Fundamentals and Properties of Superconductors
M. Rizwan, A. Ayub, S. Fatima, I. Ilyas, A. Usman, A. Shoukat
Superconductors are evolutionary materials that have applications in energy harvesting, magnet technology, power generation and transmission, maglev transportation and many more due to its outstanding properties such as zero resistance, perfect conductivity and diamagnetism and Meissner effect. These potential applications are the key behind the boost in superconductor field and research. Properties and exploration of superconductors in depth is very crucial to decide its future and potential in many technologies. Superconductors are a fast field and thus are classified in many categories such as type I and II semiconductors, high and low Tc superconductors based on coherence length and critical temperature respectively.
Keywords
High Temperature Superconductors, Superconductivity, Landau Theory, Supercurrents, Meissner Effect, Josephson Junction
Published online 10/5/2022, 30 pages
Citation: M. Rizwan, A. Ayub, S. Fatima, I. Ilyas, A. Usman, A. Shoukat, Fundamentals and Properties of Superconductors, Materials Research Foundations, Vol. 132, pp 49-78, 2022
DOI: https://doi.org/10.21741/9781644902110-3
Part of the book on Superconductors
References
[1] B. Holder, A. H. Keller, High-temperature superconductors: underlying physics and applications, Z. Naturforsch. B. 75(2020) 3-14. https://doi.org/10.1515/znb-2019-0103
[2] W. Buckel, R. Kleiner, Fundamental properties of superconductors in Superconductivity: Fundamentals and Applications, second ed., JWS., Germnay, 2008 , pp. 11-71.
[3] B. Seeber, Handbook of Applied Superconductivity, first ed., CRC press, Boca, Rtaon , 1998, p. 175-77 https://doi.org/10.1887/0750303778
[4] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity, Phys. Rev. 8(1957) 1170- 1175. https://doi.org/10.1103/PhysRev.108.1175
[5] L.N. Cooper, and D. Feldman, BCS: 50 years, Mod. Phys. Lett., Vol 25, 2010, pp. 3169-3189 https://doi.org/10.1142/S0217732310034626
[6] J.G. Bednorz, K.A. Müller, Possible high T c superconductivity in the Ba− La− Cu− O system, Zeitschrift für Physik B Condensed Matter. 64(1986) 189-193. https://doi.org/10.1007/BF01303701
[7] W. Buckel, R. Kleiner, Superconductivity: Fundamentals and Applications, second ed., JWS., Germnay, 2008 , pp. 11-71.
[8] G. Revathy, V. Rajendran, P.S. Kumar, Prediction study on critical temperature (c) of different atomic numbers superconductors (both gaseous/solid elements) using machine learning techniques, Mater. Today: Proc. 44(2021) 3627-3632. https://doi.org/10.1016/j.matpr.2020.10.091
[9] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz, F. Lichtenberg, Superconductivity in a layered perovskite without copper, Nature. 72(1994) 532-534. https://doi.org/10.1038/372532a0
[10] N. Nagaosa, Superconductivity and antiferromagnetism in high-TC cuprates, Science. 275(1997) 1078-1079. https://doi.org/10.1126/science.275.5303.1078
[11] K. Prassides, Y. Iwasa, T. Ito, D.H. Chi, K. Uehara, E. Nishibori, M. Takata, M. Sakata, Y. Ohishi, O. Shimomura, T. Muranaka, Compressibility of the MgB 2 superconductor, Phys. Rev. B. 64(2001) 012508- 012509. https://doi.org/10.1103/PhysRevB.64.012509
[12] Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, H. Hosono, Iron-based layered superconductor: LaOFeP, J. Amer. Chem.Soc. 128(2006) 10012-10013. https://doi.org/10.1021/ja063355c
[13] A. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature. 525(2015) 73-76. https://doi.org/10.1038/nature14964
[14] E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K.V. Lawler, A. Salamat, R.P. Dias, Room-temperature superconductivity in a carbonaceous sulfur hydride, Nature. 586(2020) 373-377. https://doi.org/10.1038/s41586-020-2801-z
[15] C. Yao, Y. Ma, Superconducting materials: Challenges and opportunities for large-scale applications, Iscience. (2021) 102541. https://doi.org/10.1016/j.isci.2021.102541
[16] H. Rogalla, and P.H. Kes, 100 years of superconductivity, T&F. (2011) https://doi.org/10.1201/b11312
[17] L. Boeri, R.G. Hennig, P.J. Hirschfeld, G. Profeta, A. Sanna, E. Zurek, W. E. Pickett, M. Amsler, R. Dias, M. Eremets, C. Heil, The 2021 room-temperature superconductivity roadmap, J. Condens. Matter Phys. (2021)
[18] A. Bianconi, N. Poccia, Superstripes and complexity in high-temperature superconductors, J. Supercond. Nov. Magn. 25(2012) 1403-1412. https://doi.org/10.1007/s10948-012-1670-6
[19] M. Chen, L. Donzel, M. Lakner, W. and Paul, High temperature superconductors for power applications, J. Eur. Ceram. Soc. 24(2004) 1815-1822. https://doi.org/10.1016/S0955-2219(03)00443-6
[20] T. Silver, S. Dou, J. Jin, Applications of high temperature superconductors, Europhys. News. 32(2001) 82-86. https://doi.org/10.1051/epn:2001302
[21] J.F. Cochran, D. Mapother, Superconducting transition in aluminum, Phys.Rev. 111(1958) 130- 132. https://doi.org/10.1103/PhysRev.111.132
[22] I. Belash, O. Zharikov, A. Palnichenko, Superconductivity of GIC with Li, Na and K, Synth. Met. 34(1989) 455-460. https://doi.org/10.1016/0379-6779(89)90424-4
[23] B. Matthias, TH Geballe und VB Compton, Rev. Mod. Phys. 35(1963) 413-414 https://doi.org/10.1103/RevModPhys.35.414.2
[24] N. Emery, C. Herold, J.F. Marêché, P. Lagrange , Synthesis and superconducting properties of CaC6, Sci. Technol. Adv. Mater. (2009) 3-6
[25] 竹内大輔 山崎聡, ダイヤモンド表面の全光電子放出率分光法 (TPYS). 表面科学, 29(2008) 151-158.
[26] K. Tanigaki, T.W. Ebbesen, S. Saito, J. Mizuki, J.S. Tsai, Y. Kubo ,S. Kuroshima , Superconductivity at 33 K in Cs x Rb y C 60, Nature. 352(1991) p. 222-223. https://doi.org/10.1038/352222a0
[27] M. J. Rosseinsky, AP. Ramirez ,S.H. Glarum,D.W. Murphy, R.C. Haddon, A.F. Hebard, T.T.M.Palstra, A.R.Kortan, S.M. Zahurak, A.V.Makhija, Superconductivity at 28 K in RbxC60. Phys. Rev. Lett. 66(1991), 2825-2830.
[28] T. Inushima, Electronic structure of superconducting InN, Sci. Technol. Adv. Mater. 7(2006)S112-S116. https://doi.org/10.1016/j.stam.2006.06.004
[29] K. Makise, N. Kokubo, S. Takada, T. Yamaguti, S. Ogura, K. Yamada, B. Shinozaki, K. Yano, K. Inoue, H. and Nakamura, Superconductivity in transparent zinc-doped In2O3 films having low carrier density, Sci. Technol. Adv. Mater.9(2009) 044202- 044208. https://doi.org/10.1088/1468-6996/9/4/044208
[30] G. Schell, H. Winter, H. Rietschel, F. Gompf, Electronic structure and superconductivity in metal hexaborides, Phys.Rev. B. 25(1982)1586-1589. https://doi.org/10.1103/PhysRevB.25.1589
[31] J. Nagamatsu, et al., Superconductivity at 39 K in magnesium diboride, Nature. 410(2001) 63-64. https://doi.org/10.1038/35065039
[32] K. – H. Bernhardt, Preparation and superconducting properties of niobium carbonitride wires, Z. Naturforsch. 30(1975) 528-532. https://doi.org/10.1515/zna-1975-0422
[33] G.-i. Oya, and E. Saur, Preparation of Nb3Ge films by chemical transport reaction and their critical properties, J. Low Temp. Phys. 34(1979) 569-583. https://doi.org/10.1007/BF00114941
[34] R. D. Fowler, B.T. Matthias, L.B. Asprey, H.H. Hill, J.D.G. Lindsay, C.E. Olsen, R.W. White, Superconductivity of protactinium, Phys.Rev. Lett. 15(1965) 860. https://doi.org/10.1103/PhysRevLett.15.860
[35] J. Hulm, C.K. Jones, R.A. Hein, J.W. and Gibson, Superconductivity in the TiO and NbO systems, J. Low Temp. Phys. 7(1972) 291-307. https://doi.org/10.1007/BF00660068
[36] J. Eisenstein, Superconducting elements, Rev. Mod. Phys. 26(1954) 273- 277. https://doi.org/10.1103/RevModPhys.26.277
[37] B. Matthias, and T. Geballe, s. Geller, and E. Corenzwit, Superconductivity of nb 3 sn, Phys. Rev, 95(1954) 1430-1435. https://doi.org/10.1103/PhysRev.95.1435
[38] T. Muranaka, Y. Kikuchi, T. Yoshizawa, N. Shirakawa, J. and Akimitsu, Superconductivity in carrier-doped silicon carbide, Sci. Technol. Adv. Mater., 9(2009) 044200- 044204. https://doi.org/10.1088/1468-6996/9/4/044204
[39] H. O. Pierson, Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications, first ed., William Andrew., New York, 1996, pp. 350-362 https://doi.org/10.1016/B978-081551392-6.50017-9
[40] S. Tanaka, A. Miyake, T. Kagayama, K. Shimizu, P. Burger, F. Hardy, C. Meingast, Y. Ōnuki, Superconducting and Martensitic Transitions of V3Si and Nb3Sn under High Pressure, J. Phys. Soc. Jpn., 81(2012) SB024-SB026. https://doi.org/10.1143/JPSJS.81SB.SB026
[41] Z. Fisk, P. Schmidt, and L. Longinotti, Growth of YB6 single crystals, MRS Bulletin. 11(1976) 1019-1022. https://doi.org/10.1016/0025-5408(76)90179-3
[42] W. Lengauer, Characterization of nitrogen distribution profiles in fcc transition metal nitrides by means of Tc measurements, Surf. Interface Anal.15(1990) 377-382. https://doi.org/10.1002/sia.740150606
[43] M.I. Tsindlekht, V.M. Genkin, G.I. Leviev, I. Felner, O. Yuli, I. Asulin, O. Millo, M.A. Belogolovskii, N.Y. and Shitsevalova, Linear and nonlinear low-frequency electrodynamics of surface superconducting states in an yttrium hexaboride single crystal, Phys. Rev. B. 78(2008) 024520- 024522. https://doi.org/10.1103/PhysRevB.78.024522
[44] L. Malavasi, U.A. Tamburini, P. Galinetto, P. Ghigna, G. Flor, The High-Temperature Superconductor EuBa2Cu3O+x: Role of Thermal History on Microstructure and Superconducting Properties, J. mater. synth.Process., 9(2001) 31-37. https://doi.org/10.1023/A:1011334631235
[45] Y. Shi, N.H. Babu, K. Iida, D.A. Cardwell, Superconducting properties of Gd-Ba-Cu-O single grains processed from a new, Ba-rich precursor compound. in J. Phys. Conf. Ser., IOP Publishing. (2008) https://doi.org/10.1088/1742-6596/97/1/012250
[46] A. E. Lita, D. Rosenberg, S. Nam, A.J. Miller, D. Balzar, L.M. Kaatz,R.E. Schwall, Tuning of tungsten thin film superconducting transition temperature for fabrication of photon number resolving detectors, IEEE transactions on applied superconductivity, 15(2005) 3528-3531. https://doi.org/10.1109/TASC.2005.849033
[47] M. Baecker, Energy and superconductors-applications of high-temperature-superconductors, Oldenbourg Wissenschaftsverlag. (2011) 343-351
[48] J. Clarke, and A.I. Braginski, The SQUID handbook: Applications of SQUIDs and SQUID systems, JWS., Germany, 2006. pp. 29-92 https://doi.org/10.1002/9783527609956
[49] P. Schmüser, Superconductivity in high energy particle accelerators, Prog. Part. Nucl. Phys. 49(2002) 155-244. https://doi.org/10.1016/S0146-6410(02)00145-X
[50] R. G. Sharma, Superconductivity: Basics and applications to magnets, first ed., Springer Nature., Vol 214, 2021, pp. 620-631 https://doi.org/10.1007/978-3-030-75672-7
[51] A. Gabovich, and A. Voitenko, Superconductors with charge-and spin-density waves: theory and experiment, Low Temp.Phys. 26(2000) 305-330. https://doi.org/10.1063/1.593902
[52] J. Singleton, Studies of quasi-two-dimensional organic conductors based on BEDT-TTF using high magnetic fields, Rep. Prog. Phys. 63(2000), 1109-1111. https://doi.org/10.1088/0034-4885/63/8/201
[53] L. A. Parinov, Microstructure and properties of high-temperature superconductors, Springer Science & Business Media. (2013) https://doi.org/10.1007/978-3-642-34441-1
[54] A. Mourachkine, High-temperature superconductivity in cuprates: the nonlinear mechanism and tunneling measurements, Springer Science & Business Media, 125(2002) https://doi.org/10.1007/0-306-48063-8
[55] D. C. Johnston, and H.F. Braun, Systematics of superconductivity in ternary compounds, in Superconductivity in ternary compounds II, Springer. (1982) 11-55. https://doi.org/10.1007/978-1-4899-3768-1_2
[56] H. Kotegawa, Y. Tokunaga, K. Ishida, G.Q. Zheng, Y. Kitaoka, H. Kito, A. Iyo, K. Tokiwa, T. Watanabe, H. Ihara, Unusual magnetic and superconducting characteristics in multilayered high-T c cuprates: 63 Cu NMR study, Phys.Rev. B. 64(2001) 064510- 064515. https://doi.org/10.1103/PhysRevB.64.064515
[57] D. Quinn III, and W. Ittner III, Resistance in a Superconductor, J.App. Phys. 33(1962) 748-749. https://doi.org/10.1063/1.1702504
[58] Tuyn, W. and H.K. Onnes, Further experiments with liquid helium, AA. The disturbance of supra-conductivity by magnetic fields and currents. The hypothesis of Silsbee, in Through Measurement to Knowledge, Springer, ( 1991)363-387. https://doi.org/10.1007/978-94-009-2079-8_23
[59] C. J. Gorter, and H. Casimir, On supraconductivity , Physica. 1(1934) 306-320. https://doi.org/10.1016/S0031-8914(34)90037-9
[60] P. Lebrun, L. Tavian, U. Wagner, G. Vandoni, Cryogenics for particle accelerators and detectors, (2002)
[61] B. Serin, Superconductivity. Experimental part, in Low Temperature Physics II/Kältephysik II, Springer. (1956) 210-273. https://doi.org/10.1007/978-3-642-45838-5_3
[62] P. F. Dahl, Superconductivity after World War I and circumstances surrounding the discovery of a state B= 0, Historical Studies in the Physical and Biological Sciences, 16(1986) 1-58. https://doi.org/10.2307/27757556
[63] P. E. Goa, H. Hauglin, M. Baziljevich, E. Il’yashenko, P.L. Gammel, T.H. Johansen, Real-time magneto-optical imaging of vortices in superconducting NbSe2, Supercond Sci Technol.14(2001) 720- 729. https://doi.org/10.1088/0953-2048/14/9/320
[64] T. Matsuda, S. Hasegawa, M. Igarashi, T. Kobayashi, M. Naito, H. Kajiyama,J. Endo, N. Osakabe, A. Tonomura, R. Aoki, 1Magnetic field observation of a single flux quantum by electron-holographic interferometry, Phys. Rev. Lett. 62(1989) 2512-2519. https://doi.org/10.1103/PhysRevLett.62.2519
[65] R. Straub, S. Keil, R. Kleiner, D. Koelle, Low-frequency flux noise and visualization of vortices in a YBa2Cu3O7 dc superconducting quantum interference device washer with an integrated input coil, App. Phys.Lett. 78(2001) 3645-3647. https://doi.org/10.1063/1.1378048
[66] D. Cribier, et al., Mise en evidence par diffraction de neutrons d’une structure periodique du champ magnetique dans le niobium supraconducteur, Phys. Lett. 9(1964)106-107. https://doi.org/10.1016/0031-9163(64)90096-4
[67] V. Gantmakher, Progress in Low Temperature Physics, (1967)
[68] J. Schelten, H. Ullmaier, and W. Schmatz, neutron diffraction by vortex lattices in superconducting nb and Nb0.73Ta0.2, Kernforschungsanlage, Juelich. Ger. (1971) https://doi.org/10.1002/pssb.2220480219
[69] M. McCartney, R. Dunin-Borkowski, and D. Smith, Electron holography of magnetic nanostructures, in Magnetic microscopy of nanostructures, Springer. (2005) 87-109. https://doi.org/10.1007/3-540-26641-0_5
[70] R. Doll, and M. Näbauer, Experimental proof of magnetic flux quantization in a superconducting ring, Phys. Rev. Lett.7(1961) 49- 51. https://doi.org/10.1103/PhysRevLett.7.51
[71] Jr. Deaver, B.S. and W.M. Fairbank, Experimental evidence for quantized flux in superconducting cylinders, Phys. Rev. Lett. 7(1961) 40- 43. https://doi.org/10.1103/PhysRevLett.7.43
[72] B. D. Josephson, Possible new effects in superconductive tunnelling, Phys. Lett.1(1962) 251-253. https://doi.org/10.1016/0031-9163(62)91369-0
[73] R. Kleiner, and W. Buckel, Superconductivity: an introduction, JWS. (2016) https://doi.org/10.1002/9783527686513
[74] A. Kraft, C. Rupprecht, and Y.-C. Yam, Superconducting Quantum Interference Device (SQUID). 2017, University of British Columbia.
[75] R. P. Feynman, R.B. Leighton, and M. Sands, The feynman lectures on physics; vol. i, Amer.J. Phys. 33(1965) 750-752. https://doi.org/10.1119/1.1972241
[76] S. Shapiro, Josephson currents in superconducting tunneling: The effect of microwaves and other observations, Phys. Rev.Lett. 11(1963) 75- 80. https://doi.org/10.1103/PhysRevLett.11.80
[77] L. N. Cooper, Microscopic quantum interference in the theory of superconductivity, Science. 181(1973) 908-916. https://doi.org/10.1126/science.181.4103.908
[78] Jr, A. Abdumalikov et al., Nonlocal electrodynamics of long ultranarrow Josephson junctions: experiment and theory, Phys. Rev. B.74(2006) 134510- 134515. https://doi.org/10.1103/PhysRevB.74.134515
[79] J. F. I. Nturambirwe, Superconducting quantum interference device (SQUID) magnetometers: Principles, fabrication and applications, Postgraduate diploma assay, (2010)
[80] N. Byers, and C. Yang, Theoretical considerations concerning quantized magnetic flux in superconducting cylinders, Phys. Rev. Lett.7(1961) 40- 46. https://doi.org/10.1103/PhysRevLett.7.46
[81] D. N. Langenberg, D.J. Scalapino, and B.N. Taylor, The Josephson Effects., Sci.Amer. 214(1966) 30-39. https://doi.org/10.1038/scientificamerican0566-30
[82] R. Fagaly, Superconducting quantum interference device instruments and applications, Review of scientific instruments, 77(2006) 1011094-101101. https://doi.org/10.1063/1.2354545
[83] V. L. Ginzburg, and L.D. Landau, On the theory of superconductivity, in On superconductivity and superfluidity, Springer. (2009)113-137. https://doi.org/10.1007/978-3-540-68008-6_4