-1470.
[54] Martirosyan, K. S., E. Galstyan, S. M. Hossain, Yi-Ju Wang, D. Litvinov, Barium hexaferrite nanoparticles: synthesis and magnetic properties, Materials Science and Engineering, 176 (2011): 8-13. https://doi.org/10.1016/j.mseb.2010.08.005
[55] Handoko, Erfan. Effect of Co-Ti Substitution on Magnetic Properties of Nanocrystalline BaFe12O19.” KnE Engineering , 2016. https://doi.org/10.18502/keg.v1i1.506
[56] Dhage, Vinod N., M. L. Mane, A. P. Keche, C. T. Birajdar, K. M. Jadhav, Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique, Physica B: Condensed Matter ,.406 (2011) 789-793. https://doi.org/10.1016/j.physb.2010.11.094
[57] Mariño-Castellanos, P. A, J. C. Somarriba-Jarque, J. Anglada-Rivera, Magnetic and microstructural properties of the BaFe (12−(4/3) x) SnxO19 ceramic system, Physica B: Condensed Matter.362 (2005) 95-102. https://doi.org/10.1016/j.physb.2005.01.480
[58] Gonzalez-Angeles, A, G. Mendoza-Suárez, A. Gruskova, I. Toth, V. Jančárik, M. Papanova, J. I. Escalante-Garcıa, Magnetic studies of NiSn-substituted barium hexaferrites processed by attrition milling, Journal of magnetism and magnetic materials . 270 (2004) 77-83. https://doi.org/10.1016/j.jmmm.2003.08.001
[59] Mariño-Castellanos, P. A., J. Anglada-Rivera, A. Cruz-Fuentes, R. Lora-Serrano “Magnetic and microstructural properties of the Ti4+-doped Barium hexaferrites, Journal of Magnetism and Magnetic Materials .280 (2004) 214-220. https://doi.org/10.1016/j.jmmm.2004.03.015
[60] Gruskova, A, J. Slama, R. Dosoudil, D. Kevicka, V. Jančárik, I. Toth, Influence of Co-Ti substitution on coercivity in Ba ferrites, Journal of magnetism and Magnetic Materials. 242 (2002) 423-425. https://doi.org/10.1016/S0304-8853(01)01139-8
[61] Ghasemi, A., A. Hossienpour, A. Morisako, A. Saatchi, M. Salehi. Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrites, Journal of Magnetism and Magnetic Materials. 302 (2006)429-435. https://doi.org/10.1016/j.jmmm.2005.10.006
[62] Qiu, Jianxun, Haigen Shen, Mingyuan Gu, Microwave absorption of nanosized barium ferrite particles prepared using high-energy ball milling, Powder Technology. 154(2005) 116-119. https://doi.org/10.1016/j.powtec.2005.05.003
[63] Tenaud, P., A. Morel, F. Kools, J. M. Le Breton, L. Lechevallier. Recent improvement of hard ferrite permanent magnets based on La-Co substitution, Journal of alloys and compounds . 370 (2004) 331-334. https://doi.org/10.1016/j.jallcom.2003.09.106
[64] Corral-Huacuz, J. C, G, Mendoza-Suarez, Preparation and magnetic properties of Ir-Co and La-Zn substituted barium ferrite powders obtained by sol-gel, Journal of magnetism and magnetic materials. 242 (2002) 430-433. https://doi.org/10.1016/S0304-8853(01)01141-6
[65] Polyko, D. D., L. A. Bashkirov, S. V. Trukhanov, L. S. Lobanovskii, I. M. Sirota, Crystal structure and magnetic properties of high-coercivity Sr1− x Pr x Fe12− x Zn x O19 solid solutions, Inorganic Materials .47 (2011): 75-79. https://doi.org/10.1134/S0020168511010110
[66] Alsmadi, A. M., I. Bsoul, S. H. Mahmood, G. Alnawashi, F. M. Al-Dweri, Y. Maswadeh, U. Welp, Magnetic study of M-type Ru-Ti doped strontium hexaferrite nanocrystalline particles, Journal of Alloys and Compounds. 648 (2015) 419-427. https://doi.org/10.1016/j.jallcom.2015.06.274
[67] Pullar, Robert C, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science. 57.7 (2012) 1191-1334. https://doi.org/10.1016/j.pmatsci.2012.04.001
[68] Wagner, T. R, Preparation and crystal structure analysis of magnetoplumbite-type BaGa12O19, Journal of Solid State Chemistry. 136.1 (1998): 120-124. https://doi.org/10.1006/jssc.1997.7681
[69] Chawla, S. K., S. S. Meena, Prabhjoyt Kaur, R. K. Mudsainiyan, S. M. Yusuf, Effect of site preferences on structural and magnetic switching properties of CO-Zr doped strontium hexaferrite SrCoxZrxFe (12− 2x) O19, Journal of Magnetism and Magnetic Materials.378 (2015) 84-91. https://doi.org/10.1016/j.jmmm.2014.10.168
[70] Kumar, Rajnish, and Manoranjan Kar, Correlation between lattice strain and magnetic behavior in non-magnetic Ca substituted nano-crystalline cobalt ferrite, Ceramics International. 42.6 (2016) 6640-6647. https://doi.org/10.1016/j.ceramint.2016.01.007
[71] Ahmad, Syed Ismail, Shakeel Ahmed Ansari, D. Ravi Kumar, Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite, Materials Chemistry and Physics. 208 (2018): 248-257. https://doi.org/10.1016/j.matchemphys.2018.01.050
[72] Tauc, J, Radu Grigorovici, Anina Vancu, Optical properties and electronic structure of amorphous germanium, physica status solidi (b). 15.2 (1966) 627-637. https://doi.org/10.1002/pssb.19660150224
[73] Baykal, Abdulhadi, S. Guner, H. Gungunes, K. M. Batoo, Md Amir, A. Manikandan, Magneto optical properties and hyperfine interactions of Cr3+ ion substituted copper ferrite nanoparticles., Journal of Inorganic and Organometallic Polymers and Materials .28 (2018) 2533-2544. https://doi.org/10.1007/s10904-018-0903-y
[74] Baykal, A. Y. Ş. E., S. Esir, A. Demir, S. Güner, Magnetic and optical properties of Cu1− xZnxFe2O4 nanoparticles dispersed in a silica matrix by a sol-gel auto-combustion method, Ceramics International. 41 (2015): 231-239. https://doi.org/10.1016/j.ceramint.2014.08.063
[75] Manikandan, A., R. Sridhar, S. Arul Antony, Seeram Ramakrishna, A simple aloe vera plant-extracted microwave and conventional combustion synthesis: morphological, optical, magnetic and catalytic properties of CoFe2O4 nanostructures, Journal of Molecular Structure. 1076 (2014): 188-200. https://doi.org/10.1016/j.molstruc.2014.07.054
[76] Manikandan, A., M. Durka, K. Seevakan, S. Arul Antony, A novel one-pot combustion synthesis and opto-magnetic properties of magnetically separable spinel Mn x Mg 1− x Fe2 O 4 (0.0≤ x≤ 0.5) nanophotocatalysts., Journal of Superconductivity and Novel Magnetism .28 (2015): 1405-1416.. https://doi.org/10.1007/s10948-014-2864-x
[77] Ahmed, Arham S, Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles, Journal of luminescence, 131.1 (2011): 1-6. https://doi.org/10.1016/j.jlumin.2010.07.017
[78] Stoner, Edmund Clifton, E. P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.826 (1948) 599-642. https://doi.org/10.1098/rsta.1948.0007
[79] Slimani, Yassine, Abdulhadi Baykal, Md Amir, N. Tashkandi, Hakan Güngüneş, S. Guner, H. S. El Sayed, F. Aldakheel, Tawfik A. Saleh, A. Manikandan, Substitution effect of Cr3+ on hyperfine interactions, magnetic and optical properties of Sr-hexaferrites, Ceramics International, 44 (2018) 15995-16004. https://doi.org/10.1016/j.ceramint.2018.06.033
[80] Auwal, I. A., Hakan Güngüneş, Abdulhadi Baykal, Sadık Güner, Sagar E. Shirsath, and Murat Sertkol, Structural, morphological, optical, cation distribution and Mössbauer analysis of Bi3+ substituted strontium hexaferrites, Ceramics International. 42(2016): 8627-8635. https://doi.org/10.1016/j.ceramint.2016.02.094
[81] Auwal, I. A., A. Baykal, S. Güner, and H. Sözeri, Magneto-optical properties of SrBixLaxFe12-2xO19 (0.0≤ x≤ 0.5) hexaferrites by sol-gel auto-combustion technique, Ceramics Internationa. 43(2017): 1298-1303. https://doi.org/10.1016/j.ceramint.2016.10.080
[82] Dom, Rekha, Pramod H. Borse, C. R. Cho, J. S. Lee, S. M. Yu, J. H. Yoon, T. E. Hong, E. D. Jeong, and H. G. Kim, Synthesis of SrFe 12 O 19 and Sr 7 Fe 10 O 22 systems for visible light photocatalytic studies, Journal of Ceramic Processing Research, 13(2012) 451-456.
[83] Javidan, Abdollah, Somayeh Rafizadeh, S. Mostafa Hosseinpour-Mashkani, Strontium ferrite nanoparticle study: thermal decomposition synthesis, characterization, and optical and magnetic properties, Materials science in semiconductor processing. 27 (2014) 468-473. https://doi.org/10.1016/j.mssp.2014.07.024
[84] Güner, Synthesis, I. A. Auwal, A. Baykal, and H. Sözeri, Synthesis, characterization and magneto optical properties of BaBixLaxYxFe12− 3xO19 (0.0≤ x≤ 0.33) hexaferrites, Journal of Magnetism and Magnetic Materials, 416 (2016): 261-268. https://doi.org/10.1016/j.jmmm.2016.04.091
[85] Almessiere, M. A., Y. Slimani, M. Sertkol, M. Nawaz, A. Baykal, I. Ercan, The impact of Zr substituted Sr hexaferrite: investigation on structure, optic and magnetic properties. Results in Physics .13 (2019) 102244. https://doi.org/10.1016/j.rinp.2019.102244
[86] Javidan, Abdollah, Somayeh Rafizadeh, S. Mostafa Hosseinpour-Mashkani., Strontium ferrite nanoparticle study: thermal decomposition synthesis, characterization, and optical and magnetic properties, Materials science in semiconductor processing.27 (2014) 468-473. https://doi.org/10.1016/j.mssp.2014.07.024
[87] Güner, Synthesis, I. A. Auwal, A. Baykal, H. Sözeri, Synthesis, characterization and magneto optical properties of BaBixLaxYxFe12− 3xO19 (0.0≤ x≤ 0.33) hexaferrites.” Journal of Magnetism and Magnetic Materials . 416 (2016) 261-268.2 https://doi.org/10.1016/j.jmmm.2016.04.091
[88] Almessiere, M. A., Y. Slimani, M. Sertkol, M. Nawaz, A. Baykal, and I. Ercan..The impact of Zr substituted Sr hexaferrite: investigation on structure, optic and magnetic properties, Results in Physics, 13 (2019) 102244.. https://doi.org/10.1016/j.rinp.2019.102244
[89] Almessiere, Munirah Abdullah, Yassine Slimani, H. Gungunes, A. Manikandan, and Abdulhadi Baykal, Investigation of the effects of Tm3+ on the structural, microstructural, optical, and magnetic properties of Sr hexaferrites,Results in Physics. 13 (2019) 102166. https://doi.org/10.1016/j.rinp.2019.102166
[90] Amir, Md, A. Baykal, S. Güner, M. Sertkol, H. Sözeri, and Muhammet Toprak., Synthesis and characterization of CoxZn1− xAlFeO4 nanoparticles, Journal of Inorganic and Organometallic Polymers and Materials.25 (2015) 747-754. https://doi.org/10.1007/s10904-014-0153-6
[91] Auwal, I. A., Hakan Güngüneş, Sadık Güner, Sagar E. Shirsath, Murat Sertkol, and Abdulhadi Baykal, Structural, magneto-optical properties and cation distribution of SrBixLaxYxFe12− 3xO19 (0.0≤ x≤ 0.33) hexaferrites, Materials Research Bulletin .80 (2016) 263-272. https://doi.org/10.1016/j.materresbull.2016.03.028
[92] Almessiere, M. A., Y. Slimani, H. S. El Sayed, A. Baykal, and I. Ercan, Microstructural and magnetic investigation of vanadium-substituted Sr-nanohexaferrite, Journal of Magnetism and Magnetic Materials. 471 (2019) 124-132. https://doi.org/10.1016/j.jmmm.2018.09.054
[93] Almessiere, M. A., Y. Slimani, and A. Baykal, Structural and magnetic properties of Ce-doped strontium hexaferrites, Ceramics International, 44.8 (2018) 9000-9008. https://doi.org/10.1016/j.ceramint.2018.02.101
[94] Mubarak, Tahseen H., Olfat A. Mahmood, and Zahraa J. Hamakhan, Structural, magnetic and electrical properties, International Journal of Applied Engineering Research. 13.8 (2018) 6369-6379.
[95] Ashiq, Muhammad Naeem, Raheela Beenish Qureshi, Muhammad Aslam Malana, and Muhammad Fahad Ehsan., Synthesis, structural, magnetic and dielectric properties of zirconium copper doped M-type calcium strontium hexaferrites, Journal of alloys and compounds. 617 (2014) 437-443.. https://doi.org/10.1016/j.jallcom.2014.08.015
[96] Wang, Yuping, Liangchao Li, Hui Liu, Haizhen Qiu, and Feng Xu, Magnetic properties and microstructure of La-substituted BaCr-ferrite powders, Materials Letters. 62 (2008) 2060-2062. https://doi.org/10.1016/j.matlet.2007.11.026
[97] Kaur, Prabhjyot, S. K. Chawla, Sukhleen Bindra Narang, and Kunal Pubby, Effect of Cu-Co-Zr doping on the properties of strontium hexaferrites synthesized by sol-gel auto-combustion method, Journal of Superconductivity and Novel Magnetism .30(2017): 635-645. https://doi.org/10.1007/s10948-016-3835-1
[98] Raghuvanshi, S., P. Tiwari, S. N. Kane, D. K. Avasthi, F. Mazaleyrat, Tetiana Tatarchuk, and Ivan Mironyuk., Dual control on structure and magnetic properties of Mg ferrite: role of swift heavy ion irradiation, Journal of Magnetism and Magnetic Materials .471 (2019) 521-528. https://doi.org/10.1016/j.jmmm.2018.10.004
[99] El-Fadl, A. Abu, A. M. Hassan, M. H. Mahmoud, Tetiana Tatarchuk, I. P. Yaremiy, A. M. Gismelssed, and M. A. Ahmed, Synthesis and magnetic properties of spinel Zn1− xNixFe2O4 (0.0≤ x≤ 1.0) nanoparticles synthesized by microwave combustion method., Journal of Magnetism and Magnetic Materials. 471 (2019): 192-199. https://doi.org/10.1016/j.jmmm.2018.09.074
[100] Tiwari, P., R. Verma, S. N. Kane, Tetiana Tatarchuk, and F. Mazaleyrat., Effect of Zn addition on structural, magnetic properties and anti-structural modeling of magnesium-nickel nano ferrites, Materials Chemistry and Physics .229 (2019) 78-86. https://doi.org/10.1016/j.matchemphys.2019.02.030
[101] Alsmadi, A. M., I. Bsoul, S. H. Mahmood, G. Alnawashi, K. Prokeš, K. Siemensmeyer, B. Klemke, and H. Nakotte, Magnetic study of M-type doped barium hexaferrite nanocrystalline particles, Journal of Applied Physics. 24 (2013) 243910. https://doi.org/10.1063/1.4858383
[102] Zi, Z. F., X. H. Ma, Y. Y. Wei, Q. C. Liu, M. Zhang, X. B. Zhu, and Y. P. Sun, Influence of La-Mn substitutions on magnetic properties of M-type strontium hexaferrites. AIP Advances. 8(2018) 056235. https://doi.org/10.1063/1.5007695
[103] J. Liu, Y. Zeng, X. Zhang, M. Zhang, Effects of magnetic pre-alignment of nanopowders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route, J. Magn. Magn. Mater. 382 (2015) 188-192. https://doi.org/10.1016/j.jmmm.2015.01.078
[104] H.M. Khan, M.U. Islam, Y. Xiu, M.A. Iqbal, I. Ali, Structural and magnetic properties of TbZn-substituted calcium barium M-type nano-structured hexa-ferrites, J. Alloy. Compd. 589 (2014) 258-262. https://doi.org/10.1016/j.jallcom.2013.11.107
[105] Y. Slimani, A. Baykal, A. Manikandan, Effect of Cr3+ substitution on AC susceptibility of Ba hexaferrite nanoparticles, J. Magn. Magn. Mater. 458 (2018) 204-212. https://doi.org/10.1016/j.jmmm.2018.03.025
[106] V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, Recent advances in processing and applications of microwave ferrites, J. Magn. Magn. Mater. 321 (2009) 2035-2047. https://doi.org/10.1016/j.jmmm.2009.01.004
[107] J.F. Wang, C.B. Ponton, R. Grossinger, I.R. Harris, A study of La-substituted strontium hexaferrite by hydrothermal synthesis, J. Alloy. Compd. 369 (2004) 170. https://doi.org/10.1016/j.jallcom.2003.09.097
[108] L. Lechevallier, J.M. LeBreton, J.F. Wang, I.R. Harris, Structural analysis of hydrothermally synthesized Sr1− xSmxFe12O19 hexagonal ferrites, J. Magn. Magn. Mater. 269 (2004) 192. https://doi.org/10.1016/S0304-8853(03)00591-2
[109] N. Rezlescu, C. Doroftei, E. Rezlescu, P.D. Popa, Fine‐grained erbium‐doped strontium hexaferrite, Phys. Status Solidi (a). 203 (2006) 3844-3851. https://doi.org/10.1002/pssa.200622213
[110] C. Doroftei, E. Rezlescu, P.D. Popa, N. Rezlescu, Heat‐treatment influence on the microstructure and magnetic properties of rare‐earth substituted SrFe12O19, J. Cryst. Res. Technol. 41 (2006) 1112-1119. https://doi.org/10.1002/crat.200610731
[111] M.A. Ahmed, E. Ateia, S.I. El-Dek, F.M. Salem, Rate of heating and sintering temperature effect on the electrical properties of Nd ferrite, J. Mater. Sci. 38 (2003) 1087. https://doi.org/10.1023/A:1022314301113
[112] Packiaraj, G., Hashim, M., Naidu, K.C.B., Joice, G.H.R., Naik, J.L., Ravinder, D. and Rao, B.R., 2020. Magnetic properties of Cu and Al doped nano BaFe12O19 ceramics. Biointerface Res. Appl. Chem, 10, pp.5455-5459. https://doi.org/10.33263/BRIAC103.455459