Recent Advances in Processing of Hard Ferrites
Garima Rana, Pooja Dhiman, Rahul Kalia, Ankush Chauhan, RiteshVerma, Rajesh Kumar
We plan to discuss possible fabrication approaches for hard ferrites, which are well-known for their vast range of applications and uses. We’ve covered all six varieties of hexagonal ferrites in this chapter: M-type, Z-type, Y-type, W-type, X-type, and U-type hexa-ferrites. Hexaferrites are ferromagnetic materials, and their properties are entirely determined by the intrinsic structure of ferrites. The numerous synthesis procedures for hard ferrite nanoparticles are the focus of this chapter. This chapter describes in detail the different processes for preparing hard ferrites, including examples, advantages, and limitations. Solid-state, combustion, hydrothermal, microemulsion, solvothermal, solution combustion, biosynthetic approach, microwave-assisted combustion, sol–gel, co–precipitation, or laser pyrolysis, sonochemical, thermal decomposition, and reverse micelle processes are briefly explained. The influence of synthesis procedures on the characteristics of ferrites in nanoform is summarised in this chapter.
Keywords
Hard Ferrites, Nanomaterials, Synthesis Methods
Published online 2/1/2023, 31 pages
Citation: Garima Rana, Pooja Dhiman, Rahul Kalia, Ankush Chauhan, RiteshVerma, Rajesh Kumar, Recent Advances in Processing of Hard Ferrites, Materials Research Foundations, Vol. 142, pp 35-65, 2023
DOI: https://doi.org/10.21741/9781644902318-2
Part of the book on An Introduction to Hard Ferrites
References
[1] P. Dhiman, N. Dhiman, A. Kumar, G. Sharma, M. Naushad, A.A. Ghfar, J. of Mol. Liq.294, 111574 (2019). https://doi.org/10.1016/j.molliq.2019.111574
[2] J. Went, Phil. Tech. Rev. 13, 361(1952). https://doi.org/10.2307/371513
[3] M. Weiss, P. Anderson, Phys. Rev.98, 925(1955). https://doi.org/10.1103/PhysRev.98.925
[4] T. Sebastian, Y. Ohdaira, T. Kubota, P. Pirro, T. Brächer, K. Vogt, A. Serga, H. Naganuma, M. Oogane, Y. Ando, Appl. Phys. Lett. 100, 112402(2012). https://doi.org/10.1063/1.3693391
[5] K. Sixtus, J. kronenberg and RK Tenzer, J. appl. Phys, 27 (1956) 1051. https://doi.org/10.1063/1.1722540
[6] Y.-Y. Song, C.L. Ordóñez-Romero, M. Wu, Appl. Phys. Lett. 95, 142506 (2009). https://doi.org/10.1063/1.3246170
[7] V.P. Singh, R. Jasrotia, R. Kumar, P. Raizada, S. Thakur, K.M. Batoo, M. Singh, J. condens. matter phys.8, 36 (2018). https://doi.org/10.4236/wjcmp.2018.82004
[8] Y. Bai, J. Zhou, Z. Gui, L. Li, J. magn. magn. mater.278 208-213 (2004). https://doi.org/10.1016/j.jmmm.2003.12.1389
[9] A. Gadkari, T. Shinde, P. Vasambekar, Mater. Chem. Phys.114, 505-510 (2009). https://doi.org/10.1016/j.matchemphys.2008.11.011
[10] P. Dhiman, A. Kumar, M. Shekh, G. Sharma, G. Rana, D.-V.N. Vo, N. AlMasoud, M. Naushad, Z.A. ALOthman, Environ. Res.197, 111074 (2021). https://doi.org/10.1016/j.envres.2021.111074
[11] P. Pramanik, A. Pathak, Bull. Mater. Sci.17, 967-975(1994). https://doi.org/10.1007/BF02757573
[12] S. Kumar, D.P. Dubey, S. Shannigrahi, R. Chatterjee, J. Alloys Compd.774, 52-60(2019). https://doi.org/10.1016/j.jallcom.2018.09.339
[13] S. Arcaro, J. Venturini, (Springer, 2021).
[14] R.C. Pullar, PProg. Mater. Sci.57, 1191-1334 (2012) https://doi.org/10.1016/j.pmatsci.2012.04.001
[15] A. Goldman, Modern Ferrite Technology, 151-216(2006).
[16] M.W. Pieper, A. Morel, F. Kools, J. Magn. Magn. Mater. 242, 1408-1410 (2002). https://doi.org/10.1016/S0304-8853(01)00963-5
[17] G.F. Dionne, (Springer, 2009).
[18] Ü. Özgür, Y. Alivov, H. Morkoç, J. Mater. Sci. Mater. Electron.20, 789-834(2009). https://doi.org/10.1007/s10854-009-9923-2
[19] F. Lotgering, P. Vromans, M. Huyberts, J. Appl. Phys.51, 5913-5918(1980). https://doi.org/10.1063/1.327493
[20] A. Paoluzi, F. Licci, O. Moze, G. Turilli, A. Deriu, G. Albanese, E. Calabrese, J. Appl. Phys.63, 5074-5080(1988). https://doi.org/10.1063/1.340405
[21] D. Samaras, A. Collomb, S. Hadjivasiliou, C. Achilleos, J. Tsoukalas, J. Pannetier, J. Rodriguez, J. Magn. Magn. Mater.79, 193-201(1989). https://doi.org/10.1016/0304-8853(89)90098-X
[22] S. Ruan, B. Xu, H. Suo, F. Wu, S. Xiang, M. Zhao, J. Magn. Magn. Mater.212, 175-177 (2000). https://doi.org/10.1016/S0304-8853(99)00755-6
[23] P.B. Braun, Philips Res. Rep. 12 491-548(1957). https://doi.org/10.2307/1524539
[24] F. Leccabue, R. Panizzieri, G. Bocelli, G. Calestani, C. Rizzoli, N.S. Almodovar, J. Magn. Magn. Mater.68, 365-373 (1987). https://doi.org/10.1016/0304-8853(87)90015-1
[25] P. Dhiman, R. Jasrotia, D. Goyal, G.T. Mola, Ferrite: Nanostructures with Tunable Properties and Diverse Applications 112, 336 (2021). https://doi.org/10.21741/9781644901595-10
[26] H. Elkady, M. Abou‐Sekkina, K. Nagorny, Hyperfine Interact.128, 423-432 (2000). https://doi.org/10.1023/A:1012612405813
[27] H. Zhang, J. Zhou, Z. Yue, P. Wu, Z. Gui, L. Li, Mater. Lett.43, 62-65(2000). https://doi.org/10.1016/S0167-577X(99)00231-1
[28] X. Wang, L. Li, S. Su, Z. Gui, Z. Yue, J. Zhou, J. Eur. Ceram. Soc.23, 715-720 (2003). https://doi.org/10.1016/S0955-2219(02)00157-7
[29] D.L. Kunwar, D. Neupane, J.N. Dahal, S.R. Mishra, Adv. Mater. Sci. Eng.9, 175 (2019).
[30] P. Chand, S. Vaish, P. Kumar, Physica B Condens. Matter.524, 53-63(2017). https://doi.org/10.1016/j.physb.2017.08.060
[31] K. Shetty, L. Renuka, H. Nagaswarupa, H. Nagabhushana, K. Anantharaju, D. Rangappa, S. Prashantha, K. Ashwini, Mater. Today: Proc.4, 11806-11815 (2017). https://doi.org/10.1016/j.matpr.2017.09.098
[32] M. Hashim, S. Kumar, B. Koo, S.E. Shirsath, E. Mohammed, J. Shah, R. Kotnala, H. Choi, H. Chung, R. Kumar, J. Alloys Compd. 518, 11-18 (2012). https://doi.org/10.1016/j.jallcom.2011.12.017
[33] K.S. Rao, S.R. Nayakulu, M.C. Varma, G. Choudary, K. Rao, J. Magne. Magne. Mater.451,602-608 (2018). https://doi.org/10.1016/j.jmmm.2017.11.069
[34] S. Feng, W. Yang, Z. Wang, Mater. Sci. Eng. B.176, 1509-1512 (2011). https://doi.org/10.1016/j.mseb.2011.09.007
[35] M. Dar, D. Varshney, J. Magne. Magne. Mater. 436, 101-112 (2017). https://doi.org/10.1016/j.jmmm.2017.04.046
[36] A. Džunuzović, N. Ilić, M.V. Petrović, J. Bobić, B. Stojadinović, Z. Dohčević-Mitrović, B. Stojanović, J. Magne. Magne. Mater.374, 245-251 (2015). https://doi.org/10.1016/j.jmmm.2014.08.047
[37] A. Manikandan, R. Sridhar, S.A. Antony, S. Ramakrishna, Mater. Sci. Eng. B1076, 188-200 (2014). https://doi.org/10.1016/j.molstruc.2014.07.054
[38] N. Ajinkya, X. Yu, P. Kaithal, H. Luo, P. Somani, S. Ramakrishna, Mater.13, 4644 (2020). https://doi.org/10.3390/ma13204644
[39] P. Dhiman, G. Rana, A. Kumar, G. Sharma, D.-V.N. Vo, T.S. AlGarni, M. Naushad, Z.A. ALOthman, Chem. Eng. Res. Des.175, 85-101 (2021). https://doi.org/10.1016/j.cherd.2021.08.028
[40] A. Salunkhe, V. Khot, M.R. Phadatare, N. Thorat, R. Joshi, H. Yadav, S. Pawar, J.Magne. Magne. Mater. 352, 91-98 (2014). https://doi.org/10.1016/j.jmmm.2013.09.020
[41] A. Alarifi, N. Deraz, S. J. Alloys Comp.486 501-506 (2009). https://doi.org/10.1016/j.jallcom.2009.06.192
[42] P. Dhiman, M. Patial, A. Kumar, M. Alam, M. Naushad, G. Sharma, D.-V.N. Vo, R. Kumar, Mater. Lett.284, 129005 (2021). https://doi.org/10.1016/j.matlet.2020.129005
[43] E. Hema, A. Manikandan, M. Gayathri, M. Durka, S.A. Antony, B. Venkatraman, J. Nanosci. Nanotechnol.16, 5929-5943 (2016). https://doi.org/10.1166/jnn.2016.11037
[44] A.B. Naik, P.P. Naik, S.S. Hasolkar, D. Naik, Ceram. Int.46, 21046-21055 (2020). https://doi.org/10.1016/j.ceramint.2020.05.177
[45] H. Kaur, A. Singh, V. Kumar, D.S. Ahlawat, J. Magne. Magne. Mater.474, 505-511 (2019). https://doi.org/10.1016/j.jmmm.2018.11.010
[46] A. Baykal, N. Kasapoğlu, Y. Köseoğlu, A.C. Başaran, H. Kavas, M.S. Toprak, Cent. Eur. J. Chem.6, 125-130 (2008).
[47] W. Zhong, W. Ding, Y. Jiang, N. Zhang, J. Zhang, Y. Du, Q. Yan, J. Am. Ceram. Soc.80, 3258-3262 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03264.x
[48] S.K. Mishra, L. Pathak, V. Rao, Mater. Lett.32, 137-141 (1997). https://doi.org/10.1016/S0167-577X(97)00027-X
[49] K. Martirosyan, E. Galstyan, S. Hossain, Y.-J. Wang, D. Litvinov, Mater. Sci. Eng. B176, 8-13 (2011). https://doi.org/10.1016/j.mseb.2010.08.005
[50] X. Huang, J. Zhang, L. Wang, Q. Zhang, J. alloys comp.540, 137-140 (2012). https://doi.org/10.1016/j.jallcom.2012.05.015
[51] P.A. Vinosha, A. Manikandan, A.S.J. Ceicilia, A. Dinesh, G.F. Nirmala, A.C. Preetha, Y. Slimani, M. Almessiere, A. Baykal, B. Xavier, Ceram.Inter.47, 10512-10535 (2021). https://doi.org/10.1016/j.ceramint.2020.12.289
[52] K. Huang, J. Yu, L. Zhang, J. Xu, P. Li, Z. Yang, C. Liu, W. Wang, X. Kan, J. Alloys Comp.825, 154072 (2020). https://doi.org/10.1016/j.jallcom.2020.154072
[53] W. Chen, W. Wu, C. Zhou, S. Zhou, M. Li, Y. Ning, J. Electron. Mater.47, 2110-2119 (2018). https://doi.org/10.1007/s11664-017-6021-8
[54] X. Wu, W. Chen, W. Wu, Y. Ning, S. Chen, J. MATER. SCI-MATER. EL.28, 18815-18824 (2017). https://doi.org/10.1007/s10854-017-7831-4
[55] C.H. Chia, S. Zakaria, M. Yusoff, S. Goh, C.Y. Haw, S. Ahmadi, N.M. Huang, H.N. Lim, Ceram. Inter. 36, 605-609 (2010). https://doi.org/10.1016/j.ceramint.2009.10.001
[56] M. Houshiar, F. Zebhi, Z.J. Razi, A. Alidoust, Z. Askari, J. Magne. Magne. Mater.371, 43-48 (2014). https://doi.org/10.1016/j.jmmm.2014.06.059
[57] M. Zahraei, A. Monshi, M. del Puerto Morales, D. Shahbazi-Gahrouei, M. Amirnasr, B. Behdadfar, J. Magne. Magne. Mater.393, 429-436 (2015). https://doi.org/10.1016/j.jmmm.2015.06.006
[58] R. Valenzuela, Phy. Res. Inte. (2012).
[59] F. Pereira, (Fortaleza,2009).
[60] I.-C. Tung, J.-S. Yang, T.-S.C.T.-S. Chin, Jpn. J. Appl. Phys.36, 5091 (1997). https://doi.org/10.1143/JJAP.36.5091
[61] D. Evans, G. Fischer, J. Geiger, F. Martin, J. AM. CERAM. SOC.63, 629-634 (1980). https://doi.org/10.1111/j.1151-2916.1980.tb09850.x
[62] K. Haneda, C. Miyakawa, H. Kojima, J. Amer. Ceram.Soc.57, 354-357 (1974). https://doi.org/10.1111/j.1151-2916.1974.tb10921.x
[63] H. Yamamoto, H. Kumehara, R. Takeuchi, H. Nishio, J. phys., IV7, C1-535-C531-536(1997).
[64] J. Wang, G. Huang, X. Zhong, L. Sun, Y. Zhou, E. Liu, Appl. Phys. Lett.88, 252502 (2006). https://doi.org/10.1063/1.2208564
[65] M. Rashad, I. Ibrahim, J. Magne. Magne. Mater.323, 2158-2164 (2011). https://doi.org/10.1016/j.jmmm.2011.03.023
[66] F. Pereira, A. Sombra, in: Solid State Phenom., Trans Tech Publ, 1-64 (2013). https://doi.org/10.4028/www.scientific.net/SSP.202.1
[67] D. Lisjak, M. Drofenik, J. Europ. Ceram. Soc.27, 4515-4520 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.202
[68] D. Lisjak, M. Drofenik, J. Europ. Ceram. Soc.26, 3681-3686 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.12.014
[69] S. Hu, J. Liu, H. Yu, Z. Liu, J. Magne. Magne. Mater.473, 79-84 (2019). https://doi.org/10.1016/j.jmmm.2018.10.044
[70] M. Sajjia, M. Oubaha, M. Hasanuzzaman, A. Olabi, Ceram. Inter.40, 1147-1154 (2014). https://doi.org/10.1016/j.ceramint.2013.06.116
[71] L. Wang, M. Lu, Y. Liu, J. Li, M. Liu, H. Li, Ceram. Inter.41, 4176-4181 (2015). https://doi.org/10.1016/j.ceramint.2014.12.099
[72] R. Zhang, L. Sun, Z. Wang, W. Hao, E. Cao, Y. Zhang, Mater. Res. Bull.98, 133-138 (2018). https://doi.org/10.1016/j.materresbull.2017.08.006
[73] M. Zate, S. Raut, S.D. Shirsat, S. Sangale, A. Kadam, (Elsevier, 2020).
[74] E. Matijevic, J. Colloid Interface Sci.117, 593-595 1987). https://doi.org/10.1016/0021-9797(87)90426-7
[75] I.J. McColm, N. Clark, Blackie and Son Ltd., 1988, 345 (1988).
[76] C. Sürig, D. Bonnenberg, K. Hempel, P. Karduck, H. Klaar, C. Sauer, J. phys., IV7, C1-315-C311-316 (1997).
[77] R. Pullar, M. Stacey, M. Taylor, A. Bhattacharya, Act. mater.49, 4241-4250 (2001). https://doi.org/10.1016/S1359-6454(01)00304-4
[78] R. Pullar, S. Appleton, A. Bhattacharya, J. Magne. Magne. Mater.186, 326-332 (1998). https://doi.org/10.1016/S0304-8853(98)00107-3
[79] R. Pullar, A. Bhattacharya, Mater. Lett.57, 537-542 (2002). https://doi.org/10.1016/S0167-577X(02)00825-X
[80] N. Yasmin, M.Z. Iqbal, M. Zahid, S.F. Gillani, M.N. Ashiq, I. Inam, S. Abdulsatar, M. Safdar, M. Mirza, Ceram. Inter.45, 462-467 (2019). https://doi.org/10.1016/j.ceramint.2018.09.190
[81] I. Auwal, A. Baykal, S. Güner, H. Sözeri, Ceram. Inter.43, 1298-1303 (2017). https://doi.org/10.1016/j.ceramint.2016.10.080
[82] D. Kotsikau, M. Ivanovskaya, V. Pankov, Y. Fedotova, Solid State Sci.39, 69-73 (2015). https://doi.org/10.1016/j.solidstatesciences.2014.11.013
[83] S. Sarıtaş, B.C. Şakar, E. Turgut, M. Kundakci, M. Yıldırım, Mater. Today: Proc.46, 7025-7029 (2021). https://doi.org/10.1016/j.matpr.2021.03.284
[84] Z. Tang, S. Nafis, C. Sorensen, G. Hadjipanayis, K. Klabunde, IEEE Trans. Magn.25, 4236-4238 (1989). https://doi.org/10.1109/20.42580
[85] C. Barathiraja, A. Manikandan, A. Uduman Mohideen, S. Jayasree, S.A. Antony, J. Supercond. Nov. Magn.29, 477-486 (2016). https://doi.org/10.1007/s10948-015-3312-2
[86] P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, Ceram. inter.46, 15740-15763 (2020). https://doi.org/10.1016/j.ceramint.2020.03.287
[87] M. Sundararajan, L.J. Kennedy, U. Aruldoss, S.K. Pasha, J.J. Vijaya, S. Dunn, Mater. Sci. Semicond Process40, 1-10 (2015). https://doi.org/10.1016/j.mssp.2015.06.002
[88] B. Grindi, Z. Beji, G. Viau, A. BenAli, J. Magne. Magne. Mater.449, 119-126(2018). https://doi.org/10.1016/j.jmmm.2017.10.002
[89] K.K. Senapati, C. Borgohain, P. Phukan, J. Mol. Catal. A Chem.339, 24-31 (2011). https://doi.org/10.1016/j.molcata.2011.02.007
[90] V. Pillai, P. Kumar, M. Hou, P. Ayyub, D. Shah, Adv. Colloid Interface Sci.55, 241-269 (1995). https://doi.org/10.1016/0001-8686(94)00227-4
[91] D. Rawlinson, P. Sermon, J. phys., IV7, C1-755-C751-756 (1997).
[92] L.G. Cerda, S.M. Montemayor, J. Magne. Magne. Mater.294, e43-e46 (2005). https://doi.org/10.1016/j.jmmm.2005.03.051
[93] P.R. Varma, R.S. Manna, D. Banerjee, M.R. Varma, K. Suresh, A. Nigam, J. Alloys Comp.453, 298-303 (2008). https://doi.org/10.1016/j.jallcom.2006.11.058
[94] V. Dutta, S. Sharma, P. Raizada, A. Hosseini-Bandegharaei, V.K. Gupta, P. Singh, J. Saudi Chem. Soc. 23, 1119-1136 (2019). https://doi.org/10.1016/j.jscs.2019.07.003
[95] R. Sridhar, R. Dachepalli, K. K Vijaya, Adv. Mater. Chem. Phys. (2012).
[96] V. Sankaranarayanan, Q. Pankhurst, D. Dickson, C. Johnson, J. Magne. Magne. Mater. 125, 199-208 (1993). https://doi.org/10.1016/0304-8853(93)90838-S
[97] Y. Li, Q. Wang, H. Yang, Curr. Appl. Phys.9, 1375-1380 (2009). https://doi.org/10.1016/j.cap.2009.03.002
[98] L. Junliang, Z. Wei, G. Cuijing, Z. Yanwei, J.Alloys Comp.479, 863-869 (2009). https://doi.org/10.1016/j.jallcom.2009.01.081
[99] J. Huang, H. Zhuang, W. Li, Mater. Res. Bull.38, 149-159 (2003). https://doi.org/10.1016/S0025-5408(02)00979-0
[100] S.S. Kumar, R.K. Singh, N. Kumar, G. Kumar, U. Shankar, Mater. Today: Proc.46, 8567-8572 (2021). https://doi.org/10.1016/j.matpr.2021.03.547
[101] A.-H. El Foulani, A. Aamouche, F. Mohseni, J. Amaral, D. Tobaldi, R. J.Alloys Comp.774, 1250-1259 (2019). https://doi.org/10.1016/j.jallcom.2018.09.393
[102] M.G. Naseri, E.B. Saion, H.A. Ahangar, M. Hashim, A.H. Shaari, J. Magne. Magne. Mater.323, 1745-1749 (2011). https://doi.org/10.1016/j.jmmm.2011.01.016
[103] A. Ataie, M. Piramoon, I. Harris, C. Ponton, J. mater. sci.30, 5600-5606 (1995). https://doi.org/10.1007/BF00356692
[104] M. Jean, V. Nachbaur, J. Bran, J.-M. Le Breton, J. Alloys Comp.496,306-312 (2010). https://doi.org/10.1016/j.jallcom.2010.02.002
[105] S. Shafiu, H. Sözeri, A. Baykal, J. Supercond. Nov. Magn.27, 1593-1598 (2014). https://doi.org/10.1007/s10948-014-2490-7
[106] J.-H. Lee, T.-B. Byeon, H.-J. Lee, C.-G. Kim, T.-O. Kim, J. Phys. IV, 7, C1-751-C751-752 (1997).
[107] X. Liu, J. Wang, L.-M. Gan, S.-C. Ng, J. Magne. Magne. Mater.195, 452-459 (1999). https://doi.org/10.1016/S0304-8853(99)00123-7
[108] S.A. Morrison, C.L. Cahill, E.E. Carpenter, S. Calvin, R. Swaminathan, M.E. McHenry, V.G. Harris, J. Appl. Phys.95, 6392-6395 (2004). https://doi.org/10.1063/1.1715132
[109] C. Singh, S. Jauhar, V. Kumar, J. Singh, S. Singhal, Mater.Chem. Phys.156, 188-197 (2015). https://doi.org/10.1016/j.matchemphys.2015.02.046
[110] S. Shanmugam, B. Subramanian, Mater. Sci. Eng. : B 252, 114451 (2020). https://doi.org/10.1016/j.mseb.2019.114451
[111] A.M. Ibrahim, M. Abd El-Latif, M.M. Mahmoud, J. Alloys Comp.506, 201-204 (2010). https://doi.org/10.1016/j.jallcom.2010.06.177
[112] V. Chaudhary, A.K. Kaushik, H. Furukawa, A. Khosla, ECS Sensors Plus, (2022).
[113] M.K. Enamala, M. Chavali, A. Tangellapally, D. Pasumarthy, M.K. Murthy, C. Kuppam, V. Chaudhary, R. Mishra, D. Naradasu, (Elsevier, 2021) 243-259. https://doi.org/10.1016/B978-0-12-820498-6.00010-X
[114] G. Kogias, V. Tsakaloudi, P. Van der Valk, V. Zaspalis, J. Magne. Magne. Mater.324, 235-241 (2012). https://doi.org/10.1016/j.jmmm.2011.07.055
[115] M. Abbas, B.P. Rao, M.N. Islam, K.W. Kim, S. Naga, M. Takahashi, C. Kim, Ceram. inter.40, 3269-3276 (2014). https://doi.org/10.1016/j.ceramint.2013.09.109
[116] W. Zhong, W. Ding, N. Zhang, J. Hong, Q. Yan, Y. Du, J. Magne. Magne. Mater. 168,196-202 (1997). https://doi.org/10.1016/S0304-8853(96)00664-6
[117] G. Mendoza-Suárez, M. Cisneros-Morales, M. Cisneros-Guerrero, K. Johal, H. Mancha-Molinar, O. Ayala-Valenzuela, J. Escalante-Garcıa, Mater. chem. phys.77, 796-801 (2003). https://doi.org/10.1016/S0254-0584(02)00141-4
[118] H.-F. Yu, K.-C. Huang, J. Magne. Magne. Mater.260, 455-461 (2003). https://doi.org/10.1016/S0304-8853(02)01389-6
[119] D. Mishra, S. Anand, R. Panda, R. Das, Mater.chem. phys.86, 132-136 (2004). https://doi.org/10.1016/j.matchemphys.2004.02.017
[120] D. Lisjak, K. Bobzin, K. Richardt, M. Bégard, G. Bolelli, L. Lusvarghi, A. Hujanen, P. Lintunen, M. Pasquale, E. Olivetti, J. Europ. Ceram. Soc.29, 2333-2341 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.01.028