Separation and Purification of Bioactive Molecules by Ion Exchange

$30.00

Separation and Purification of Bioactive Molecules by Ion Exchange

Rabiul Alam, Bidyut Saha

Bioactive molecules (or signaling molecules) are involved in tissue regeneration and have an important role in modulating the microenvironment in vivo. Bioactive chemicals have the ability to govern host cell motility, proliferation, and differentiation, as well as enabling cells to interact with their surrounding microenvironment via particular receptors for chemical recognition. This chapter introduces ion-exchange chromatography (IEC) as a method for separating and purifying bioactive compounds such as polyphenols, catechin derivatives from complicated plant mixtures, proteins, minor whey protein, peptides, human C-peptide, alkaloids from Chinese medicines, plasmid DNA and carbohydrates.

Keywords
Ion-Exchange Chromatography, Biochemical Purification, Bioactive Molecules, Polyphenols, Catechin, Proteins, Peptides, Human C-Peptide, Alkaloids, Plasmid DNA, Carbohydrates

Published online 12/20/2022, 18 pages

Citation: Rabiul Alam, Bidyut Saha, Separation and Purification of Bioactive Molecules by Ion Exchange, Materials Research Foundations, Vol. 137, pp 75-92, 2023

DOI: https://doi.org/10.21741/9781644902219-5

Part of the book on Ion Exchange Resins

References
[1] M. Ottens, S. Chilamkurthi, S. Rizvi, Advances in process chromatography and applications in the food, beverage and nutraceutical industries, in: S.S.H. Rizvi (Eds.), Separation, Extraction and Concentration Processes in the Food, Beverage and Nutraceutical Industries, Woodhead Publishing, Cambridge, UK, 2010, pp. 109-137. https://doi.org/10.1533/9780857090751.1.109
[2] L. Wang, L. -H. Gong, C. -J. Chen, H. -B. Han, H. -H. Li, Column- chromatographic extraction and separation of polyphenols, caffeine and theanine from green tea, Food Chem. 131 (2012) 1539-1545. https://doi.org/10.1016/j.foodchem.2011.09.129
[3] O.M. Andersen, T. Fossen, K. Torskangerpoll, A. Fossen, U. Hauge, Anthocyanin from strawberry (Fragaria ananassa) with the novel aglycone, 5-carboxy pyrano pelargonidin, Phytochemistry. 65 (2004) 405-410. https://doi.org/10.1016/j.phytochem.2003.10.014
[4] X. Vitrac, C. Castagnino, P. Waffo-Téguo, J. -C. Delaunay, J. Vercauteren, J. -P. Monti, G. Deffieux, J. -M. Mérillon, Polyphenols newly extracted in red wine from Southwestern France by Centrifugal Partition Chromatography, Journal of Agricultural and Food Chemistry. 49 (2001) 5934-5938. https://doi.org/10.1021/jf010522d
[5] L. Feng, F. Zhao, Separation of polyphenols in tea on weakly acidic cation-exchange gels, Chromatographia. 71 (2010) 775-782. https://doi.org/10.1365/s10337-010-1545-6
[6] Vr. Cheynier, Polyphenols in foods are more complex than often thought, Am. J. Clin. Nutr. 81 (2005) 223S-229S. https://doi.org/10.1093/ajcn/81.1.223S
[7] R. Tsao, Chemistry and biochemistry of dietary polyphenols, Nutrients. 2 (2010) 1231-1246. https://doi.org/10.3390/nu2121231
[8] M. Naczk, F. Shahidi, Extraction and analysis of phenolics in food, J. Chromatogr. 1054 (2004) 95-111. https://doi.org/10.1016/S0021-9673(04)01409-8
[9] A. Mustafa, C. Turner, Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review, Anal. Chim. Acta 703 (2011) 8-18. https://doi.org/10.1016/j.aca.2011.07.018
[10] P. Hutzler, R. Fischbach, W. Heller, T.P. Jungblut, S. Reuber, R. Schmitz, M. Veit, G. Weissenböck, J. -P. Schnitzler, Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy, J. Exp. Bot. 49 (1998) 953-965. https://doi.org/10.1093/jxb/49.323.953
[11] G. Xu, X. Ye, J. Chen, D. Liu, Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract, J. Agric. Food Chem. 55 (2006) 330-335. https://doi.org/10.1021/jf062517l
[12] C. Lozano, J. Bujons, J. C. Josep Llu’ıs Torres Janson, L. Ryden, Novel separation of bioactive catechin derivatives from complex plant mixtures by anion-exchange chromatography, Separation and Purification Technology. 62 (2008) 317-322. https://doi.org/10.1016/j.seppur.2008.01.032
[13] J.C. Janson, L. Ryden, Protein purification, principles, high-resolution methods, and applications, Second ed., Wiley-Liss, New York (1998).
[14] A. Jungbauer, C. Machold, R. Hahn, Hydrophobic interaction chromatography of proteins. III. Unfolding of proteins upon adsorption, J. Chromatogr. A 1079 (2005) 221-228. https://doi.org/10.1016/j.chroma.2005.04.002
[15] M. I. Shaik, N. M. Sarbon, A review on purification and characterization of anti-proliferative peptides derived from fish protein hydrolysate, Food Rev. Int. 38 (2020) 1389-1409. https://doi.org/10.1080/87559129.2020.1812634
[16] S. Fekete, A. Beck, J. L. Veuthey, D. Guillarme, Ion-exchange chromatography for the characterization of biopharmaceuticals, J. Pharm. Biomed Anal. 113 (2015) 43-55. https://doi.org/10.1016/j.jpba.2015.02.037
[17] D. L. Crimmins, Strong cation-exchange high-performance liquid chromatography as a versatile tool for the characterization and purification of peptides. Anal. Chim. Acta. 352 (1997) 21-30. https://doi.org/10.1016/S0003-2670(97)00091-3
[18] A. J. Alpert, Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds, J. Chromatogr. A 499 (1990) 177-196. https://doi.org/10.1016/S0021-9673(00)96972-3
[19] A. J. Alpert, P.C. Andrews, Cation-exchange chromatography of peptides on poly(2-sulfoethyl aspartamide)-silica, J. Chromatogr. A 443 (1988) 85-96. https://doi.org/10.1016/S0021-9673(00)94785-X
[20] D. L. Crimmins, J. Gorka, R. S.Thoma, B. D. Schwartz, Peptide characterization with a sulfoethyl aspartamide column, J. Chromatogr. A 443 (1988) 63-71. https://doi.org/10.1016/S0021-9673(00)94783-6
[21] D. L. Crimmins, R.S. Thoma, D.W. McCourt, B.D. Schwartz, Strong-cation-exchange sulfoethyl aspartamide chromatography for peptide mapping of Staphylococcus aureus V8 protein digests, Anal. Biochem. 176 (1989) 255-260. https://doi.org/10.1016/0003-2697(89)90305-9
[22] I. Recio, S.Visser, Two ion-exchange chromatographic methods for the isolation of antibacterial peptides from lactoferrin: In situ enzymatic hydrolysis on an ion-exchange membrane, J. Chromatogr. A 831 (1999), 191-201. https://doi.org/10.1016/S0021-9673(98)00950-9
[23] A.V. Stoyanov, C. L. Rohlfing, S. Connolly, M. L. Roberts, C. L. Nauser, R.R. Little, Use of cation exchange chromatography for human C-peptide isotope dilution-Mass spectrometric assay, J. Chromatogr. A 1218 (2011) 9244-9249. https://doi.org/10.1016/j.chroma.2011.10.080
[24] H. Kuzuya, P.M. Blix, D.L. Horwitz, A.H. Rubinstein, D.F. Steiner, C. Binder, O. K. Faber, Heterogeneity of circulating human C-peptide, Diabetes. 27 (1978) 184. https://doi.org/10.2337/diab.27.1.S184
[25] D. F. Steiner, Proinsulin and the biosynthesis of Insulin, N. Engl. J. Med. 280 https://doi.org/10.1056/NEJM196905152802008
1 (1969) 1106-1113.
2 [26] A. H. Rubinstein, J. L. Clark, F. Melani, D. F. Steiner, Secretion of Proinsulin
C-peptide by pancreatic β Cells and its circulation in blood, Nature. 224 (1969) https://doi.org/10.1038/224697a0
697-699.
[27] K. S. Polonsky, J. L. -Paixao, B. D. Given, W. Pugh, P Rue, J Galloway, TKarrison, B Frank, . Use of biosynthetic human C-peptide in the measurement of insulin secretion rates in normal volunteers and type I diabetic patients, J. Clin. Invest. 77 (1986) 98-105. https://doi.org/10.1172/JCI112308
[28] K. S. Polonsky, B. D. Given, L. Hirsch, E. T. Shapiro, H. Tillil, C. Beebe, J. A. Galloway, B. H. Frank, T. Karrison, E. Van Cauter, Quantitative study of insulin secretion and clearance in normal and obese subjects, J. Clin. Invest. 81 (1988) 435-441. https://doi.org/10.1172/JCI113338
[29] A.D. Kippen, F. Cerini, L. Vadas, R. Stöcklin, L. Vu, R. E. Offord, K. Rose,Development of an isotope dilution assay for precise determination of insulin, C-peptide, and proinsulin levels in non-diabetic and type II diabetic individuals with comparison to immunoassay, J. Biol. Chem. 272 (1997) 12513-12522. https://doi.org/10.1074/jbc.272.19.12513
[30] C. Fierens, L. M. Thienpont, D. Stockl, E. Willekens, A. De Leenheer, Quantitative analysis of urinary C-peptide by liquid chromatography-tandem mass spectrometry with a stable isotopically labeled internal standard, J. Chromatogr. A. 896 (2000) 275-278. https://doi.org/10.1016/S0021-9673(00)00717-2
[31] C. Fierens, D. Stockl, D. Baetens, A.P. De Leenheer, L.M. Thienpont, Application of a C-peptide electrospray ionization-isotope dilution-liquid chromatography-tandem mass spectrometry measurement procedure for the evaluation of five C-peptide immunoassays for urine, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 792 (2003) 249-259. https://doi.org/10.1016/S1570-0232(03)00268-X
[32] C. Fierens, D. Stockl, D. Baetens, A.P. De Leenheer, L.M. Thienpont, Standardization of C-peptide measurements in urine by method comparison with isotope-dilution mass spectrometry, Clin. Chem. 49 (2003) 992-994. https://doi.org/10.1373/49.6.992
[33] E. Rogatsky, B. Balent, G. Goswami, V. Tomuta, D.T. Stein, Sensitive quantitative analysis of C-peptide in human plasma by 2-dimensional liquid chromatography-mass spectrometry isotope-dilution assay, Clin. Chem. 52 (2006) 872-879. https://doi.org/10.1373/clinchem.2005.063081
[34] E. Rogatsky, V. Tomuta, G. Cruikshank, L. Vele, H. Jayatillake, D. Stein, Direct sensitive quantitative LC/MS analysis of C-peptide from human urine by two dimensional reverse phase/reverse phase high-performance liquid chromatography, J. Sep. Sci. 29 (2006) 529-537. https://doi.org/10.1002/jssc.200500369
[35] A.V. Stoyanov, C. L. Rohlfing, S. Connolly, M. L. Roberts, C. L. Nauser, R.R. Little, Use of cation exchange chromatography for human C-peptide isotope dilution – Mass spectrometric assay, Journal of Chromatography. A 1218 (2011) 9244- 9249. https://doi.org/10.1016/j.chroma.2011.10.080
[36] X. Wang, L. Dai, Z. Q. Sun, P. Gao, Z. G. Ma, Separation and purification technology for total alkaloids from Uncariae Ramulus Cum Uncis with cation exchange resin, Chinese Traditional and Herbal Drugs. 42 (2011) 1973-1976.
[37] X. J. Peng, S. C. Li, Y. B. Li, H. Y. Ye, L. Yu, The Extraction, separation and identification of alkaloids in Leonurus heterophyllus, Research and Exploration in Laboratory. 33 (2014) 33-35.
[38] Q.Y. Fan, H. H. Zhang, W. H. Wang, Research on separation and purification of alkaloids in Cynoglossum amabile Stapf et Drumm with resin, Journal of Instrumental Analysis. 35 (2016) 1338-1342.
[39] J. J. Yan, Up-regulation on cytochromes P450 in Rat mediated by total alkaloid extract from Corydalis yanhusuo, BMC Complementary and Alternative Medicine. 14 (2014), Article No. 306. https://doi.org/10.1186/1472-6882-14-306
[40] Z. M. Sun, Z. G. Duan, L. Jiao, Z. F. Zhang, X. N. Li, Separation and Purification Process of Total Alkaloids from Sinisan, Chinese Journal of Experimental Traditional Medical Formulae. 17 (2011) 11-13.
[41] L. B. Guo, J. Z. Zhou, S. S. Zhu, Study on separation and purification of total alkaloids from Herba Ephedrae and Flos Daturae by macroporous adsorption resin, Food and Drug. 5 (2006) 47-49.
[42] M. Garcia-Vaquero, G. Rajauria, J.V. O’Doherty, T. Sweeney, Polysaccharides from macroalgae: recent advances, innovative technologies and challenges in extraction and purification, Food Res. Int. 99 (2017) 1011-1020. https://doi.org/10.1016/j.foodres.2016.11.016
[43] V. L. Campo, D. F. Kawano, D. B. d. Silva, I. Carvalho, Carrageenans: biological properties, chemical modifications and structural analysis – a review, Carbohydr. Polym. 77 (2009) 167-180. https://doi.org/10.1016/j.carbpol.2009.01.020
[44] Q. Cong, H. Chen, W. Liao, F. Xiao, P. Wang, Y. Qin, Q. Dong, K. Ding, Structural characterization and effect on anti-angiogenic activity of a fucoidan from Sargassum fusiforme, Carbohydr. Polym. 136 (2016) 899-907. https://doi.org/10.1016/j.carbpol.2015.09.087
[45] T. Imbs, S. Ermakova, O. Malyarenko, V. Isakov, T. Zvyagintseva, Structural elucidation of polysaccharide fractions from the brown alga Coccophora langsdorfii and in vitro investigation of their anticancer activity, Carbohydr. Polym. 135 (2016) 162-168. https://doi.org/10.1016/j.carbpol.2015.08.062
[46] A. Ramu Ganesan, M. Shanmugam, R. Bhat, Producing novel edible films from semi refined carrageenan (SRC) and ulvan polysaccharides for potential food applications, Int. J. Biol. Macromol. 112 (2018) 1164-1170. https://doi.org/10.1016/j.ijbiomac.2018.02.089
[47] M. Sterner, M. S. Ribeiro, F. Gröndahl, U. Edlund, Cyclic fractionation process for Saccharina latissima using aqueous chelator and ion exchange resin, J. Appl. Phycol. 29 (2017) 3175-3189. https://doi.org/10.1007/s10811-017-1176-5