Nanomaterials and Safety Concerns to End Users

$30.00

Nanomaterials and Safety Concerns to End Users

A. Ale, S. Municoy, J. Cazenave, M.F. Desimone

Nanomaterials (NM) are part of the daily life since decades, and the advantages that nanotechnology has brought to humanity in relation to the novel nanoproducts with unique properties are undeniable. However, concern about engineered NM has raised because of the lack of both regulation to the increasing production and safety assessments in users (with emphasis on workers). As robust evidence suggests toxic effects of NM on human health in case of exposure, this chapter aimed to describe not only the main applications and benefits of NM but also their fate, exposure pathway, and ultimate toxicological effects.

Keywords
Applications, Engineered Nanomaterials, Environmental Fate, Exposure Pathway, Nanoparticles, Nanotoxicology

Published online 11/15/2022, 25 pages

Citation: A. Ale, S. Municoy, J. Cazenave, M.F. Desimone, Nanomaterials and Safety Concerns to End Users, Materials Research Foundations, Vol. 135, pp 341-365, 2023

DOI: https://doi.org/10.21741/9781644902172-14

Part of the book on Emerging Nanomaterials and Their Impact on Society in the 21st Century

References
[1] A. Barhoum, M.L. García-Betancourt, J. Jeevanandam, E.A. Hussien, S.A. Mekkawy, M. Mostafa, M.M. Omran, M.S. Abdalla, M. Bechelany, Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations, Nanomaterials. 12 (2022). https://doi.org/10.3390/nano12020177
[2] Editorial, “Plenty of room” revisited, Nat. Nanotechnol. 4 (2009) 781. https://doi.org/10.1038/nnano.2009.356
[3] S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio, The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine, Molecules. 25 (2020) 1-15. https://doi.org/10.3390/molecules25010112
[4] N. Baig, I. Kammakakam, W. Falath, I. Kammakakam, Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges, Mater. Adv. 2 (2021) 1821-1871. https://doi.org/10.1039/D0MA00807A
[5] L.A. Kolahalam, I. V. Kasi Viswanath, B.S. Diwakar, B. Govindh, V. Reddy, Y.L.N. Murthy, Review on nanomaterials: Synthesis and applications, Mater. Today Proc. 18 (2019) 2182-2190. https://doi.org/10.1016/j.matpr.2019.07.371
[6] J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations, Beilstein J. Nanotechnol. 9 (2018) 1050-1074. https://doi.org/10.3762/bjnano.9.98
[7] J. Highsmith, Global Markets: A BCC Research Report: Nanoparticles in Biotechnology, Drug Development and Drug Delivery Systems, 2021.
[8] G. Fytianos, A. Rahdar, G.Z. Kyzas, Nanomaterials in cosmetics: Recent updates, Nanomaterials. 10 (2020) 1-16. https://doi.org/10.3390/nano10050979
[9] B. Dréno, A. Alexis, B. Chuberre, M. Marinovich, Safety of titanium dioxide nanoparticles in cosmetics, J. Eur. Acad. Dermatology Venereol. 33 (2019) 34-46. https://doi.org/10.1111/jdv.15943
[10] Y. Rahimpour, H. Hamishehkar, Liposomes in cosmeceutics, Expert Opin. Drug Deliv. 9 (2012) 443-455. https://doi.org/10.1517/17425247.2012.666968
[11] M.F. Peralta, M.L. Guzmán, A.P. Pérez, G.A. Apezteguia, M.L. Fórmica, E.L. Romero, M.E. Olivera, D.C. Carrer, Liposomes can both enhance or reduce drugs penetration through the skin, Sci. Rep. 8 (2018) 13253. https://doi.org/10.1038/s41598-018-31693-y
[12] J. Vidales-Herrera, I. López, Chapter 3 – Nanomaterials in coatings: an industrial point of view, in: C.M.B.T.-H. of N. for M.A. Hussain (Ed.), Micro Nano Technol., Elsevier, 2020: pp. 51-77. https://doi.org/10.1016/B978-0-12-821381-0.00003-X
[13] E.R. Sadiku, O. Agboola, O. Agboola, I.D. Ibrahim, P.A. Olubambi, B. Avabaram, M. Bandla, W.K. Kupolati, J. Tippabattini, J. Tippabattini, K. Varaprasad, K. Varaprasad, S.C. Agwuncha, S.C. Agwuncha, J. Mochane, O.O. Daramola, B. Oboirien, T.A. Adegbola, C. Nkuna, S.J. Owonubi, S.J. Owonubi, V.O. Fasiku, B. Aderibigbe, V. Ojijo, R. Dunne, K. Selatile, G. Makgatho, C. Khoathane, W. Mhike, O.F. Biotidara, M.K. Dludlu, A. Adeboje, O.A. Adeyeye, A. Ndamase, S. Sanni, G.F. Molelekwa, P. Selvam, R. Nambiar, A.B. Perumal, J. Jayaramudu, J. Jayaramudu, N. Iheaturu, I. Diwe, B. Chima, Nanotechnology in Paints and Coatings, in: L. Li, Q. Yang (Eds.), Adv. Coat. Mater., Scrivener Publishing LLC, 2018: pp. 175-233. https://doi.org/10.1002/9781119407652.ch7
[14] S. Arango-Santander, A. Pelaez-Vargas, S.C. Freitas, C. García, A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography, Sci. Rep. 8 (2018) 15818. https://doi.org/10.1038/s41598-018-34198-w
[15] T. Bruna, F. Maldonado-Bravo, P. Jara, N. Caro, Silver Nanoparticles and Their Antibacterial Applications, Int. J. Mol. Sci. 22 (2021) 7202. https://doi.org/10.3390/ijms22137202
[16] D. Zhi, H. Wang, D. Jiang, I.P. Parkin, X. Zhang, Reactive silica nanoparticles turn epoxy coating from hydrophilic to super-robust superhydrophobic, RSC Adv. 9 (2019) https://doi.org/10.1039/C8RA10046B
[17] S. Mahović Poljaček, T. Tomašegović, M. Leskovšek, U. Stanković Elesini, Effect of sio2 and tio2 nanoparticles on the performance of uv visible fluorescent coatings, Coatings. 11 (2021) 1-18. https://doi.org/10.3390/coatings11080928
[18] H. Sun, B. Liu, X. Liu, Z. Yin, Dispersion of antimony doped tin oxide nanopowders for preparing transparent thermal insulation water-based coatings, J. Mater. Res. 32 (2017) 2414-2422. https://doi.org/10.1557/jmr.2017.211
[19] T. Singh, S. Shukla, P. Kumar, V. Wahla, V.K. Bajpai, I.A. Rather, Application of Nanotechnology in Food Science: Perception and Overview, Front. Microbiol. 8 (2017) 1-7. https://doi.org/10.3389/fmicb.2017.01501
[20] X. He, H. Deng, H. Hwang, The current application of nanotechnology in food and agriculture, J. Food Drug Anal. 27 (2019) 1-21. https://doi.org/10.1016/j.jfda.2018.12.002
[21] M.A. Emamhadi, M. Sarafraz, M. Akbari, V.N. Thai, Y. Fakhri, N.T.T. Linh, A. Mousavi Khaneghah, Nanomaterials for food packaging applications: A systematic review, Food Chem. Toxicol. 146 (2020) 111825. https://doi.org/10.1016/j.fct.2020.111825
[22] P. Chandra, P.S. Panesar, eds., Nanosensing and Bioanalytical Technologies in Food Quality Control, Springer Singapore, 2022. https://doi.org/10.1007/978-981-16-7029-9
[23] M. Chethipuzha, A.R. Abraham, N. Kalarikkal, S. Thomas, S. Sreeja, Chapter 16 – Embracing nanotechnology concepts in the electronics industry, in: S. Thomas, N. Kalarikkal, A.R.B.T.-F. and P. of M.N. Abraham (Eds.), Micro Nano Technol., Elsevier, 2021: pp. 405-421. https://doi.org/10.1016/B978-0-12-822352-9.00004-3
[24] T. Maruyama, Carbon nanotubes, in: S. Thomas, C. Sarathchandran, S.A. Ilangovan, J.C.B.T.-H. of C.-B.N. Moreno-Piraján (Eds.), Micro Nano Technol., Elsevier, 2021: pp. 299-319. https://doi.org/10.1016/B978-0-12-821996-6.00009-9
[25] N. Gupta, A. Dixit, Carbon Nanotube Field-Effect Transistors (CNFETs): Structure, Fabrication, Modeling, and Performance, in: A. Hazra, R. Goswami (Eds.), Carbon Nanomater. Electron. Devices Appl., Springer Singapore, Singapore, 2021: pp. 199-214. https://doi.org/10.1007/978-981-16-1052-3_9
[26] D.E. El-Nashar, M.A. Aly, M.A. Ashmawy, W.R. Agami, Enhancing the magnetization, electric resistivity and mechanical properties of silicone rubber loaded by Co-Zn ferrite nanoparticles as filler, J. Magn. Magn. Mater. 553 (2022) 169252. https://doi.org/10.1016/j.jmmm.2022.169252
[27] K.K. Kefeni, T.A.M. Msagati, B.B. Mamba, Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 215 (2017) 37-55. https://doi.org/10.1016/j.mseb.2016.11.002
[28] M. Ćibo, A. Šator, A. Kazlagić, E. Omanović-Mikličanin, Application and Impact of Nanotechnology in Sport, in: M. Brka, E. Omanović-Mikličanin, L. Karić, V. Falan, A. Toroman (Eds.), 30th Sci. Conf. Agric. Food Ind., Springer International Publishing, Cham, 2020: pp. 349-362. https://doi.org/10.1007/978-3-030-40049-1_44
[29] S.F.A. Acquah, A. V Penkova, D.A. Markelov, A.S. Semisalova, B.E. Leonhardt, J.M. Magi, The Beautiful Molecule: 30 Years of C60 and Its Derivatives, ECS J. Solid State Sci. Technol. 6 (2017) M3155-M3162. https://doi.org/10.1149/2.0271706jss
[30] A. Sharma, J. Hickman, N. Gazit, E. Rabkin, Y. Mishin, Nickel nanoparticles set a new record of strength, Nat. Commun. 9 (2018) 4102. https://doi.org/10.1038/s41467-018-06575-6
[31] M. Shettar, M. Doshi, A.K. Rawat, Study on mechanical properties and water uptake of polyester-nanoclay nanocomposite and analysis of wear property using RSM, J. Mater. Res. Technol. 14 (2021) 1618-1629. https://doi.org/10.1016/j.jmrt.2021.07.034
[32] A.K. Yetisen, H. Qu, A. Manbachi, H. Butt, M.R. Dokmeci, J.P. Hinestroza, M. Skorobogatiy, A. Khademhosseini, S.H. Yun, Nanotechnology in Textiles, ACS Nano. 10 (2016) 3042-3068. https://doi.org/10.1021/acsnano.5b08176
[33] M.A. Shah, B.M. Pirzada, G. Price, A.L. Shibiru, A. Qurashi, Applications of nanotechnology in smart textile industry: A critical review, J. Adv. Res. 38 (2022) 55-75. https://doi.org/10.1016/j.jare.2022.01.008
[34] T. Lindström, F. Österberg, Evolution of biobased and nanotechnology packaging – a review, Nord. Pulp Pap. Res. J. 35 (2020) 491-515. https://doi.org/10.1515/npprj-2020-0042
[35] M.E. Quadros, R. Pierson, N.S. Tulve, R. Willis, K. Rogers, T.A. Thomas, L.C. Marr, Release of Silver from Nanotechnology-Based Consumer Products for Children, Environ. Sci. Technol. 47 (2013) 8894-8901. https://doi.org/10.1021/es4015844
[36] R. Asmatulu, P. Nguyen, E. Asmatulu, Nanotechnology Safety in the Automotive Industry, in: Nanotechnol. Saf., 1st ed., © 2013 Elsevier B.V. All rights reserved., 2013: pp. 57-72. https://doi.org/10.1016/B978-0-444-59438-9.00005-9
[37] J. Damodharan, Nanomaterials in medicine – An overview, Mater. Today Proc. 37 (2021) 383-385. https://doi.org/10.1016/j.matpr.2020.05.380
[38] R. Mitarotonda, E. Giorgi, T. Eufrasio-da-Silva, A. Dolatshahi-Pirouz, Y.K. Mishra, A. Khademhosseini, M.F. Desimone, M. De Marzi, G. Orive, Immunotherapeutic nanoparticles: From autoimmune disease control to the development of vaccines, Biomater. Adv. (2022) 212726. https://doi.org/10.1016/j.bioadv.2022.212726
[39] S. Sargazi, Z. Ahmadi, M. Barani, A. Rahdar, S. Amani, M.F. Desimone, S. Pandey, G.Z. Kyzas, Can nanomaterials support the diagnosis and treatment of human infertility? A preliminary review, Life Sci. 299 (2022) 120539. https://doi.org/10.1016/j.lfs.2022.120539
[40] M.O. Besenhard, L. Panariello, C. Kiefer, A.P. LaGrow, L. Storozhuk, F. Perton, S. Begin, D. Mertz, N.T.K. Thanh, A. Gavriilidis, Small iron oxide nanoparticles as MRI T1 contrast agent: scalable inexpensive water-based synthesis using a flow reactor, Nanoscale. 13 (2021) 8795-8805. https://doi.org/10.1039/D1NR00877C
[41] Y. Zheng, H. Chen, X.-P. Liu, J.-H. Jiang, Y. Luo, G.-L. Shen, R.-Q. Yu, An ultrasensitive chemiluminescence immunosensor for PSA based on the enzyme encapsulated liposome, Talanta. 77 (2008) 809-814. https://doi.org/10.1016/j.talanta.2008.07.038
[42] S. Municoy, P.E. Antezana, C.J. Pérez, M.G. Bellino, M.F. Desimone, Tuning the antimicrobial activity of collagen biomaterials through a liposomal approach, J. Appl. Polym. Sci. n/a (2020) 50330. https://doi.org/10.1002/app.50330
[43] P.E. Antezana, S. Municoy, C.J. Pérez, M.F. Desimone, Collagen Hydrogels Loaded with Silver Nanoparticles and Cannabis Sativa Oil, Antibiotics. 10 (2021) 1420. https://doi.org/10.3390/antibiotics10111420
[44] A. Ayech, M.E. Josende, J. Ventura-Lima, C. Ruas, M.A. Gelesky, A. Ale, J. Cazenave, J.M. Galdopórpora, M.F. Desimone, M. Duarte, P. Halicki, D. Ramos, L.M. Carvalho, G.C. Leal, J.M. Monserrat, Toxicity evaluation of nanocrystalline silver-impregnated coated dressing on the life cycle of worm Caenorhabditis elegans, Ecotoxicol. Environ. Saf. 197 (2020) 110570. https://doi.org/10.1016/j.ecoenv.2020.110570
[45] J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M. del P. Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, S. Habtemariam, H.-S. Shin, Nano based drug delivery systems: recent developments and future prospects, J. Nanobiotechnology. 16 (2018) 71. https://doi.org/10.1186/s12951-018-0392-8
[46] G.S. Alvarez, C. Helary, A.M. Mebert, X. Wang, T. Coradin, M.F. Desimone, Antibiotic-loaded silica nanoparticle-collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention, J. Mater. Chem. B. 2 (2014) 4660-4670. https://doi.org/10.1039/c4tb00327f
[47] S. Municoy, M.I. Álvarez Echazú, P.E. Antezana, J.M. Galdopórpora, C. Olivetti, A.M. Mebert, M.L. Foglia, M. V. Tuttolomondo, G.S. Alvarez, J.G. Hardy, M.F. Desimone, Stimuli-responsive materials for tissue engineering and drug delivery, Int. J. Mol. Sci. 21 (2020) 1-39. https://doi.org/10.3390/ijms21134724
[48] M.F. Desimone, C. Hélary, I.B. Rietveld, I. Bataille, G. Mosser, M.M. Giraud-Guille, J. Livage, T. Coradin, Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization, Acta Biomater. 6 (2010) 3998-4004. https://doi.org/10.1016/j.actbio.2010.05.014
[49] S.F. Hansen, O.F.H. Hansen, M.B. Nielsen, Advances and challenges towards consumerization of nanomaterials, Nat. Nanotechnol. 15 (2020) 964-965. https://doi.org/10.1038/s41565-020-00819-7
[50] C. Contado, Nanomaterials in consumer products: a challenging analytical problem, Front. Chem. 3 (2015) 1-20. https://doi.org/10.3389/fchem.2015.00048
[51] A. Ale, M.F. Gutierrez, A.S. Rossi, C. Bacchetta, M.F. Desimone, J. Cazenave, Ecotoxicity of silica nanoparticles in aquatic organisms: An updated review, Environ. Toxicol. Pharmacol. 87 (2021) 103689. https://doi.org/10.1016/j.etap.2021.103689
[52] The National Nanotechnology Initiative (NNI), (n.d.).
[53] NNI Supplement to the President’s 2018 Budget, (2017).
[54] Benedette Cuffari, Nanotechnology in the USA: Market Report, (2018).
[55] Global Nanotechnology Market 2018-2024: Market is Expected to Exceed US$ 125 Billion, (2018).
[56] The U.S. Food and drug administration, Nanotechnology-Over a Decade of Progress and Innovation, 2020.
[57] R. Bosetti, S.L. Jones, Cost-effectiveness of nanomedicine: estimating the real size of nano-costs, Nanomedicine. 14 (2019) 1367-1370. https://doi.org/10.2217/nnm-2019-0130
[58] L. Almeida, I. Felzenszwalb, M. Marques, C. Cruz, Nanotechnology activities: environmental protection regulatory issues data, Heliyon. 6 (2020) e05303-e05303. https://doi.org/10.1016/j.heliyon.2020.e05303
[59] I. Corsi, M.F. Desimone, J. Cazenave, Building the Bridge From Aquatic Nanotoxicology to Safety by Design Silver Nanoparticles, Front. Bioeng. Biotechnol. 10 (2022) 28. https://doi.org/10.3389/fbioe.2022.836742
[60] Global Nanotechnology Market, (2018).
[61] E.M. Osman, Environmental and Health Safety Considerations of Nanotechnology, Nano Safety, Biomed. J. Sci. Tech. Res. 19 (2019) 14501-14515. https://doi.org/10.26717/BJSTR.2019.19.003346
[62] J. Pulit-Prociak, M. Banach, Silver nanoparticles – A material of the future…?, Open Chem. 14 (2016) 76-91. https://doi.org/10.1515/chem-2016-0005
[63] I.A. Joubert, M. Geppert, S. Ess, R. Nestelbacher, G. Gadermaier, A. Duschl, A.C. Bathke, M. Himly, Public perception and knowledge on nanotechnology: A study based on a citizen science approach, NanoImpact. 17 (2020) 100201. https://doi.org/10.1016/j.impact.2019.100201
[64] F. Gottschalk, T. Sun, B. Nowack, Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies, Environ. Pollut. 181 (2013) 287-300. https://doi.org/10.1016/j.envpol.2013.06.003
[65] M. Bundschuh, J. Filser, S. Lüderwald, M.S. McKee, G. Metreveli, G.E. Schaumann, R. Schulz, S. Wagner, Nanoparticles in the environment: where do we come from, where do we go to?, Environ. Sci. Eur. 30 (2018). https://doi.org/10.1186/s12302-018-0132-6
[66] Q. Abbas, B. Yousaf, Amina, M.U. Ali, M.A.M. Munir, A. El-Naggar, J. Rinklebe, M. Naushad, Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review, Environ. Int. 138 (2020) 105646. https://doi.org/10.1016/j.envint.2020.105646
[67] R. Kaegi, A. Ulrich, B. Sinnet, R. Vonbank, A. Wichser, S. Zuleeg, H. Simmler, S. Brunner, H. Vonmont, M. Burkhardt, M. Boller, Synthetic TiO 2 nanoparticle emission from exterior facades into the aquatic environment, Environ. Pollut. 156 (2008) 233-239. https://doi.org/10.1016/j.envpol.2008.08.004
[68] T. Benn, B. Cavanagh, K. Hristovski, J.D. Posner, P. Westerhoff, The Release of Nanosilver from Consumer Products Used in the Home, J. Environ. Qual. 39 (2010) 1875-1882. https://doi.org/10.2134/jeq2009.0363
[69] R. Kaegi, A. Voegelin, B. Sinnet, S. Zuleeg, H. Hagendorfer, M. Burkhardt, H. Siegrist, Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant, Environ. Sci. Technol. 45 (2011) 3902-3908. https://doi.org/10.1021/es1041892
[70] C. Lorenz, L. Windler, N. von Goetz, R.P. Lehmann, M. Schuppler, K. Hungerbühler, M. Heuberger, B. Nowack, Characterization of silver release from commercially available functional (nano)textiles, Chemosphere. 89 (2012) 817-824. https://doi.org/10.1016/j.chemosphere.2012.04.063
[71] E.M. Sussman, P. Jayanti, B.J. Dair, B.J. Casey, Assessment of total silver and silver nanoparticle extraction from medical devices, Food Chem. Toxicol. 85 (2015) 10-19. https://doi.org/10.1016/j.fct.2015.08.013
[72] A. Mackevica, M.E. Olsson, S.F. Hansen, Silver nanoparticle release from commercially available plastic food containers into food simulants, J. Nanoparticle Res. 18 (2016) 1-11. https://doi.org/10.1007/s11051-015-3313-x
[73] T.M. Benn, P. Westerhoff, Nanoparticle silver released into water from commercially available sock fabrics, Environ. Sci. Technol. 42 (2008) 7025-7026. https://doi.org/10.1021/es801501j
[74] L. Geranio, M. Heuberger, B. Nowack, The behavior of silver nanotextiles during washing, Environ. Sci. Technol. 43 (2009) 8113-8118. https://doi.org/10.1021/es9018332
[75] J. Farkas, H. Peter, P. Christian, J.A. Gallego Urrea, M. Hassellöv, J. Tuoriniemi, S. Gustafsson, E. Olsson, K. Hylland, K.V. Thomas, Characterization of the effluent from a nanosilver producing washing machine, Environ. Int. 37 (2011) 1057-1062. https://doi.org/10.1016/j.envint.2011.03.006
[76] P.C. Ray, H. Yu, P.P. Fu, Toxicity and environmental risks of nanomaterials: Challenges and future needs, in: J. Environ. Sci. Heal. – Part C Environ. Carcinog. Ecotoxicol. Rev., 2009: pp. 1-35. https://doi.org/10.1080/10590500802708267
[77] A.A. Keller, N. Parker, Chapter 7. Innovation in procedures for human and ecological health risk assessment of engineered nanomaterials, Elsevier Inc., 2019. https://doi.org/10.1016/B978-0-12-814835-8.00007-8
[78] A. Malakar, S.R. Kanel, C. Ray, D.D. Snow, M.N. Nadagouda, Nanomaterials in the environment, human exposure pathway, and health effects: A review, Sci. Total Environ. 759 (2021) 143470. https://doi.org/10.1016/j.scitotenv.2020.143470
[79] A.A. Keller, W. Vosti, H. Wang, A. Lazareva, Release of engineered nanomaterials from personal care products throughout their life cycle, J Nanopart Res. 16 (2014). https://doi.org/10.1007/s11051-014-2489-9
[80] T.Y. Sun, F. Gottschalk, K. Hungerbühler, B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ. Pollut. 185 (2014) 69-76. https://doi.org/10.1016/j.envpol.2013.10.004
[81] R. Song, Y. Qin, S. Suh, A.A. Keller, Dynamic Model for the Stocks and Release Flows of Engineered Nanomaterials, 2017. https://doi.org/10.1021/acs.est.7b01907
[82] T.Y. Sun, N.A. Bornhöft, K. Hungerbühler, B. Nowack, Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials, Environ. Sci. Technol. 50 (2016) 4701-4711. https://doi.org/10.1021/acs.est.5b05828
[83] S.C. Sahu, A.W. Hayes, Toxicity of nanomaterials found in human environment, Toxicol. Res. Appl. 1 (2017) 1-13. https://doi.org/10.1177/2397847317726352
[84] M. Yoo-iam, R. Chaichana, T. Satapanajaru, Toxicity, bioaccumulation and biomagnification of silver nanoparticles in green algae (Chlorella sp.), water flea (Moina macrocopa), blood worm (Chironomus spp.) and silver barb (Barbonymus gonionotus), Chem. Speciat. Bioavailab. 26 (2014) 257-265. https://doi.org/10.3184/095422914X14144332205573
[85] X. Chen, Y. Zhu, K. Yang, L. Zhu, D. Lin, Nanoparticle TiO2 size and rutile content impact bioconcentration and biomagnification from algae to daphnia, Environ. Pollut. 247 (2019) 421-430. https://doi.org/10.1016/j.envpol.2019.01.022
[86] M. Garcés, N.D. Magnani, A. Pecorelli, V. Calabró, T. Marchini, L. Cáceres, E. Pambianchi, J. Galdoporpora, T. Vico, J. Salgueiro, M. Zubillaga, M.A. Moretton, M.F. Desimone, S. Alvarez, G. Valacchi, P. Evelson, Alterations in oxygen metabolism are associated to lung toxicity triggered by silver nanoparticles exposure, Free Radic. Biol. Med. 166 (2021) 324-336. https://doi.org/10.1016/j.freeradbiomed.2021.02.008
[87] R. Akçan, H.C. Aydogan, M.Ş. Yildirim, B. Taştekin, N. Sağlam, Nanotoxicity: A challenge for future medicine, Turkish J. Med. Sci. 50 (2020) 1180-1196. https://doi.org/10.3906/sag-1912-209. https://doi.org/10.3906/sag-1912-209
[88] P. Oberbek, P. Kozikowski, K. Czarnecka, P. Sobiech, S. Jakubiak, T. Jankowski, Inhalation exposure to various nanoparticles in work environment-contextual information and results of measurements, J. Nanoparticle Res. 21 (2019). https://doi.org/10.1007/s11051-019-4651-x
[89] F. Sarwar, R.N. Malik, C.W. Chow, K. Alam, Occupational exposure and consequent health impairments due to potential incidental nanoparticles in leather tanneries: An evidential appraisal of south Asian developing countries, Environ. Int. 117 (2018) 164-174. https://doi.org/10.1016/j.envint.2018.04.051
[90] V. De Matteis, Exposure to inorganic nanoparticles: Routes of entry, immune response, biodistribution and in vitro/In vivo toxicity evaluation, Toxics. 5 (2017). https://doi.org/10.3390/toxics5040029
[91] Y.W. Huang, M. Cambre, H.J. Lee, The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms, Int. J. Mol. Sci. 18 (2017). https://doi.org/10.3390/ijms18122702
[92] P. Mantecca, K. Kasemets, A. Deokar, I. Perelshtein, A. Gedanken, Y.K. Bahk, B. Kianfar, J. Wang, Airborne Nanoparticle Release and Toxicological Risk from Metal-Oxide-Coated Textiles: Toward a Multiscale Safe-by-Design Approach, Environ. Sci. Technol. 51 (2017) 9305-9317. https://doi.org/10.1021/acs.est.7b02390
[93] F. Larese Filon, M. Mauro, G. Adami, M. Bovenzi, M. Crosera, Nanoparticles skin absorption: New aspects for a safety profile evaluation, Regul. Toxicol. Pharmacol. 72 (2015) 310-322. https://doi.org/10.1016/j.yrtph.2015.05.005
[94] F. Rancan, Q. Gao, C. Graf, S. Troppens, S. Hadam, S. Hackbarth, C. Kembuan, U. Blume-Peytavi, E. Rühl, J. Lademann, A. Vogt, Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability, ACS Nano. 6 (2012) 6829-6842. https://doi.org/10.1021/nn301622h
[95] E.A. Sykes, Q. Dai, K.M. Tsoi, D.M. Hwang, W.C.W. Chan, Nanoparticle exposure in animals can be visualized in the skin and analysed via skin biopsy, Nat. Commun. 5 (2014). https://doi.org/10.1038/ncomms4796
[96] M. Ropers, H. Terrisse, M. Mercier-bonin, B. Humbert, Titanium Dioxide as Food Additive, INTECH Open Sci. Open Minds. (n.d.) 3-22.
[97] H.C. Winkler, T. Notter, U. Meyer, H. Naegeli, Critical review of the safety assessment of titanium dioxide additives in food, J. Nanobiotechnology. (2018) 1-19. https://doi.org/10.1186/s12951-018-0376-8
[98] S.W.P. Wijnhoven, W.J.G.M. Peijnenburg, C.A. Herberts, W.I. Hagens, A.G. Oomen, E.H.W. Heugens, B. Roszek, J. Bisschops, I. Gosens, D. Van De Meent, S. Dekkers, W.H. De Jong, M. Van Zijverden, A.J.A.M. Sips, R.E. Geertsma, Nano-silver – A review of available data and knowledge gaps in human and environmental risk assessment, Nanotoxicology. 3 (2009) 109-138. https://doi.org/10.1080/17435390902725914
[99] S. Dekkers, P. Krystek, R.J.B. Peters, D.P.K. Lankveld, B.A.S.G.H. Bokkers, P.H.V.A.N. Hoeven-arentzen, H. Bouwmeester, A.G. Oomen, Presence and risks of nanosilica in food products, 5 (2011) 393-405. https://doi.org/10.3109/17435390.2010.519836
[100] C. Rodríguez-Ibarra, A. Déciga-Alcaraz, O. Ispanixtlahuatl-Meráz, E.I. Medina-Reyes, N.L. Delgado-Buenrostro, Y.I. Chirino, International landscape of limits and recommendations for occupational exposure to engineered nanomaterials, Toxicol. Lett. 322 (2020) 111-119. https://doi.org/10.1016/j.toxlet.2020.01.016
[101] A. Groso, A. Petri-Fink, A. Magrez, M. Riediker, T. Meyer, Management of nanomaterials safety in research environment, Part. Fibre Toxicol. 7 (2010) 1-8. https://doi.org/10.1186/1743-8977-7-40
[102] Y. Song, X. Li, X. Du, Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma, Eur Respir J. 34 (2009) 559-567. https://doi.org/10.1183/09031936.00178308
[103] L. Truong, T. Zaikova, B.L. Baldock, M. Balik-Meisner, K. To, D.M. Reif, Z.C. Kennedy, J.E. Hutchison, R.L. Tanguay, Systematic determination of the relationship between nanoparticle core diameter and toxicity for a series of structurally analogous gold nanoparticles in zebrafish, Nanotoxicology. 13 (2019) 879-893. https://doi.org/10.1080/17435390.2019.1592259
[104] J.G. Cronin, N. Jones, C.A. Thornton, G.J.S. Jenkins, S.H. Doak, M.J.D. Clift, Nanomaterials and innate immunity: A perspective of the current status in nanosafety, Chem. Res. Toxicol. 33 (2020) 1061-1073. https://doi.org/10.1021/acs.chemrestox.0c00051
[105] M.S.Umekar, R.G. Chaudhary, G.S. Bhusari, A.Mondal, A.K. Potbhare, M. Sami, Phytoreduced graphene oxide-titanium dioxide nanocomposites using Moringa oleifera stick extract, Mater. Today: Procs, 29 (2020) 709-714. https://doi.org/10.1016/j.matpr.2020.04.169
[106] J.H. Lee, J.E. Ju, B. Il Kim, P.J. Pak, E.-K. Choi, H.-S. Lee, N. Chung, Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells, Environ. Toxicol. Chem. 33 (2014) 2759-2766. https://doi.org/10.1002/etc.2735
[107] P.B. Chouke, A.K. Potbhare, N.P. Meshram, M.M. Rai, K.M. Dadure, K Chaudhary, A.R. Rai, M. Desimone, R. Chaudhary, D.T. Masram, Bioinspired NiO nanospheres: Exploring in-vitro toxicity using Bm-17 and L. rohita liver cells, DNA degradation, docking and proposed vacuolization mechanism, ACS Omega. 7 (2022) 6869−6884. https://doi.org/10.1021/acsomega.1c06544
[108] R. Mitarotonda, M. Saraceno, M. Todone, E. Giorgi, E.L. Malchiodi, M.F. Desimone, M.C. De Marzi, Surface chemistry modification of silica nanoparticles alters the activation of monocytes, Ther. Deliv. 12 (2021) 443-459. https://doi.org/10.4155/tde-2021-0006
[109] M.C. De Marzi, M. Saraceno, R. Mitarotonda, M. Todone, M. Fernandez, E.L. Malchiodi, M.F. Desimone, Evidence of size-dependent effect of silica micro- and nano-particles on basal and specialized monocyte functions, Ther. Deliv. 8 (2017). https://doi.org/10.4155/tde-2017-0053
[110] I. Paatero, E. Casals, R. Niemi, E. Özliseli, J.M. Rosenholm, C. Sahlgren, Analyses in zebrafish embryos reveal that nanotoxicity profiles are dependent on surface-functionalization controlled penetrance of biological membranes, Sci. Rep. 7 (2017) 8423. https://doi.org/10.1038/s41598-017-09312-z
[111] G. Sanità, B. Carrese, A. Lamberti, Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization, Front. Mol. Biosci. 7 (2020). https://doi.org/10.3389/fmolb.2020.587012
[112] P.A. Schulte, V. Leso, M. Niang, I. Iavicoli, Current state of knowledge on the health effects of engineered nanomaterials in workers: A systematic review of human studies and epidemiological investigations, Scand. J. Work. Environ. Heal. 45 (2019) 217-238. https://doi.org/10.5271/sjweh.3800
[113] R. Zhang, Y. Dai, X. Zhang, Y. Niu, T. Meng, Y. Li, H. Duan, P. Bin, Reduced pulmonary function and increased pro-inflammatory cytokines in nanoscale carbon black-exposed workers, Part. Fibre Toxicol. (2014) 1-14. https://doi.org/10.1186/s12989-014-0073-1
[114] Y. Dai, Y. Niu, H. Duan, B.A. Bassig, M. Ye, X. Zhang, T. Meng, P. Bin, X. Jia, M. Shen, R. Zhang, W. Hu, X. Yang, R. Vermeulen, D. Silverman, N. Rothman, Q. Lan, S. Yu, Effects on Occupational Exposure to Carbon Black on Peripheral White Blood Cell Counts and Lymphocyte Subsets, Environ. Mol. Mutagen. (2016) 615-622. https://doi.org/10.1002/em.22036
[115] L.M. Fatkhutdinova, T.O. Khaliullin, O.L. Vasil, R.R. Zalyalov, I.G. Musta, E.R. Kisin, M.E. Birch, N. Yanamala, A.A. Shvedova, Fibrosis biomarkers in workers exposed to MWCNTs, Toxicol. Appl. Pharmacol. 299 (2016) 125-131. https://doi.org/10.1016/j.taap.2016.02.016
[116] J. Vlaanderen, A. Pronk, N. Rothman, A. Hildesheim, D. Silverman, H.D. Hosgood, S. Spaan, E. Kuijpers, P. Hoet, Q. Lan, R. Vermeulen, J. Vlaanderen, A. Pronk, N. Rothman, A. Hildesheim, H.D. Hosgood, S. Spaan, E. Kuijpers, L. Godderis, P. Hoet, A cross-sectional study of changes in markers of immunological effects and lung health due to exposure to multi-walled carbon nanotubes, Nanotoxicology. 5390 (2017). https://doi.org/10.1080/17435390.2017.1308031
[117] J.D. Beard, A. Erdely, M.M. Dahm, M.A. De Perio, M.E. Birch, D.E. Evans, J.E. Fernback, T. Eye, V. Kodali, R.R. Mercer, S.J. Bertke, M.K. Schubauer-berigan, Carbon nanotube and nano fi ber exposure and sputum and blood biomarkers of early e ff ect among U . S . workers, Environ. Int. 116 (2018) 214-228. https://doi.org/10.1016/j.envint.2018.04.004
[118] M.K. Schubauer-berigan, M.M. Dahm, A. Erdely, J.D. Beard, M.E. Birch, D.E. Evans, J.E. Fernback, R.R. Mercer, S.J. Bertke, T. Eye, M.A. De Perio, Association of pulmonary , cardiovascular , and hematologic metrics with carbon nanotube and nanofiber exposure among U.S. workers : a cross-sectional study, Part. Fibre Toxicol. (2018) 1-14. https://doi.org/10.1186/s12989-018-0258-0
[119] E. Di Ianni, P. Møller, U.B. Vogel, N.R. Jacobsen, Pro-inflammatory response and genotoxicity caused by clay and graphene nanomaterials in A549 and THP-1 cells, Mutat. Res. – Genet. Toxicol. Environ. Mutagen. 872 (2021). https://doi.org/10.1016/j.mrgentox.2021.503405
[120] S. Liou, W. Wu, H. Liao, C. Chen, C. Tsai, W. Jung, H. Lee, Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles, J. Hazard. Mater. 331 (2017) 329-335. https://doi.org/10.1016/j.jhazmat.2017.02.042
[121] M. Song, Yuguo; Xue, Li; Liying, Wang; Yon, Rojanasakul; Vincent, Castranova; Huiling, Li; Jing, Nanomaterials in Humans: Identification, Characteristics, and Potential Damage, Toxicol. Pathol. 39 (2011) 841-849. https://doi.org/10.1177/0192623311413787
[122] S. Ichihara, W. Li, S. Omura, Y. Fujitani, Y. Liu, Q. Wang, Y. Hiraku, N. Hisanaga, K. Wakai, X. Ding, T. Kobayashi, G. Ichihara, Exposure assessment and heart rate variability monitoring in workers handling titanium dioxide particles : a pilot study, J. Nanoparticle Res. 18 (2016) 1-14. https://doi.org/10.1007/s11051-016-3340-2
[123] D. Pelclova, V. Zdimal, P. Kacer, N. Zikova, Z. Fenclova, S. Vlckova, J. Schwarz, K. Syslova, T. Navratil, F. Turci, I. Corazzari, Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano) particles, Nanotoxicology. 0 (2016) 000. https://doi.org/10.1080/17435390.2016.1262921
[124] L. Zhao, L. Zhao, Y. Zhu, Z. Chen, H. Xu, J. Zhou, Cardiopulmonary effects induced by occupational exposure to titanium dioxide nanoparticles Cardiopulmonary effects induced by occupational exposure to titanium dioxide nanoparticles, Nanotoxicology. 0 (2018) 1-16. https://doi.org/10.1080/17435390.2018.1425502
[125] J.H. Lee, M. Kwon, J.H. Ji, C.S. Kang, K.H. Ahn, J.H. Han, I.J. Yu, Exposure assessment of workplaces manufacturing nanosized TiO 2 and silver, Inhal. Toxicol. 23 (2011) 226-236. https://doi.org/10.3109/08958378.2011.562567
[126] J.H. Lee, J. Mun, J.D. Park, I.J. Yu, A health surveillance case study on workers who manufacture silver nanomaterials, Nanotoxicology. 6 (2012) 667-669. https://doi.org/10.3109/17435390.2011.600840
[127] H. Liao, Y. Chung, C. Lai, S. Wang, H. Chiang, L. Li, T. Tsou, W. Li, H. Lee, W. Wu, M. Lin, J. Hsu, J. Ho, C. Chen, T. Shih, C. Lin, S. Liou, Six-month follow-up study of health markers of nanomaterials among workers handling engineered nanomaterials, Nanotoxicology. 5390 (2014) 100-110. https://doi.org/10.3109/17435390.2013.858793