Applications of Ion Exchange Resins in Water Softening
Yu. Dzyazko
Surface and groundwater always contain hardness ions (Ca2+ and Mg2+). The hardness is an important characteristic that provides the consumer properties of water. This parameter must be taken into consideration by the stations of water treatment, thermal power plants, the enterprises of chemical, food, pharmaceutical industries. Ion exchange resins, which are intended for water softening, are considered in this chapter. The negative effect of hardness ions on human health and equipment is also a focus of attention. Special approaches for increasing the efficiency of water softening are also reported. These approaches involve combining ion exchange with electrodialysis or ultrasound.
Keywords
Water Softening, Hardness Ions, Ion Exchange Resins, Polymer-Inorganic Resins, Electrodeionization
Published online 12/20/2022, 24 pages
Citation: Yu. Dzyazko, Applications of Ion Exchange Resins in Water Softening, Materials Research Foundations, Vol. 137, pp 142-165, 2023
DOI: https://doi.org/10.21741/9781644902219-8
Part of the book on Ion Exchange Resins
References
[1] E. Yildiz, A. Nuhoglu, B. Keskinler, G. Akay, B. Farizoglu, Water softening in a crossflow membrane reactor, Desalination 153 (2003) 139-152. https://doi.org/10.1016/S0011-9164(03)90066-X
[2] J. Liorens, J. Sabaté, M. Pujola, Viability of the use of polymer-assisted Ultrafiltration for continuous water softening, Sep. Sci. Technol. 38 (2003) 295-322. https://doi.org/10.1081/SS-120016576
[3] Yu. Dzyazko, L. Rozhdestveska, V. Ogenko, Yu. Borysenko, A. Bildukevich, T. Plisko, Y. Zmievskii, Polymer-inorganic membranes modified with graphene-containing composite: Electrochemical approach to investigations of functional properties, Mater. Today Proc. 50 (2022) 507-523. https://doi.org/10.1016/j.matpr.2021.11.303
[4] P. Jin, M. Robeyn, J. Zheng, S. Yuan, B. van der Bruggen, Tailoring charged nanofiltration membrane based on non-aromatic Tris (3-aminopropyl) amine for effective water softening, Membranes. 10 (2020) 251. https://doi.org/10.3390/membranes10100251
[5] X. Li, D. Hasson, R. Semiat, H. Shemer, Intermediate concentrate demineralization techniques for enhanced brackish water reverse osmosis water recovery – A review, Desalination 466 (2019) 24-35. https://doi.org/10.1016/j.desal.2019.05.004
[6] R. Zadghaffari, S.S. Asr, Water softening using caustic soda: privileges and restrictions, Polish J. Chem. Technol. 15 (2013) 116-121. https://doi.org/10.2478/pjct-2013-0033
[7] M. Ostovar, M. Amiri, A novel eco-friendly technique for efficient control of water lime softening process, Water Env. Res. 85 (2013) 2285-2293. https://doi.org/10.2175/106143013X13807328848333
[8] D. Campanizzi, B. Mason, C.K.F. Hermann, Distillation apparatuses Using household items, J. Chem. Educ. 76 (1999) 1079-1080. https://doi.org/10.1021/ed076p1079
[9] A. Abdel-Karim, S. Leaper, C. Skuse, G. Zaragoza, Membrane cleaning and pretreatments in membrane distillation – a review, Chem. Eng. J. 422 (2021) 129696. https://doi.org/10.1016/j.cej.2021.129696
[10] P.K. Naryanan, W.P. Harkare, S.K. Adhikary, N.J. Dave, D.K. Chauhan, K.P. Govindan, Performance of an electrodialysis desalination plant in rural areas, Desalination. 54 (1985) 145-150. https://doi.org/10.1016/0011-9164(85)80013-8
[11] J. Choi, P. Dorji, H.K. Shon, S. Hong, Applications of capacitive deionization: Desalination, softening, selective removal, and energy efficiency, Desalination. 445 (2019) 118-130. https://doi.org/10.1016/j.desal.2018.10.013
[12] L. Wang, S. Lin, Mechanism of selective ion removal in membrane capacitive deionization for water softening, Environ. Sci. Technol. 53 (2019) 5797-5804. https://doi.org/10.1021/acs.est.9b00655
[13] I. Sanjuán, D. Benavente, E. Expósito, V. Montiel, Electrochemical water softening: Influence of water composition on the precipitation behavior, Sep. Purif. Technol. 211 (2019) 857-865. https://doi.org/10.1016/j.seppur.2018.10.044
[14] K. Yaghmaeian, A. Mahvi, S. Nasseri, M. H. Shayesteh, H. J. Mansoorian, N. Khanjani, Drinking water softening with electrocoagulation process: Influence of direct and alternating currents as inductive with different arrangement rod electrodes and polarity inverter, Scientia Iranica. 27 (2021) 1275-1292.
[15] M. Micari, M. Moser, A. Cipollina, A. Tamburini, G. Micale, V. Bertsch, Towards the implementation of circular economy in the water softening industry: A technical, economic and environmental analysis, J. Cleaner Product. 255 (2020) 120291. https://doi.org/10.1016/j.jclepro.2020.120291
[16] World Health Organization, Hardness in Drinking-Water. Background document for development of WHO Guidelines for Drinking-Water Quality, 2011.
[17] S. Baskar, R. Baskar, L. Mauclaire, J. A. McKenzie, Microbially induced calcite precipitation in culture experiments: Possible origin for stalactites in Sahastradhara caves, Dehradun, India, Current Sci. 90 (2006) 58-64.
[18] L.F. Capitan-Vallvey, M.D. Fernandez-Ramos, P.A. De Cienfuegos Galvez, F. Santoyo-Gonzalez, Characterisation of a transparent optical test strip for quantification of water hardness, Anal. Chim. Acta. 481 (2003) 139-148. https://doi.org/10.1016/S0003-2670(03)00073-4
[19] J. Saurina, Е. López-Aviles, А. Le Moal, S. Hernández-Cassou, Determination of calcium and total hardness in natural waters using a potentiometric sensor array, Anal. Chim. Acta. 464 (2002) 89-98. https://doi.org/10.1016/S0003-2670(02)00474-9
[20] M.I.S.Veríssimo, J.A.B.P. Oliveira, M.T.S.R. Gomes, Determination of the total hardness in tap water using acoustic wave sensors, Sens. Actuators B Chem. 127 (2007) 102-106. https://doi.org/10.1016/j.snb.2007.07.006
[21] L.F.Capitán-Vallvey, M.D. Fernández-Ramos, P.A. De Cienfuegos Gálvez, F. Santoyo-González, Characterisation of a transparent optical test strip for quantification of water hardness, Anal. Chim. Acta. 481(2003) 139-148. https://doi.org/10.1016/S0003-2670(03)00073-4
[22] M.L. Bouhoun, P. Blondeau, Y. Louafi, F.J. Andrade, A Paper-Based Potentiometric Platform for Determination of Water Hardness, Chemosensors. 9 (2021) 96. https://doi.org/10.3390/chemosensors9050096
[23] M. Shariati-Rad, S. Heidari, Classification of and determination of total hardness of water using silver nanoparticles, Talanta. 219 (2020) 121297. https://doi.org/10.1016/j.talanta.2020.121297
[24] Gray N.F. Drinking water quality problems and solutions, second ed., Cambridge,University Press, 1994.
[25] P. Sengupta, Potential Health Impacts of Hard Water. Int. J. Prev. Med. 4 (2013) 866-875.
[26] E. Rubenowitz-Lundin, K.M. Hiscock, Water Hardness and Health Effects. In: O.e.a. Selinus (Eds.), Essentials of Medical Geology, Revised Edition, Springer, Dordrecht, Heidelberg, New York, London, 2013. https://doi.org/10.1007/978-94-007-4375-5_14
[27] K. Valta, T. Kosanovic, D. Malamis, K. Moustakas, M. Loizidou, Overview of water usage and wastewater management in the food and beverage industry, Desalination and Water treatment, 53 (2015) 3335-3347. https://doi.org/10.1080/19443994.2014.934100
[28] R.A. Ward, Worldwide water standards for hemodialysis, Hemodialysis International, 11 (2007) S18-S25. https://doi.org/10.1111/j.1542-4758.2007.00142.x
[29] K. Bensadok, A.Refes, P.M.Charvier, G.Nezzal, Water produce for pharmaceutical industry: role of reverse osmosis state, Desalination. 22 (2008) 298-302. https://doi.org/10.1016/j.desal.2007.01.086
[30] A. Auron, U.S. Alon, Hypercalcemia: a consultant’s approach, Pediatric Nephrology. 33 (2018) 1475-1488. https://doi.org/10.1007/s00467-017-3788-z
[31] V. Bellizzi, L. De Nicola , Minutolo R, Russo D, Cianciaruso B, Andreucci M, et al. Effects of water hardness on urinary risk factors for kidney stones in patients with idiopathic nephrolithiasis, Nephron. 81 (1999) 66-70. https://doi.org/10.1159/000046301
[32] A.K. Chandra, P. Sengupta, H. Goswami, M. Sarkar, Excessive dietary calcium in the disruption of structural and functional status of adult male reproductive system in rats with possible mechanism, Mol. Cell Biochem. 364 (2012) 181-191. https://doi.org/10.1007/s11010-011-1217-3
[33] P. Sengupta, The laboratory rat: Relating its age with human’s, Int. J. Prev. Med. 4 (2013) 624-630.
[34] H. Hoffmann, F. Martinola, Selective resins and special processes for softening water and solutions; A review, Reactive Polymers, Ion Exchangers, Sorbents. 7 (1988) 263-272. https://doi.org/10.1016/0167-6989(88)90148-1
[35] B. Bandrabur, R.-E. Tataru-Fărmuş, L. Lazăr, G. Gutt, Application of a strong acid resin as ion exchange material for water softening – equilibrium and thermodynamic analysis, Scholarly J. 13 (2012) 361-370.
[36] W. S. Miller, C. J. Castagna, A. W. Pieper, Understanding Ion-Exchange Resins For Water Treatment Systems, GE Water and Process Technologies. (2009) 1-13.
[37] B. Bandrabur, L. Lazar, R.-E. Tataru-Farmus, L. Bulgariu, G. Gutt, Permanent hard water softening using different cation exchange resins, Buletinul Institutului Politehnic in Jasi LVIII (2012) 141-150.
[38] N. N. Ismail, Experimental study on ion exchange rate of calcium hardness in water softening process using strong acid resin DOWEX HCR S/S, J. Eng. Sci. 19 (2016) 107-114.
[39] A.A.Swelam, A.M.A. Salem, M.B Awad, Permanent Hard Water Softening Using Cation Exchange Resin in Single and Binary Ion Systems, World J. Chem. 8 (2013) 1-10.
[40] B. Bandrabur, L. Lazar, R.-E. Tataru-Farmus, G. Gutt, Cationic exchange capacity of PURE PC200FD resin in food industry water softening process, Buletinul Institutului Politehnic in Jasi XI (2012) 97-102.
[41] A. Janson, J. Minier-Matar, E. Al-Shamari, A. Hussain, R. Sharma, D. Rowley, Evaluation of new ion exchange resins for hardness removal from boiler feedwater, Emergent Mater. 1 (2018) 77-87. https://doi.org/10.1007/s42247-018-0006-0
[42] G.J. Millar, S. Papworth, S.J. Couperthwaite, Exploration of the fundamental equilibrium behaviour of calcium exchange with weak acid cation resins, Desalination. 351 (2014) 27-36. https://doi.org/10.1016/j.desal.2014.07.022
[43] M. Coca, S. Mato, G. Gonzalez-Benito, M. A. Uruena, M. T. Garcia-Cubero, Use of weak cation exchange resin Lewatit S 8528 as alternative to strong ion exchange resins for calcium salt removal, J. Food Eng. 97 (2010) 569-573. https://doi.org/10.1016/j.jfoodeng.2009.12.002
[44] Y.S. Dzyazko, L.N. Ponomareva, Y.M. Volfkovich, V.E. Sosenkin, Effect of the porous structure of polymer on the kinetics of Ni2+ exchange on hybrid inorganic-organic ionites, Russ. J. Phys. Chem. A 86( (2012) 913-919. https://doi.org/10.1134/S0036024412060088
[45] Y.S. Dzyazko, L.N. Ponomareva, Y.M. Volfkovich, V.E. Sosenkin, V.N. Belyakov, Conducting properties of a gel ionite modified with zirconium hydrophosphate nanoparticles. Russ. J. Electrochem. 49 (2013) 209-215. https://doi.org/10.1134/S1023193513030075
[46] Y.S. Dzyazko, O.V. Perlova, N.A. Perlova, Y.M. Volfkovich, V.E. Sosenkin, V.V. Trachevskii, V.F. Sazonova, A.V. Palchik, Composite cation-exchange resins containing zirconium hydrophosphate for purification of water from U(VI) cations, Desalination Water Treatment. 69 (2017) 142-152. https://doi.org/10.5004/dwt.2017.0686
[47] Y.S. Dzyazko, L.N. Ponomaryova, Y.M. Volfkovich, VV Trachevskii, A.V. Palchik, Ion-exchange resin modified with aggregated nanoparticles of zirconium hydrophosphate. morphology and functional properties, Micropor. Mesopor. Mater. 198 (2014) 55-62. https://doi.org/10.1016/j.micromeso.2014.07.010
[48] Y.S. Dzyazko, L.N. Ponomaryova, Y.M. Volfkovich, V.E. Sosenkin, Polymer ion-exchangers modified with zirconium hydrophosphate for removal of Cd2+ ions from diluted solutions, Separ. Sci. Technol. 48 (2013) 2140-2149. https://doi.org/10.1080/01496395.2013.794434
[49] Yu. Dzyazko, L. Ponomarova, Yu. Volfkovich, V. Tsirina, V. Sosenkin, N. Nikolska, V. Belyakov, Influence of zirconium hydrophosphate nanoparticles on porous structure and sorption capacity of the composites based on ion exchange resin, Chemistry and Chemical Technology. 10 (2016) 329-335. https://doi.org/10.23939/chcht10.03.329
[50] L. Ponomareva, Y. Dzyazko, Y. Volfkovich, V. Sosenkin, S. Scherbakov, Effect of Incorporated Inorganic Nanoparticles on Porous Structure and Functional Properties of Strongly and Weakly Acidic Ion Exchangers, Springer Proc. Phys. 214 (2017) 63-77. https://doi.org/10.1007/978-3-319-92567-7_4
[51] Yu. Dzyazko, Yu. Borysenko, Yu. Zmievskii, V. Zakharov, V. Myronchuk, E. Kolomiets, Organic-inorganic ion exchange materials for electromembrane processing of liquid wastes produced in the dairy industry, Mater. Today: Proc. 50 (2022) 496-501. https://doi.org/10.1016/j.matpr.2021.11.301
[52] T.V. Maltseva, E.O. Kolomiets, Y.S. Dzyazko, S. Scherbakov, Composite anion-exchangers modified with nanoparticles of hydrated oxides of multivalent metals, Appl. Nanosci. 9 (2019) 997-1004. https://doi.org/10.1007/s13204-018-0689-9
[53] Y. Dzyazko, E. Kolomyets, Y. Borysenko, V. Chmilenko, I. Fedina, Organic-inorganic sorbents containing hydrated zirconium dioxide for removal of chromate anions from diluted solutions, Mater. Today: Proc. 6 (2019) 260-269. https://doi.org/10.1016/j.matpr.2018.10.103
[54] Y.S. Dzyazko, V.V. Trachevskii , L.M. Rozhdestvenskaya, S.L. Vasilyuk V.N. Belyakov, Interaction of sorbed Ni(II) ions with amorphous zirconium hydrogen phosphate. Russ. J. Phys. Chem. A 87((2013) :840-845. https://doi.org/10.1134/S0036024413050063
[55] Y. Dzyazko, Y. Volfkovich, O. Perlova, L. Ponomaryova, N. Perlova, E. Kolomiets, Effect of Porosity on Ion Transport Through Polymers and Polymer-Based Composites Containing Inorganic Nanoparticles (Review), Springer Proc. Phys. 222 (2019) 235-253. https://doi.org/10.1007/978-3-030-17755-3_16
[56] Y. Dzyazko, A. Omel’chuk, Porous ionic polymers, in: Inamuddin, M. I. Ahamed, R. Boddula (Eds.) Porous Polymer Science and Application, CRC Press, Boca Raton, 2022, pp. 37-59. https://doi.org/10.1201/9781003169604-3
[57] N. Perlova, Y. Dzyazko, O. Perlova, A. Palchik, V Sazonova, Formation of zirconium hydrophosphate nanoparticles and their effect on sorption of uranyl cations, Nanoscale Res. Let. 12 (2017) 209. https://doi.org/10.1186/s11671-017-1987-y
[58] S.E.H. Comstock, T.H. Boyer, Combined magnetic ion exchange and cation exchange for removal,Chem. Eng. J. 241 (2014) 366-375. https://doi.org/10.1016/j.cej.2013.10.073
[59] R. Khaydarov, M. Abdukhakimov, I. Garipov, I. Sadikov, P. T. Krishnamurthy, S. Evgrafova, Silver-containing cation exchange resin: synthesis and application, Mater. Sci. (Medziangotyra). 28 (2022) 89-92. https://doi.org/10.5755/j02.ms.28473
[60] M. Micari, A. Cipollina, A. Tamburini, M. Moser, V. Bertsch, G. Micale, Combined membrane and thermal desalination processes for the treatment of ion exchange resins spent brine, Appl. Energy 254 (2019) 113699. https://doi.org/10.1016/j.apenergy.2019.113699
[61] S.A. Parsons, The effect of domestic ion-exchange water softeners on the microbiological quality of drinking water, Wat. Res. 34 (2000) 2369-2375. https://doi.org/10.1016/S0043-1354(99)00407-8
[62] H.-C. Flemming, Microbial growth on ion exchangers, Wat. Res. 21 (1987) 745-756. https://doi.org/10.1016/0043-1354(87)90149-7
[63] B. Dong, Y. Xu, D. Shen, X. Dai, S. Lin, Characterizing the interactions between humic matter and calcium ions during water softening by cation-exchange resins, RSC Adv. 6 (2016) 93947. https://doi.org/10.1039/C6RA22113K
[64] M.R. Doosti, R. Kargar, M.H. Sayadi, Water treatment using ultrasonic assistance: A review, Proceedings of the International Academy of Ecology and Environmental Sciences, 2012, 2 (2) 96-110.
[65] M.H. Entezari, M. Tahmasbi, Water softening by combination of ultrasound and ion exchange, Ultrasonics Sonochemistry. 16 (2009) 356-360. https://doi.org/10.1016/j.ultsonch.2008.09.008
[66] Yu.S. Dzyatsko, L.N. Ponomareva, L.M. Rozhdestvenskaya, S.L. Vasilyuk. V.N. Belyakov, Electrodeionization of low-concentrated multicomponent Ni2 +-containing solutions using organic-inorganic ion-exchanger, Desalination. 342 (2014) 43-51. https://doi.org/10.1016/j.desal.2013.11.030
[67] Ö. Arar, Ü. Yüksel, N. Kabay, M. Yüksel, Various applications of electrodeionization (EDI) method for water treatment-A short review, Desalination. 342 (2014) 16-22. https://doi.org/10.1016/j.desal.2014.01.028
[68] B.S. Rathi, P.S. Kumar, R. Parthiban, A review on recent advances in electrodeionization for various environmental applications, Chemosphere. 289 (2022) 133223. https://doi.org/10.1016/j.chemosphere.2021.133223
[69] B.S. Rathi, P.S. Kumar, Electrodeionization theory, mechanism and environmental applications. A review, Environ. Chem. Letter. 18 (2020) 1209-1227. https://doi.org/10.1007/s10311-020-01006-9
[70] P.B. Spoor, L. Grabovska, L. Koene, L.J.J. Janssen, W.R. ter Veen, Pilot scale deionisation of a galvanic nickel solution using a hybrid ion-exchange/electrodialysis system, Chem. Eng. J. 89 (2002) 193-202. https://doi.org/10.1016/S1385-8947(02)00009-8
[71] H.J. Lee, M.K. Hong, S.H. Moon, A feasibility study on water softening by electrodeionization with the periodic polarity change, Desalination. 284 (2012) 221-227. https://doi.org/10.1016/j.desal.2011.09.001
[72] H. Jin, Y. Yu, L. Zhang, R. Yan, X. Chen, Polarity reversal electrochemical process for water softening, Sep. Pur. Technol. 210 (2019) 943-949. https://doi.org/10.1016/j.seppur.2018.09.009