Nanotechnology/Nanosensors for the Detection of Pathogens
Raju Ahmed, Mahmuda Nargis, Abu Bin Ihsan
Early and accurate detection of pathogen is an important key to prevent and treat pathogen originated health issues. Conventional diagnostic methods are relatively laborious, time-consuming, costly, and require sophisticated instruments. To overcome the limitations of traditional instruments, nanosensors have emerged as a promising alternative. Due to their easy fabrication, high surface-to-volume ratio, and great biocompatibility, nanosensors have been shown to be an ideal technique for sensing. Herein, we provide an overall impression of the application of different types of nanosensors in disease diagnosis, and in the monitoring of water and food quality along with their probable future orientations.
Keywords
Aptamers, COVID-19, Food Safety, Infectious Disease, Microorganisms, Nanotechnology, Polymer, Polymeric Chain Reaction (PCR), SARS-CoV-2
Published online 2/1/2023, 24 pages
Citation: Raju Ahmed, Mahmuda Nargis, Abu Bin Ihsan, Nanotechnology/Nanosensors for the Detection of Pathogens, Materials Research Foundations, Vol. 141, pp 246-269, 2023
DOI: https://doi.org/10.21741/9781644902295-10
Part of the book on Emerging Applications of Nanomaterials
References
[1] A.A. Malik, C. Nantasenamat, T. Piacham, Molecularly Imprinted Polymer for human viral pathogen detection, Mater. Sci. Eng. C. 77 (2017) 1341-1348. https://doi.org/10.1016/j.msec.2017.03.209
[2] I. Kamal, Prospects of Some Applications of Engineered Nanomaterials: A review, Open Access J. Biomed. Engin. Biosci. 2 (2018) 245. https://doi.org/10.32474/OAJBEB.2018.02.000149
[3] M. Owusu, B. Nkrumah, G. Acheampong, E.K. Mensah, A.A-K. Komei, F.K. Sroda, S. David, S. Emery, L.M. Robinson, K. Asante, D. Opare, Improved detection of microbiological pathogens: role of partner and non-governmental organizations. BMC Infect Dis 21 (2021) 303. (2021) https://doi.org/10.1186/s12879-021-05999-8
[4] C.E. Rowland, C.W. Brown III, J.B. Delehanty and I.L. Medintz, Nanomaterial-based sensors for the detection of biological threat agents, Mater. Today 19(8) (2016) 464-477. https://doi.org/10.1016/j.mattod.2016.02.018
[5] Q. Zhang, D. Zhang, Y. Lu, Y. Yao, S. Li, Q. Liu, Graphene oxide-based optical biosensor functionalized with peptides for explosive detection, Biosens. Bioelectron. 68 (2015) 494-499. https://doi.org/10.1016/j.bios.2015.01.040
[6] K. Bartold, A. Pietrzyk-Le, K. Golebiewska, W. Lisowski, S. Cauteruccio, E. Licandro, F. D’Souza, W. Kutner, Oligonucleotide determination via peptide nucleic acid macromolecular imprinting in an electropolymerized CG-rich artificial oligomer analogue, ACS Appl. Mater. Interfaces 10 (2018) 27562-27569. https://doi.org/10.1021/acsami.8b09296
[7] B. Osman, L. Uzun, N. Be¸ sirli, A. Denizli, Microcontact imprinted surface plasmon resonance sensor for myoglobin detection, Mater. Sci. Eng. C 33 (2013) 3609-3614. https://doi.org/10.1016/j.msec.2013.04.041
[8] U. Anik, Y. Tepeli, M.F. Diouani, Fabrication of electrochemical model influenza a virus biosensor based on the measurements of neuroaminidase enzyme activity, Anal. Chem. 88 (2016) 6151-6153. https://doi.org/10.1021/acs.analchem.6b01720
[9] O¨. Erdem, Y. Saylan, N. Cihangir, A. Denizli, Molecularly imprinted nanoparticles based plasmonic sensors for real-time Enterococcus faecalis detection, Biosens. Bioelectron. 126 (2019) 608-614. https://doi.org/10.1016/j.bios.2018.11.030
[10] F.C. Dudak, I. H. Boyaci, Peptide-based surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B, Food Anal. Methods 7 (2014) 506-511. https://doi.org/10.1007/s12161-013-9739-9
[11] S. Cheng, S. Hideshima, S. Kuroiwa, T. Nakanishi, T. Osaka, Label-free detection of tumor markers using field effect transistor (FET)-based biosensors for lung cancer diagnosis, Sens. Actuators B: Chem. 212 (2015) 329-334. https://doi.org/10.1016/j.snb.2015.02.038
[12] Y. Saylan, A. Denizli, Molecular fingerprints of hemoglobin on a nanofilm chip, Sensors 18 (2018) 3016-3029. https://doi.org/10.3390/s18093016
[13] M. Lv, Y. Liu, J. Geng, X. Kou, Z. Xin, D. Yang, Engineering nanomaterials-based biosensors for food safety detection, Biosens. Bioelectron.106 (2018) 122-128. https://doi.org/10.1016/j.bios.2018.01.049
[14] O¨. Erdem, Y. Saylan, M. Andac¸, A. Denizli, Molecularly imprinted polymers for removal of metal ions: an alternative treatment method, Biomimetics 3 (2018) 38-53. https://doi.org/10.3390/biomimetics3040038
[15] C. Mao, A. Liu, B. Cao, Virus-based chemical and biological sensing, Angew. Chem. Int. Ed. 48 (2009) 6790-6810. https://doi.org/10.1002/anie.200900231
[16] J. Deng, S. Zhao, Y. Liu, C. Liu, J. Sun, Nanosensors for diagnosis of infectious diseases, ACS Appl. Bio Mater. 4 (5) (2021) 3863-3879. https://doi.org/10.1021/acsabm.0c01247
[17] S.D. Mahapatra, P.C. Mohapatra, A.I. Aria, G. Christie, Y.K. Mishra, S. Hofmann, V. K. Thakur, Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials, Adv. Sci. 8 (2021) 2100864. https://doi.org/10.1002/advs.202100864
[18] B. Ates, S. Koytepe, A. Ulu, C. Gurses, V.K. Thakur, Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources, Chem. Rev. 120 (17) (2020) 9304-9362. https://doi.org/10.1021/acs.chemrev.9b00553
[19] M. Saraf, M.T. Yaraki, Prateek, Y.N. Tan, R.K. Gupta, Insights and perspectives regarding nanostructured fluorescent materials toward tackling COVID-19 and future pandemics, ACS Appl. Nano Mater. 4 (2) (2021) 911-948. https://doi.org/10.1021/acsanm.0c02945
[20] A. Singhal, A. Parihar, N. Kumar, R. Khan, High throughput molecularly imprinted polymers based electrochemical nanosensors for point-of-care diagnostics of COVID-19, Materials Letters 306 (2022) 130898. https://doi.org/10.1016/j.matlet.2021.130898
[21] X.T. Zheng, Y.N. Tan, Recent development of nucleic acid nanosensors to detect sequence-specific binding interactions: From metal ions, small molecules to proteins and pathogens, Sensors Int. 1 (2020), 100034 https://doi.org/10.1016/j.sintl.2020.100034
[22] S. Krishnan, A.K. Narasimhan, D. Gangodkar, S. Dhanasekaran, N.K. Jha, K. Dua, V.K. Thakur, P.K. Gupta, Aptameric nanobiosensors for the diagnosis of COVID-19: An update, Materials Letters 308(B) (2022) 131-237. https://doi.org/10.1016/j.matlet.2021.131237
[23] E. Zavyalova, O. Ambartsumyan, G. Zhdanov, D. Gribanyov, V. Gushchin, A. Tkachuk, E. Rudakova, M. Nikiforova, N. Kuznetsova, L. Popova, B. Verdiev, SERS-Based Aptasensor for Rapid Quantitative Detection of SARS-CoV-2, Nanomaterials 11 (2021) 1394. https://doi.org/10.3390/nano11061394
[24] T. Stanborough, F.M. Given, B. Koch, C.R. Sheen, A.B. Stowers-Hull, M.R. Waterland, D.L. Crittenden, Optical Detection of CoV-SARS-2 Viral Proteins to Sub-Picomolar Concentrations, ACS Omega 6 (9) (2021) 6404-6413. https://doi.org/10.1021/acsomega.1c00008
[25] A. Pramanik, Y. Gao, S. Patibandla, D. Mitra, M.G. McCandless, L.A. Fassero, K. Gates, R. Tandon, P.C. Ray, Aptamer Conjugated Gold Nanostar-Based Distance Dependent Nanoparticle Surface Energy Transfer Spectroscopy for Ultrasensitive Detection and Inactivation of Corona Virus, J. Phys. Chem. Lett. 12 (8) (2021) 2166-2171. https://doi.org/10.1021/acs.jpclett.0c03570
[26] M.A. Tabrizi, L. Nazari, P. Acedo, A photo-electrochemical aptasensor for the determination of severe acute respiratory syndrome coronavirus 2 receptorbinding domain by using graphitic carbon nitride-cadmium sulfide quantum dots nanocomposite, Sens. Actuators B Chem. 345 (2021), 130377. https://doi.org/10.1016/j.snb.2021.130377
[27] J. Tian, Z. Liang, O. Hu, Q. He, D. Sun, Z. Chen, An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@ Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein, Electrochim. Acta 387 (2021) 138553. https://doi.org/10.1016/j.electacta.2021.138553
[28] H. Jia, A.o. Zhang, Y. Yang, Y. Cui, J. Xu, H. Jiang, S. Tao, D. Zhang, H. Zeng, Z. Hou, J. Feng, A graphene oxide coated tapered microfiber acting as a supersensor for rapid detection of SARS-CoV-2, Lab Chip 21 (12) (2021) 2398-2406. https://doi.org/10.1039/D0LC01231A
[29] R, Miyazaki, M, Nargis, A.B. Ihsan, N. Nakajima, M. Hamada, Y. Koyama, Effects of glycon and temperature on self-assembly behaviors of α-galactosyl ceramide in water. Langmuir 37 (2021) 7936-7944. https://doi.org/10.1021/acs.langmuir.1c00545
[30] M. Nargis, A.B. Ihsan, Y. Koyama, Thermo-responsive structure and dye-encapsulation of micelles comprising bolaamphiphilic quercetin polyglycoside. Langmuir 36 (2020) 10764-10771. https://doi.org/10.1021/acs.langmuir.0c01564
[31] M. Nargis, A.B. Ihsan, Y. Koyama, Bolaamphiphilic properties and pH-dependent micellization of quercetin polyglycoside. RSC Adv. 9 (2019) 33674-33677. https://doi.org/10.1039/C9RA05711K
[32] A.B. Ihsan, M. Nargis, Y. Koyama, Effects of the hydrophilic-lipophilic balance of alternating peptides on self-assembly and thermo-responsive behaviors. Int. J. Mol. Sci. 20 (2019) 4604-4614. https://doi.org/10.3390/ijms20184604
[33] A.B. Ihsan, Y. Koyama, Impact of polypeptide sequence on thermal properties for diblock, random, and alternating copolymers containing a stoichiometric mixture of glycine and valine. Polymer 161 (2019) 197-204. https://doi.org/10.1016/j.polymer.2018.12.021
[34] A.B. Ihsan, Y. Koyama, T, Taira, T. Imura, Thermo-responsive structure and surface activity of kinetically stabilized micelle composed of fluorinated alternating peptides in orgainic solvent. Chemistry Select 3 (2018) 4173-4178. https://doi.org/10.1002/slct.201800590
[35] Y. Koyama, A.B. Ihsan, T. Taira, T. Imura, Fluorinated polymer surfactants bearing alternating peptide skeleton prepared by three-component polycondensation. RSC Adv 8 (2018) 7509-7513. https://doi.org/10.1039/C8RA00581H
[36] A.B. Ihsan, T.L. Sun, S. Kuroda, M.A. Haque, T. Kurokawa, T. Nakajima, J.P. Gong, A phase diagram of neutral polyampholyte – From solution to tough hydrogel. J. Mat. Chem. B 1 (2013) 4555-4562. https://doi.org/10.1039/c3tb20790k
[37] T.L. Sun, T. Kurokawa, S. Kuroda, A.B. Ihsan, T. Akasaki, K. Sato, M.A. Haque, T. Nakajima, J.P. Gong, Physical Hydrogels Composed of Polyampholytes Demonstrate High Toughness and Viscoelasticity. Nat. Mater. 12 (2013) 932-937. https://doi.org/10.1038/nmat3713
[38] A.B. Ihsan, T.L. Sun, T. Kurokawa, S.N. Karobi, T. Nakajima, T. Nonoyama, C.K. Roy, F. Luo, J.P. Gong, Self-healing behaviors of tough polyampholyte hydrogels. Macromolecules 49 (2016) 4245-4252. https://doi.org/10.1021/acs.macromol.6b00437
[39] F. Luo, T.L Sun, T. Nakajima, T. Kurokawa, Y. Zhao, K. Sato, A.B. Ihsan, X. Li, H. Guo, J.P Gong, oppositely charged polyelectrolytes form tough, self-healing and rebuildable hydrogels. Adv. Mater. 27 (2015) 2722-2727. https://doi.org/10.1002/adma.201500140
[40] F. Luo, T.L. Sun, T. Nakajima, T. Kurokawa, A.B. Ihsan, X. Li, H. Guo, J.P. Gong, Free reprocessability of tough and self-healing hydrogels based on polyion complex, ACS Macro. Lett. 4 (2015) 961-964. https://doi.org/10.1021/acsmacrolett.5b00501
[41] F. Luo, T.L. Sun, T. Nakajima, D.R. King, T. Kurokawa, Y. Zhao, A.B. Ihsan, X. Li, H. Guo, J.P. Gong, Strong and tough polyion-complex hydrogels from oppositely charged polyelectrolytes: A comparative study with polyampholyte hydrogels. Macromolecules 49 (2016) 2750-2760. https://doi.org/10.1021/acs.macromol.6b00235
[42] F. Luo, T.L. Sun, T. Nakajima, T. Kurokawa, Y. Zhao, A.B. Ihsan, H. Guo, X. Li, J. P. Gong Crack blunting and advancing behaviors of tough and self-healing polyampholyte hydrogel, Macromolecules 47 (2014) 6037-6046. https://doi.org/10.1021/ma5009447
[43] C.K. Roy, H. Guo, T.L. Sun, A.B. Ihsan, T. Kurokawa, M. Takahata, T. Nonoyama, T. Nakajima, J.P. Gong, Self-adjustable adhesion of polyampholyte hydrogels, Adv. Mater. 27 (2015) 7344-7348. https://doi.org/10.1002/adma.201504059
[44] A.B. Ihsan, Y. Tawara, S. Goto, H. Kobayashi, K. Nakajima, A. Fukuoka, Y. Koyama, Effects of 2,5-Furanylene Sulfides in Polymer Main Chain on Polymer Physical Properties, Polymer Journal 51 (2019) 413-422. https://doi.org/10.1038/s41428-018-0140-9
[45] S. Ramanavicius, A. Jagminas, A. Ramanavicius, Advances in Molecularly Imprinted Polymers Based Affinity Sensors (Review), Polymers 13 (2021) 6. https://doi.org/10.3390/polym13060974
[46] R. Gui, H. Jin, H. Guo, Z. Wang, Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors, Biosens. Bioelectron. 100 (2018) 56-70. https://doi.org/10.1016/j.bios.2017.08.058
[47] M. Singh, S. Singh, S.P. Singh, S.S. Patel, Recent advancement of carbon nanomaterials engrained molecular imprinted polymer for environmental matrix, Trends Environ. Anal. Chem. 27 (2020) e00092. https://doi.org/10.1016/j.teac.2020.e00092
[48] F.W. Scheller, X. Zhang, A. Yarman, U. Wollenberger, R.E. Gyurcs’anyi, Molecularly imprinted polymer based electrochemical sensors for Biopolymers, Curr. Opin. Electrochem. 14 (2019) 53-59. https://doi.org/10.1016/j.coelec.2018.12.005
[49] B. Jin, S. Wang, M. Lin, Y. Jin, S. Zhang, X. Cui, Y. Gong, A. Li, F. Xu, T.J. Lu, Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection, Biosens. Bioelectron. 90 (2017) 525-533. https://doi.org/10.1016/j.bios.2016.10.029
[50] M. Safavieh, M.U. Ahmed, A. Ng, M. Zourob, High-throughput real-time electrochemical monitoring of LAMP for pathogenic bacteria detection, Biosens. Bioelectron. 58 (2014) 101-106. https://doi.org/10.1016/j.bios.2014.02.002
[51] Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, J. Zhao, Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review, Biosens. Bioelectron, 94 (2017) 131-140. https://doi.org/10.1016/j.bios.2017.02.032
[52] Y.-S. Lin, P.-J. Tsai, M.-F. Weng, Y.-C. Chen, Anal. Chem. Affinity Capture Using Vancomycin-Bound Magnetic Nanoparticles for the MALDI-MS Analysis of Bacteria, 77 (2005) 1753-1760. https://doi.org/10.1021/ac048990k
[53] S.D. Soelberg, R.C. Stevens, A.P. Limaye, C.E. Furlong, Surface plasmon resonance detection using antibody-linked magnetic nanoparticles for analyte capture, purification, concentration, and signal amplification, Anal. Chem. 81 (2009) 2357-2363. https://doi.org/10.1021/ac900007c
[54] M. Su, S. Li, V.P. Dravid, Microcantilever resonance-based DNA detection with nanoparticle probes, Appl. Phys. Lett. 82 (2003) 3562-3564. https://doi.org/10.1063/1.1576915
[55] Y. Pan, M. Guo, Z. Nie, Y. Huang, C. Pan, K. Zeng, Y. Zhang, S. Yao, Selective collection and detection of leukemia cells on a magnet-quartz crystal microbalance system using aptamer-conjugated magnetic beads. Biosens. Bioelectron. 25 (2010) 1609-1614. https://doi.org/10.1016/j.bios.2009.11.022
[56] Y. Wan, Y. Sun, P. Qi, P. Wang, D. Zhang, Quaternized magnetic nanoparticles-fluorescent polymer system for detection and identification of bacteria, Biosens. Bioelectron. 55 (2014) 289-293. https://doi.org/10.1016/j.bios.2013.11.080
[57] Y. Wan, D. Zhang, B. Hou, Determination of sulphate-reducing bacteria based on vancomycin functionalised magnetic nanoparticles using a modification-free quartz crystal microbalance, Biosens. Bioelectron. 25 (2010) 1847-1850. https://doi.org/10.1016/j.bios.2009.12.028
[58] S.P. Ravindranath, L.J. Mauer, C. Deb-Roy, J. Irudayaraj, Biofunctionalized magnetic nanoparticle integrated mid-infrared pathogen sensor for food matrixes, Anal. Chem. 81 (8) (2009) 2840-2846. https://doi.org/10.1021/ac802158y
[59] https://www.who.int/en/news-room/fact-sheets/detail/hiv-aids.
[60] B. Babamiri, A. Salimi, R. Hallaj, A molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using EuS nanocrystals as luminophore, Biosens. Bioelectron. 117 (2018) 332-339. https://doi.org/10.1016/j.bios.2018.06.003
[61] C.H. Lu, Y. Zhang, S.F. Tang, Z.B. Fang, H.H. Yang, X. Chen, G. N. Chen, Sensing HIV related protein using epitope imprinted hydrophilic polymer coated quartz crystal microbalance, Biosens. Bioelectron. 31 (1) (2012) 439-444. https://doi.org/10.1016/j.bios.2011.11.008
[62] H. Shafiee, E.A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T.J. Henrich, D.R. Kuritzkes, B.T. Cunningham, U. Demirci, Nanostructured optical photonic crystal biosensor for HIV viral load measurement, Sci. Rep. 4 (2014) 4116-4123. https://doi.org/10.1038/srep04116
[63] C. Seeger, W.S. Mason, Molecular biology of hepatitis B virus infection, Virology 479 (2015) 672-686. https://doi.org/10.1016/j.virol.2015.02.031
[64] D. Lavanchy, M. Kane, Global epidemiology of hepatitis B virus infection, Hepatitis B Virus in Human Diseases, Humana Press, Cham. (2016) pp. 187-203. https://doi.org/10.1007/978-3-319-22330-8_9
[65] W.M. Hassen, C. Chaix, A. Abdelghani, F. Bessueille, D. Leonard, N. Jaffrezic-Renault, An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection, Sens. Actuators B: Chem. 134 (2) (2008) 755-760. https://doi.org/10.1016/j.snb.2008.06.020
[66] L. Uzun, R. Say, S. U¨ nal, A. Denizli, Production of surface plasmon resonance based assay kit for hepatitis diagnosis, Biosens. Bioelectron. 24 (9) (2009) 2878-2884. https://doi.org/10.1016/j.bios.2009.02.021
[67] M.M. Istek, M.M. Erdem, A.E. Gu¨rsan, Impedimetric nanobiosensor for the detection of sequence-selective DNA hybridization, Hacettepe J. Biol. Chem. 46(4) (2019) 495-503. https://doi.org/10.15671/HJBC.2018.257
[68] S. Tasoglu, H.C. Tekin, F. Inci, S. Knowlton, S. Wang, F. Wang-Johanning, G. Johanning, D. Colevas, U. Demirci, Advances in nanotechnology and microfluidics for human papillomavirus diagnostics, Proc. IEEE 103 (2) (2015) 161-178. https://doi.org/10.1109/JPROC.2014.2384836
[69] S. Bedford, Cervical cancer: physiology, risk factors, vaccination and treatment, Br. J. Nurs. 18 (2009) 80-84. https://doi.org/10.12968/bjon.2009.18.2.37874
[70] Y. Saylan, A. Denizli, Virus detection using nanosensors, B. Han, V. K. Tomer, T. A. Nguyen, A. Farmani, P.K. Singh (Eds.), In Micro and Nano Technologies, Nanosensors for Smart Cities, Elsevier 2020, 501-511. https://doi.org/10.1016/B978-0-12-819870-4.00038-4
[71] P. Teengam, W. Siangproh, A. Tuantranont, T. Vilaivan, O. Chailapakul, C.S. Henry, Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides, Anal. Chem. 89 (2017) 5428-5435. https://doi.org/10.1021/acs.analchem.7b00255
[72] X. Peng, Y. Zhang, D. Lu, Y. Guo, S. Guo, Ultrathin Ti3C2 nanosheets based “off-on” fluorescent nanoprobe for rapid and sensitive detection of HPV infection, Sens. Actuators B: Chem. 286 (2019) 222-229. https://doi.org/10.1016/j.snb.2019.01.158
[73] X. Qiu, G. Wong, J. Audet, A. Bello, L. Fernando, J.B. Alimonti, H. Fausther-Bovendo, H. Wei, J. Aviles, E. Hiatt, A. Johnson, J. Morton, K. Swope, O. Bohorov, N. Bohorova, C. Goodman, D. Kim, M.H. Pauly, J. Velasco, J. Pettitt, G.G. Olinger, K. Whaley, B. Xu, J.E. Strong, L. Zeitlin, G.P. Kobinger, Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp, Nature 514 (7520) (2014) 47-53. https://doi.org/10.1038/nature13777
[74] J.T. Baca, V. Severns, D. Lovato, D.W. Branch, R.S. Larson, Rapid detection of Ebola virus with a reagent-free, point-of-care biosensor, Sensors 15 (4) (2015) 8605-8614. https://doi.org/10.3390/s150408605
[75] H. Ilkhani, S. Farhad, A novel electrochemical DNA biosensor for Ebola virus detection, Anal. Biochem. 557 (2018) 151-155. https://doi.org/10.1016/j.ab.2018.06.010
[76] A.A. Yanik, M. Huang, O. Kamohara, A. Artar, T.W. Geisbert, J.H. Connor, H. Altug, An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media, Nano. Lett. 10 (12) (2010) 4962-4969. https://doi.org/10.1021/nl103025u
[77] R.J. Meagher, O.A. Negrete, K.K. Van Rompay, Engineering paper-based sensors for Zika virus, Trends Mol. Med. 22 (7) (2016) 529-530. https://doi.org/10.1016/j.molmed.2016.05.009
[78] S. Afsahi, M.B. Lerner, J.M. Goldstein, J. Lee, X. Tang, D.A. Bagarozzi Jr, D. Pan, L. Locascio, A.Walker, F. Barron, B.R.Goldsmith, Novel graphene-based biosensor for early detection of Zika virus infection, Biosens. Bioelectron. 100 (2018) 85-88. https://doi.org/10.1016/j.bios.2017.08.051
[79] A. Kaushik, A. Yndart, S. Kumar, R.D. Jayant, A. Vashist, A.N. Brown, C-Z. Li, M. Nair, A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein, Sci. Rep. 8 (2018) 9700-9705. https://doi.org/10.1038/s41598-018-28035-3
[80] J. Song, M.G. Mauk, B.A. Hackett, S. Cherry, H.H. Bau, C. Liu, Instrument-free point-of-care molecular detection of Zika virus, Anal. Chem. 88 (14) (2016) 7289-7294. https://doi.org/10.1021/acs.analchem.6b01632
[81] F. Krammer, P. Palese, Advances in the development of influenza virus vaccines, Nat. Rev. Drug Discovery. 14 (3) (2015) 167-182. https://doi.org/10.1038/nrd4529
[82] A. Moulick, L. Richtera, V. Milosavljevic, N. Cernei, Y. Haddad, O. Zitka, P. Kopel, Z. Heger, V. Adam, Advanced nanotechnologies in avian influenza: current status and future trendsa review, Anal. Chim. Acta. 983 (2017) 42-53. https://doi.org/10.1016/j.aca.2017.06.045
[83] P.D. Tam, N. Van Hieu, N.D. Chien, A.T. Le, M.A. Tuan, DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection, J. Immunol. Methods 350 (2009) 118-124. https://doi.org/10.1016/j.jim.2009.08.002
[84] F. Vollmer, S. Arnold, D. Keng, Single virus detection from the reactive shift of a whispering-gallery mode, Proc. Natl Acad. Sci. U.S.A. 105 (52) (2008) 20701-20704. https://doi.org/10.1073/pnas.0808988106
[85] H. Bai, R. Wang, B. Hargis, H. Lu, Y. Li, A SPR aptasensor for detection of avian influenza virus H5N1, Sensors 12 (2012) 12506-12518. https://doi.org/10.3390/s120912506
[86] S. Emir Diltemiz, A. Erso¨z, D. Hu¨r, R. Kec¸ili, R. Say, 4-Aminophenyl boronic acid modified gold platforms for influenza diagnosis, Mater. Sci. Eng., C 33 (2013) 824-830. https://doi.org/10.1016/j.msec.2012.11.007
[87] C.E. Jin, T.Y. Lee, B. Koo, H. Sung, S.H. Kim, Y. Shin, Rapid virus diagnostic system using bio-optical sensor and microfluidic sample processing, Sens. Actuators B: Chem. 255 (2018) 2399-2406. https://doi.org/10.1016/j.snb.2017.08.197
[88] M.R. Guerreiro, D.F. Freitas, P.M. Alves, A.S. Coroadinha, Detection and quantification of label-free infectious adenovirus using a switch-on cell-based fluorescent biosensor, ACS Sens. 4 (6) (2019) 1654-1661. https://doi.org/10.1021/acssensors.9b00489
[89] H. Kim, M. Park, J. Hwang, J.H. Kim, D.R. Chung, K.S. Lee, M. Kang, Development of label-free colorimetric assay for MERS-CoV using gold nanoparticles, ACS Sens. 4 (2019) 1306-1312. https://doi.org/10.1021/acssensors.9b00175
[90] M. Trzaskowskia, A. Napio’rkowska, E. Augustynowicz-Kopec, T. Ciach, Detection of tuberculosis in patients with the use of portable SPR device, Sens. Actuators B: Chem. 260 (2018) 786-792. https://doi.org/10.1016/j.snb.2017.12.183
[91] P. Weerathunge, R. Ramanathan, V. Torok, K. Hodgson, Y. Xu, R. Goodacre, B.K. Behera, V. Bansal, Ultrasensitive colorimetric detection of murine norovirus using NanoZyme aptasensor, Anal. Chem. 91 (5) (2019) 3270-3276. https://doi.org/10.1021/acs.analchem.8b03300
[92] H. Kearns, R. Goodacre, L. Jamieson, D. Graham, K. Faulds, SERS Detection of Multiple Anti-microbial Resistant Pathogens using Nanosensors, Anal. Chem. 89 (23) (2017) 12666-12673. https://doi.org/10.1021/acs.analchem.7b02653
[93] R. Nißler, O. Bader, M. Dohmen, S. G. Walter, C. Noll, G. Selvaggio, U. Groß, S. Kruss, Remote near infrared identification of pathogens with multiplexed nanosensors, Nat. Commun. 11 (1) (2020) 5995. https://doi.org/10.1038/s41467-020-19718-5
[94] J. Chen, S.R. Nugen, Detection of protease and engineered phage-infected bacteria using peptide-graphene oxide nanosensors, Anal. Bioanal. Chem. 411 (12) (2019) 2487-2492 https://doi.org/10.1007/s00216-019-01766-6
[95] G. Santopolo, A. Domenech-Sanchez, S.M. Russell, R. de la Rica, Ultrafast and Ultrasensitive Naked-Eye Detection of Urease-Positive bacteria with Plasmonic Nanosensors, ACS Sens. 4 (4) (2019) 961-967 https://doi.org/10.1021/acssensors.9b00063
[96] T. Banerjee, S. Sulthana, T. Shelby, B. Heckert, J. Jewell, K. Woody,V. Karimnia, J. McAfee, S. Santra, Multiparametric Magneto-fluorescent Nanosensors for the Ultrasensitive Detection of Escherichia coli O157:H7, ACS Infect. Dis. 2 (10) (2016) 667-673. https://doi.org/10.1021/acsinfecdis.6b00108
[97] A. Jyoti, R.S. Tomar, R. Shanker, Nanosensors for the Detection of Pathogenic Bacteria. In: Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanoscience in Food and Agriculture 1. Sustainable Agriculture Reviews, Springer, Cham. 20 (2016) 129-150. https://doi.org/10.1007/978-3-319-39303-2_5
[98] H. Pu, Y. Xu, D.W. Sun, Q. Wei, X. Li, Optical nanosensors for biofilm detection in the food industry: principles, applications and challenges, Crit Rev Food Sci Nutr. 61 (13) (2020) 2107-2124. https://doi.org/10.1080/10408398.2020.1808877
[99] G. Fuertes, I. Soto, R. Carrasco, M. Vargas, J. Sabattin, C. Lagos, Intelligent Packaging Systems: Sensors and Nanosensors to Monitor Food Quality and Safety, Journal of Sensors, vol. 2016 (2016) 4046061. https://doi.org/10.1155/2016/4046061
[100] A. Khiyami, H. Almoammar, Y.M. Awad, M.A. Alghuthaymi, K.A. Abd-Elsalam, Plant pathogen nanodiagnostic techniques: forthcoming changes?, Biotechnology & Biotechnological Equipment, 28 (5) (2014) 775-785. https://doi.org/10.1080/13102818.2014.960739
[101] T. Banerjee, T. Shelby, S. Santra, How can nanosensors detect bacterial contamination before it ever reaches the dinner table, Future Microbiol. 12 (2) (2017) https://doi.org/10.2217/fmb-2016-0202
[102] Y. Saylan, F. Yılmaz, E. O¨ zgu¨r, A. Derazshamshir, H. Yavuz, A. Denizli, Molecularly imprinting of macromolecules for sensors applications, Sensors 17 (2017) 898-928. https://doi.org/10.3390/s17040898
[103] K.H. Cho, D.H. Shin, J. Oh, J.H. An, J.S. Lee, J. Jang, Multidimensional conductive nanofilm-based flexible aptasensor for ultrasensitive and selective HBsAg detection, ACS Appl. Mater. Interfaces 10 (2018) 28412-28419. https://doi.org/10.1021/acsami.8b09918
[104] Y. Pang, J. Jian, T. Tu, Z. Yang, J. Ling, Y. Li, et al., Wearable humidity sensor based on porous graphene network for respiration monitoring, Biosens. Bioelectron. 116 (2018) 123-129. https://doi.org/10.1016/j.bios.2018.05.038
[105] L. La Spada, L. Vegni, Electromagnetic nanoparticles for sensing and medical diagnostic applications, Materials 11 (2018) 603-624. https://doi.org/10.3390/ma11040603
[106] J. Wang, X. Qu, Recent progress in nanosensors for sensitive detection of biomolecules, Nanoscale 5 (2013) 3589-3600 https://doi.org/10.1039/c3nr00084b
[107] N.H. Anh, M.Q. Doan, N.X. Dinh, T.Q. Huy, D.Q. Tri, L.T.N. Loan, B.V. Hao, A.T. Le, Gold nanoparticle-based optical nanosensors for food and health safety monitoring: recent advances and future perspectives, RSC Adv. 12 (18) (2022) 10950-10988. https://doi.org/10.1039/D1RA08311B