Emerging Nanomaterials in Healthcare
Ephraim Felix Marondedze, Lukman O. Olasunkanmi, Atheesha Singh, Penny Poomani Govender
Applications of nanomaterials in the field of medicine and healthcare have been on a rapid rise in recent years. Modifiable physical, optical and electronic structures of nanomaterials enable them to be fabricated for various uses. Examples of nanoparticles widely used in the healthcare sector include, but are not limited to silica (Si), aluminium oxide (Al2O3), silver (Ag), copper (Cu), titanium (Ti), gold (Au) and zinc (Zn). Application of nanomaterials in healthcare range from, bioimaging, sensing, diagnosis, targeted drug delivery, prosthetics, cancer therapy and antibiotics. Although mechanisms behind sensing and other functions are well known, mechanisms behind the antibiotic properties need more scientific validation. In this book chapter, we focus on current uses of nanomaterials in healthcare and give a brief insight on future perspectives on nanomaterials in medicine and healthcare.
Keywords
Nanomaterials, Healthcare, Drug-Delivery, Metal Oxide, Anti-Microbial Resistance
Published online 11/15/2022, 20 pages
Citation: Ephraim Felix Marondedze, Lukman O. Olasunkanmi, Atheesha Singh, Penny Poomani Govender, Emerging Nanomaterials in Healthcare, Materials Research Foundations, Vol. 135, pp 284-303, 2023
DOI: https://doi.org/10.21741/9781644902172-12
Part of the book on Emerging Nanomaterials and Their Impact on Society in the 21st Century
References
[1] A. Jayakumar, A. Surendranath, P. Mohanan, 2D materials for next generation healthcare applications, International journal of pharmaceutics 551 (2018) 309-321. https://doi.org/10.1016/j.ijpharm.2018.09.041
[2] C.I. Justino, A.R. Gomes, A.C. Freitas, A.C. Duarte, T.A. Rocha-Santos, Graphene based sensors and biosensors, TrAC Trends in Analytical Chemistry 91 (2017) 53-66. https://doi.org/10.1016/j.trac.2017.04.003
[3] X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene‐based materials: synthesis, characterization, properties, and applications, small 7 (2011) 1876-1902. https://doi.org/10.1002/smll.201002009
[4] T. Terse-Thakoor, S. Badhulika, A. Mulchandani, Graphene based biosensors for healthcare, Journal of Materials Research 32 (2017) 2905-2929. https://doi.org/10.1557/jmr.2017.175
[5] M. Pumera, Graphene-based nanomaterials and their electrochemistry, Chemical Society Reviews 39 (2010) 4146-4157. https://doi.org/10.1039/c002690p
[6] M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene, Chemical reviews 110 (2010) 132-145. https://doi.org/10.1021/cr900070d
[7] T. Kuila, S. Bose, P. Khanra, A.K. Mishra, N.H. Kim, J.H. Lee, Recent advances in graphene-based biosensors, Biosensors and bioelectronics 26 (2011) 4637-4648. https://doi.org/10.1016/j.bios.2011.05.039
[8] Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors: a review, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 22 (2010) 1027-1036. https://doi.org/10.1002/elan.200900571
[9] L. Wu, H.-S. Chu, W.S. Koh, E.-P. Li, Highly sensitive graphene biosensors based on surface plasmon resonance, Optics express 18 (2010) 14395-14400. https://doi.org/10.1364/OE.18.014395
[10] J. Chang, G. Zhou, E.R. Christensen, R. Heideman, J. Chen, Graphene-based sensors for detection of heavy metals in water: a review, Analytical and bioanalytical chemistry 406 (2014) 3957-3975. https://doi.org/10.1007/s00216-014-7804-x
[11] X. Deng, H. Tang, J. Jiang, Recent progress in graphene-material-based optical sensors, Analytical and bioanalytical chemistry 406 (2014) 6903-6916. https://doi.org/10.1007/s00216-014-7895-4
[12] Q. Bao, K.P. Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices, ACS nano 6 (2012) 3677-3694. https://doi.org/10.1021/nn300989g
[13] Z. Jiang, B. Feng, J. Xu, T. Qing, P. Zhang, Z. Qing, Graphene biosensors for bacterial and viral pathogens, Biosensors and Bioelectronics 166 (2020) 112471. https://doi.org/10.1016/j.bios.2020.112471
[14] C. Zhu, D. Du, Y. Lin, Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review, 2D Materials 2 (2015) 032004. https://doi.org/10.1088/2053-1583/2/3/032004
[15] H. Zhang, R. He, Y. Niu, F. Han, J. Li, X. Zhang, F. Xu, Graphene-enabled wearable sensors for healthcare monitoring, Biosensors and Bioelectronics 197 (2022) 113777. https://doi.org/10.1016/j.bios.2021.113777
[16] J.A. Rather, S. Pilehvar, K. De Wael, A graphene oxide amplification platform tagged with tyrosinase-zinc oxide quantum dot hybrids for the electrochemical sensing of hydroxylated polychlorobiphenyls, Sensors and Actuators B: Chemical 190 (2014) 612-620. https://doi.org/10.1016/j.snb.2013.09.018
[17] K. Liu, J.-J. Zhang, F.-F. Cheng, T.-T. Zheng, C. Wang, J.-J. Zhu, Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery, Journal of Materials Chemistry 21 (2011) 12034-12040. https://doi.org/10.1039/c1jm10749f
[18] Z. Liu, J.T. Robinson, X. Sun, H. Dai, PEGylated nanographene oxide for delivery of water-insoluble cancer drugs, Journal of the American Chemical Society 130 (2008) 10876-10877. https://doi.org/10.1021/ja803688x
[19] S.K. Singh, M.K. Singh, P.P. Kulkarni, V.K. Sonkar, J.J. Grácio, D. Dash, Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications, ACS nano 6 (2012) 2731-2740. https://doi.org/10.1021/nn300172t
[20] M. Xu, J. Zhu, F. Wang, Y. Xiong, Y. Wu, Q. Wang, J. Weng, Z. Zhang, W. Chen, S. Liu, Improved in vitro and in vivo biocompatibility of graphene oxide through surface modification: poly (acrylic acid)-functionalization is superior to PEGylation, Acs Nano 10 (2016) 3267-3281. https://doi.org/10.1021/acsnano.6b00539
[21] E.B. Bahadır, M.K. Sezgintürk, Applications of graphene in electrochemical sensing and biosensing, TrAC Trends in Analytical Chemistry 76 (2016) 1-14. https://doi.org/10.1016/j.trac.2015.07.008
[22] S. Alwarappan, A. Erdem, C. Liu, C.-Z. Li, Probing the electrochemical properties of graphene nanosheets for biosensing applications, The Journal of Physical Chemistry C 113 (2009) 8853-8857. https://doi.org/10.1021/jp9010313
[23] B. Liu, J. Liu, Sensors and biosensors based on metal oxide nanomaterials, TrAC Trends in Analytical Chemistry 121 (2019) 115690. https://doi.org/10.1016/j.trac.2019.115690
[24] T. Paunesku, T. Rajh, G. Wiederrecht, J. Maser, S. Vogt, N. Stojićević, M. Protić, B. Lai, J. Oryhon, M. Thurnauer, Biology of TiO2-oligonucleotide nanocomposites, Nature materials 2 (2003) 343-346. https://doi.org/10.1038/nmat875
[25] C. Xu, K. Xu, H. Gu, R. Zheng, H. Liu, X. Zhang, Z. Guo, B. Xu, Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles, Journal of the American Chemical Society 126 (2004) 9938-9939. https://doi.org/10.1021/ja0464802
[26] M.J. Limo, A. Sola-Rabada, E. Boix, V. Thota, Z.C. Westcott, V. Puddu, C.C. Perry, Interactions between metal oxides and biomolecules: from fundamental understanding to applications, Chemical reviews 118 (2018) 11118-11193. https://doi.org/10.1021/acs.chemrev.7b00660
[27] H. Zhang, Z. Ji, T. Xia, H. Meng, C. Low-Kam, R. Liu, S. Pokhrel, S. Lin, X. Wang, Y.-P. Liao, Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation, ACS nano 6 (2012) 4349-4368. https://doi.org/10.1021/nn3010087
[28] L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, Nature nanotechnology 2 (2007) 577-583. https://doi.org/10.1038/nnano.2007.260
[29] K.N. Chaudhari, N.K. Chaudhari, J.-S. Yu, Peroxidase mimic activity of hematite iron oxides (α-Fe 2 O 3) with different nanostructures, Catalysis Science & Technology 2 (2012) 119-124. https://doi.org/10.1039/C1CY00124H
[30] R. André, F. Natálio, M. Humanes, J. Leppin, K. Heinze, R. Wever, H.C. Schröder, W.E. Müller, W. Tremel, V2O5 nanowires with an intrinsic peroxidase‐like activity, Advanced Functional Materials 21 (2011) 501-509. https://doi.org/10.1002/adfm.201001302
[31] J. Mu, Y. Wang, M. Zhao, L. Zhang, Intrinsic peroxidase-like activity and catalase-like activity of Co 3 O 4 nanoparticles, Chemical Communications 48 (2012) 2540-2542. https://doi.org/10.1039/c2cc17013b
[32] J. Dong, L. Song, J.-J. Yin, W. He, Y. Wu, N. Gu, Y. Zhang, Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay, ACS Applied Materials & Interfaces 6 (2014) 1959-1970. https://doi.org/10.1021/am405009f
[33] W. Chen, J. Chen, A.L. Liu, L.M. Wang, G.W. Li, X.H. Lin, Peroxidase‐like activity of cupric oxide nanoparticle, ChemCatChem 3 (2011) 1151-1154. https://doi.org/10.1002/cctc.201100064
[34] A. Asati, C. Kaittanis, S. Santra, J.M. Perez, pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH, Analytical chemistry 83 (2011) 2547-2553. https://doi.org/10.1021/ac102826k
[35] A. Kaushik, R. Khan, P.R. Solanki, P. Pandey, J. Alam, S. Ahmad, B. Malhotra, Iron oxide nanoparticles-chitosan composite based glucose biosensor, Biosensors and bioelectronics 24 (2008) 676-683. https://doi.org/10.1016/j.bios.2008.06.032
[36] S. Kumar, M. Umar, A. Saifi, S. Kumar, S. Augustine, S. Srivastava, B.D. Malhotra, Electrochemical paper based cancer biosensor using iron oxide nanoparticles decorated PEDOT: PSS, Analytica Chimica Acta 1056 (2019) 135-145. https://doi.org/10.1016/j.aca.2018.12.053
[37] P. Pandey, S.P. Singh, S.K. Arya, V. Gupta, M. Datta, S. Singh, B.D. Malhotra, Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity, Langmuir 23 (2007) 3333-3337. https://doi.org/10.1021/la062901c
[38] M.M. Rahman, S.B. Khan, G. Gruner, M.S. Al-Ghamdi, M.A. Daous, A.M. Asiri, Chloride ion sensors based on low-dimensional α-MnO2-Co3O4 nanoparticles fabricated glassy carbon electrodes by simple I-V technique, Electrochimica Acta 103 (2013) 143-150. https://doi.org/10.1016/j.electacta.2013.04.067
[39] X. Wang, C. Luo, L. Li, H. Duan, Highly selective and sensitive electrochemical sensor for L-cysteine detection based on graphene oxide/multiwalled carbon nanotube/manganese dioxide/gold nanoparticles composite, Journal of Electroanalytical Chemistry 757 (2015) 100-106. https://doi.org/10.1016/j.jelechem.2015.09.023
[40] T. Gan, Z. Shi, K. Wang, J. Sun, Z. Lv, Y. Liu, Rifampicin determination in human serum and urine based on a disposable carbon paste microelectrode modified with a hollow manganese oxide@ mesoporous silica oxide core-shell nanohybrid, Canadian Journal of Chemistry 93 (2015) 1061-1068. https://doi.org/10.1139/cjc-2015-0017
[41] E. Topoglidis, T. Lutz, R.L. Willis, C.J. Barnett, A.E. Cass, J.R. Durrant, Protein adsorption on nanoporous TiO 2 films: a novel approach to studying photoinduced protein/electrode transfer reactions, Faraday Discussions 116 (2000) 35-46. https://doi.org/10.1039/b003313h
[42] L. Yang, H. Zhao, S. Fan, B. Li, C.-P. Li, A highly sensitive electrochemical sensor for simultaneous determination of hydroquinone and bisphenol A based on the ultrafine Pd nanoparticle@ TiO2 functionalized SiC, Analytica Chimica Acta 852 (2014) 28-36. https://doi.org/10.1016/j.aca.2014.08.037
[43] J. Huang, X. Zhang, S. Liu, Q. Lin, X. He, X. Xing, W. Lian, D. Tang, Development of molecularly imprinted electrochemical sensor with titanium oxide and gold nanomaterials enhanced technique for determination of 4-nonylphenol, Sensors and Actuators B: Chemical 152 (2011) 292-298. https://doi.org/10.1016/j.snb.2010.12.022
[44] Y.Y. Hui, H.-C. Chang, H. Dong, X. Zhang, Carbon nanomaterials for bioimaging, bioanalysis, and therapy, John Wiley & Sons2019. https://doi.org/10.1002/9781119373476
[45] Y. Yang, L. Wang, B. Wan, Y. Gu, X. Li, Optically Active Nanomaterials for Bioimaging and Targeted Therapy, Frontiers in Bioengineering and Biotechnology 7 (2019). https://doi.org/10.3389/fbioe.2019.00320
[46] W. Fan, B. Yung, P. Huang, X. Chen, Nanotechnology for Multimodal Synergistic Cancer Therapy, Chemical Reviews 117 (2017) 13566-13638. https://doi.org/10.1021/acs.chemrev.7b00258
[47] L.E. Cole, R.D. Ross, J.M. Tilley, T. Vargo-Gogola, R.K. Roeder, Gold nanoparticles as contrast agents in x-ray imaging and computed tomography, Nanomedicine 10 (2015) 321-341. https://doi.org/10.2217/nnm.14.171
[48] C. Rümenapp, B. Gleich, A. Haase, Magnetic nanoparticles in magnetic resonance imaging and diagnostics, Pharmaceutical research 29 (2012) 1165-1179. https://doi.org/10.1007/s11095-012-0711-y
[49] N. Arias-Ramos, L.E. Ibarra, M. Serrano-Torres, B. Yagüe, M.D. Caverzán, C.A. Chesta, R.E. Palacios, P. López-Larrubia, Iron oxide incorporated conjugated polymer nanoparticles for simultaneous use in magnetic resonance and fluorescent imaging of brain tumors, Pharmaceutics 13 (2021) 1258. https://doi.org/10.3390/pharmaceutics13081258
[50] U. Kostiv, M.M. Natile, D. Jirák, D. Pulpanova, K. Jiráková, M. Vosmanská, D. Horák, PEG-Neridronate-Modified NaYF4: Gd3+, Yb3+, Tm3+/NaGdF4 Core-Shell Upconverting Nanoparticles for Bimodal Magnetic Resonance/Optical Luminescence Imaging, ACS omega 6 (2021) 14420-14429. https://doi.org/10.1021/acsomega.1c01313
[51] H. Zhang, T. Wu, Y. Chen, Q. Zhang, Z. Chen, Y. Ling, Y. Jia, Y. Yang, X. Liu, Y. Zhou, Hollow carbon nanospheres dotted with Gd-Fe nanoparticles for magnetic resonance and photoacoustic imaging, Nanoscale 13 (2021) 10943-10952. https://doi.org/10.1039/D1NR02914B
[52] R. Zou, Y. Gao, Y. Zhang, J. Jiao, K.-L. Wong, J. Wang, 68Ga-labeled magnetic-nir persistent luminescent hybrid mesoporous nanoparticles for multimodal imaging-guided chemotherapy and photodynamic therapy, ACS applied materials & interfaces 13 (2021) 9667-9680. https://doi.org/10.1021/acsami.0c21623
[53] F. Moradnia, S.T. Fardood, A. Ramazani, B.-k. Min, S.W. Joo, R.S. Varma, Magnetic Mg0. 5Zn0. 5FeMnO4 nanoparticles: green sol-gel synthesis, characterization, and photocatalytic applications, Journal of Cleaner Production 288 (2021) 125632. https://doi.org/10.1016/j.jclepro.2020.125632
[54] Y. Qin, J. Cui, Y. Zhang, Y. Wang, X. Zhang, H. Zheng, X. Shu, B. Fu, Y. Wu, Integration of microfluidic injection analysis with carbon nanomaterials/gold nanowire arrays-based biosensors for glucose detection, Science Bulletin 61 (2016) 473-480. https://doi.org/10.1007/s11434-016-1013-2
[55] B. Jin, P. Wang, H. Mao, B. Hu, H. Zhang, Z. Cheng, Z. Wu, X. Bian, C. Jia, F. Jing, Q. Jin, J. Zhao, Multi-nanomaterial electrochemical biosensor based on label-free graphene for detecting cancer biomarkers, Biosensors and Bioelectronics 55 (2014) 464-469. https://doi.org/10.1016/j.bios.2013.12.025
[56] T.-T. Wang, X.-F. Huang, H. Huang, P. Luo, L.-S. Qing, Nanomaterial-based optical- and electrochemical-biosensors for urine glucose detection: A comprehensive review, Advanced Sensor and Energy Materials 1 (2022) 100016. https://doi.org/10.1016/j.asems.2022.100016
[57] C. Padmakumari Kurup, S. Abdullah Lim, M.U. Ahmed, Nanomaterials as signal amplification elements in aptamer-based electrochemiluminescent biosensors, Bioelectrochemistry 147 (2022) 108170. https://doi.org/10.1016/j.bioelechem.2022.108170
[58] Y. Yang, Q. Huang, Z. Xiao, M. Liu, Y. Zhu, Q. Chen, Y. Li, K. Ai, Nanomaterial-based biosensor developing as a route toward in vitro diagnosis of early ovarian cancer, Materials Today Bio 13 (2022) 100218. https://doi.org/10.1016/j.mtbio.2022.100218
[59] R. Eivazzadeh-Keihan, E. Bahojb Noruzi, E. Chidar, M. Jafari, F. Davoodi, A. Kashtiaray, M. Ghafori Gorab, S. Masoud Hashemi, S. Javanshir, R. Ahangari Cohan, A. Maleki, M. Mahdavi, Applications of carbon-based conductive nanomaterials in biosensors, Chemical Engineering Journal 442 (2022) 136183. https://doi.org/10.1016/j.cej.2022.136183
[60] B. Pérez-Fernández, A. de la Escosura-Muñiz, Electrochemical biosensors based on nanomaterials for aflatoxins detection: A review (2015-2021), Analytica Chimica Acta 1212 (2022) 339658. https://doi.org/10.1016/j.aca.2022.339658
[61] Q. Tan, C. Wu, L. Li, W. Shao, M. Luo, Nanomaterial-Based Prosthetic Limbs for Disability Mobility Assistance: A Review of Recent Advances, Journal of Nanomaterials 2022 (2022). https://doi.org/10.1155/2022/3425297
[62] D. Yao, L. Wu, S. A, M. Zhang, H. Fang, D. Li, Y. Sun, X. Gao, C. Lu, Stretchable vertical graphene arrays for electronic skin with multifunctional sensing capabilities, Chemical Engineering Journal 431 (2022) 134038. https://doi.org/10.1016/j.cej.2021.134038
[63] G. Selleri, M.E. Gino, T.M. Brugo, R. D’anniballe, J. Tabucol, M.L. Focarete, R. Carloni, D. Fabiani, A. Zucchelli, Self-sensing composite material based on piezoelectric nanofibers, Materials & Design (2022) 110787. https://doi.org/10.1016/j.matdes.2022.110787
[64] X. Tang, W. Yang, S. Yin, G. Tai, M. Su, J. Yang, H. Shi, D. Wei, J. Yang, Controllable graphene wrinkle for a high-performance flexible pressure sensor, ACS Applied Materials & Interfaces 13 (2021) 20448-20458. https://doi.org/10.1021/acsami.0c22784
[65] Z. Wang, C. Yin, Y. Gao, Z. Liao, Y. Li, W. Wang, D. Sun, Novel functionalized selenium nanowires as antibiotic adjuvants in multiple ways to overcome drug resistance of multidrug-resistant bacteria, Biomaterials Advances 137 (2022) 212815. https://doi.org/10.1016/j.bioadv.2022.212815
[66] A. Besinis, T. De Peralta, R.D. Handy, The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays, Nanotoxicology 8 (2014) 1-16. https://doi.org/10.3109/17435390.2012.742935
[67] L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future, Int J Nanomedicine 12 (2017) 1227-1249. https://doi.org/10.2147/IJN.S121956
[68] A. Nagy, A. Harrison, S. Sabbani, R.S. Munson, Jr., P.K. Dutta, W.J. Waldman, Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action, Int J Nanomedicine 6 (2011) 1833-1852. https://doi.org/10.2147/IJN.S24019
[69] M. Kaushik, R. Niranjan, R. Thangam, B. Madhan, V. Pandiyarasan, C. Ramachandran, D.-H. Oh, G.D. Venkatasubbu, Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles, Applied Surface Science 479 (2019) 1169-1177. https://doi.org/10.1016/j.apsusc.2019.02.189
[70] T. Yang, S. Oliver, Y. Chen, C. Boyer, R. Chandrawati, Tuning crystallization and morphology of zinc oxide with polyvinylpyrrolidone: Formation mechanisms and antimicrobial activity, Journal of colloid and interface science 546 (2019) 43-52. https://doi.org/10.1016/j.jcis.2019.03.051
[71] G. Herrera, J. Peña-Bahamonde, S. Paudel, D.F. Rodrigues, The role of nanomaterials and antibiotics in microbial resistance and environmental impact: an overview, Current Opinion in Chemical Engineering 33 (2021) 100707. https://doi.org/10.1016/j.coche.2021.100707
[72] F. Mehrabi, T. Shamspur, H. Sheibani, A. Mostafavi, M. Mohamadi, H. Hakimi, R. Bahramabadi, E. Salari, Silver-coated magnetic nanoparticles as an efficient delivery system for the antibiotics trimethoprim and sulfamethoxazole against E. Coli and S. aureus: release kinetics and antimicrobial activity, BioMetals 34 (2021) 1237-1246. https://doi.org/10.1007/s10534-021-00338-5
[73] S. Paudel, C. Cerbu, C.E. Astete, S.M. Louie, C. Sabliov, D.F. Rodrigues, Enrofloxacin-Impregnated PLGA Nanocarriers for Efficient Therapeutics and Diminished Generation of Reactive Oxygen Species, ACS Applied Nano Materials 2 (2019) 5035-5043. https://doi.org/10.1021/acsanm.9b00970
[74] J.H. Kim, M.J. Moon, D.Y. Kim, S.H. Heo, Y.Y. Jeong, Hyaluronic acid-based nanomaterials for cancer therapy, Polymers 10 (2018) 1133. https://doi.org/10.3390/polym10101133
[75] Z. Cheng, M. Li, R. Dey, Y. Chen, Nanomaterials for cancer therapy: Current progress and perspectives, Journal of Hematology & Oncology 14 (2021) 1-27. https://doi.org/10.1186/s13045-020-01025-7
[76] X. Lin, Y. Bai, Q. Jiang, Precise fabrication of folic acid-targeted therapy on metformin encapsulated β-cyclodextrin nanomaterials for treatment and care of lung cancer, Process Biochemistry 118 (2022) 74-83. https://doi.org/10.1016/j.procbio.2022.04.003
[77] J. Li, S. Wu, X. Tian, X. Li, Fabrication of a multifunctional nanomaterial from a mussel-derived peptide for multimodal synergistic cancer therapy, Chemical Engineering Journal 446 (2022) 136837. https://doi.org/10.1016/j.cej.2022.136837
[78] Z. Jing, Q. Du, X. Zhang, Y. Zhang, Nanomedicines and nanomaterials for cancer therapy: Progress, challenge and perspectives, Chemical Engineering Journal 446 (2022) 137147. https://doi.org/10.1016/j.cej.2022.137147
[79] X. Zhang, S. Wang, G. Cheng, P. Yu, J. Chang, Light-Responsive Nanomaterials for Cancer Therapy, Engineering (2021). https://doi.org/10.1016/j.eng.2021.07.023
[80] T. Liu, K. Yang, Z. Liu, Recent advances in functional nanomaterials for X-ray triggered cancer therapy, Progress in Natural Science: Materials International 30 (2020) 567-576. https://doi.org/10.1016/j.pnsc.2020.09.009
[81] M. Jena, S. Mishra, S. Jena, S.S. Mishra, Nanotechnology-future prospect in recent medicine: A review, (2013). https://doi.org/10.5455/2319-2003.ijbcp20130802
[82] M.A. Dobrovolskaia, Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: Challenges, considerations and strategy, Journal of Controlled Release 220 (2015) 571-583. https://doi.org/10.1016/j.jconrel.2015.08.056
[83] Z.S. Al-Ahmady, H. Ali-Boucetta, Nanomedicine & nanotoxicology future could be reshaped post-COVID-19 pandemic, Frontiers in Nanotechnology 2 (2020) 610465. https://doi.org/10.3389/fnano.2020.610465
[84] M.A. Mujawar, H. Gohel, S.K. Bhardwaj, S. Srinivasan, N. Hickman, A. Kaushik, Nano-enabled biosensing systems for intelligent healthcare: towards COVID-19 management, Materials Today Chemistry 17 (2020) 100306. https://doi.org/10.1016/j.mtchem.2020.100306
[85] M.-F. Xiao, C. Zeng, S.-H. Li, F.-L. Yuan, Applications of nanomaterials in COVID-19 pandemic, Rare Metals (2021) 1-13. https://doi.org/10.1007/s12598-021-01789-y
[86] Q. Zhang, R. Xiang, S. Huo, Y. Zhou, S. Jiang, Q. Wang, F. Yu, Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy, Signal transduction and targeted therapy 6 (2021) 1-19. https://doi.org/10.1038/s41392-020-00451-w
[87] J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.d.P. Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, Nano based drug delivery systems: recent developments and future prospects, Journal of nanobiotechnology 16 (2018) 1-33. https://doi.org/10.1186/s12951-018-0392-8
[88] J.A. Kemp, Y.J. Kwon, Cancer nanotechnology: current status and perspectives, Nano convergence 8 (2021) 1-38. https://doi.org/10.1186/s40580-021-00282-7
[89] R. Akçan, H.C. Aydogan, M.Ş. Yildirim, B. Taştekin, N. Sağlam, Nanotoxicity: A challenge for future medicine, Turkish journal of medical sciences 50 (2020) 1180-1196. https://doi.org/10.3906/sag-1912-209
[90] D.K. Scoville, D. Botta, K. Galdanes, S.C. Schmuck, C.C. White, P.L. Stapleton, T.K. Bammler, J.W. MacDonald, W.A. Altemeier, M. Hernandez, Genetic determinants of susceptibility to silver nanoparticle‐induced acute lung inflammation in mice, The FASEB Journal 31 (2017) 4600-4611. https://doi.org/10.1096/fj.201700187R
[91] T. Sahu, Y.K. Ratre, S. Chauhan, L. Bhaskar, M.P. Nair, H.K. Verma, Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science, Journal of Drug Delivery Science and Technology 63 (2021) 102487. https://doi.org/10.1016/j.jddst.2021.102487