High Temperature Superconductors: Materials and Applications
M.S. Hasan and S.S. Ali
A ceramic high temperature superconductor called cuprate was discovered in 1986 by Bednorz and Muller at 135 K critical temperature (Tc). Ladik and Bierman demonstrated the idea of high temperature superconductivity (HTSC) by essential excitation of electrons in one chain of double standard DNA. The cuprates are consisted of stiff, fragile, and hard properties which are considered as the negative impact of cuprates superconductors. With the passage of time such drawback were removed and the cuprate superconductors were made capable for various applications. The breakthrough came in the history of superconductors when the iron based HTSC were discovered in 2006. High temperature H2S superconductors are designed at high pressure and Tc greater than 200 K in 2015. From the time of discovery of HTSC, superconductivity is used in different types of fields such as medical, electrical, magnetic, optics, recording media, microwave and communication devices.
Keywords
HTSC, Critical Temperature, Types of HTSC, Energy Storage System, Applications of HTSC
Published online 10/5/2022, 15 pages
Citation: M.S. Hasan and S.S. Ali, High Temperature Superconductors: Materials and Applications, Materials Research Foundations, Vol. 132, pp 179-193, 2022
DOI: https://doi.org/10.21741/9781644902110-10
Part of the book on Superconductors
References
[1] A. Bussmann-Holder, H. Keller, High-temperature superconductors: underlying physics and applications, Zeitschrift für Naturforschung B 75 (2020) 3-14. https://doi.org/10.1515/znb-2019-0103
[2] J.G. Bednorz, K.A. Müller, Possible high Tc superconductivity in the Ba− La− Cu− O system, Zeitschrift für Physik B Condensed Matter 64 (1986) 189-193. https://doi.org/10.1007/BF01303701
[3] A. Drozdov, M. Eremets, I. Troyan, V. Ksenofontov, S.I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature 525 (2015) 73-76. https://doi.org/10.1038/nature14964
[4] K. Antonowicz, Possible superconductivity at room temperature, Nature 247 (1974) 358-360. https://doi.org/10.1038/247358a0
[5] J. Langer, Unusual properties of the aniline black: does the superconductivity exist at room temperature?, Solid State Communications 26 (1978) 839-844. https://doi.org/10.1016/0038-1098(78)90755-X
[6] J. Ladik, A. Bierman, On the possibility of room-temperature superconductivity in double stranded DNA, Physics Letters A 29 (1969) 636-637. https://doi.org/10.1016/0375-9601(69)91140-2
[7] Y.S. Barash, V.L. Ginzburg, Some problems in the theory of van der Waals forces, Soviet Physics Uspekhi 27 (1984) 467. https://doi.org/10.1070/PU1984v027n07ABEH004025
[8] D. Eagles, Three small systems showing probable room-temperature superconductivity, Physica C: Superconductivity 483 (2012) 82-85. https://doi.org/10.1016/j.physc.2012.07.011
[9] N. Bagraev, E. Brilinskaya, E.Y. Danilovskii, L. Klyachkin, A. Malyarenko, V. Romanov, The de Haas-van Alphen effect in nanostructures of cadmium fluoride, Semiconductors 46 (2012) 87-92. https://doi.org/10.1134/S1063782612010022
[10] Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, H. Hosono, Iron-based layered superconductor: LaOFeP, Journal of the American Chemical Society 128 (2006) 10012-10013. https://doi.org/10.1021/ja063355c
[11] H. KH, ock, H. Nickisch, H. Thomas, Helv. Phys. Acta 56 (1983) 237.
[12] H. Fröhlich, Theory of the superconducting state. I. The ground state at the absolute zero of temperature, Physical Review 79 (1950) 845. https://doi.org/10.1103/PhysRev.79.845
[13] J. Franck, Physical properties of high temperature superconductors IV, World Sci, Singapore (1994) 189. https://doi.org/10.1142/9789814440981_0004
[14] C. Le, J. Zeng, Y. Gu, G.-H. Cao, J. Hu, A possible family of Ni-based high temperature superconductors, Science Bulletin 63 (2018) 957-963. https://doi.org/10.1016/j.scib.2018.06.005
[15] P. Dai, Antiferromagnetic order and spin dynamics in iron-based superconductors, Reviews of Modern Physics 87 (2015) 855. https://doi.org/10.1103/RevModPhys.87.855
[16] S. Ito, H. Hashizume, N. Yanagi, H. Tamura, Advanced high-temperature superconducting magnet for fusion reactors: Segment fabrication and joint technique, Fusion Engineering and Design 136 (2018) 239-246. https://doi.org/10.1016/j.fusengdes.2018.01.072
[17] N. Yanagi, S. Ito, Y. Terazaki, K. Natsume, H. Tamura, S. Hamaguchi, T. Mito, H. Hashizume, J. Morikawa, Y. Ogawa, Feasibility of HTS magnet option for fusion reactors, Plasma and Fusion Research 9 (2014) 1405013-1405013. https://doi.org/10.1585/pfr.9.1405013
[18] W. Fietz, S. Fink, R. Heller, P. Komarek, V. Tanna, G. Zahn, G. Pasztor, R. Wesche, E. Salpietro, A. Vostner, High temperature superconductors for the ITER magnet system and beyond, Fusion engineering and design 75 (2005) 105-109. https://doi.org/10.1016/j.fusengdes.2005.06.198
[19] V. Braccini, A. Xu, J. Jaroszynski, Y. Xin, D. Larbalestier, Y. Chen, G. Carota, J. Dackow, I. Kesgin, Y. Yao, Properties of recent IBAD-MOCVD coated conductors relevant to their high field, low temperature magnet use, Superconductor Science and Technology 24 (2010) 035001. https://doi.org/10.1088/0953-2048/24/3/035001
[20] L. Bromberg, M. Tekula, L. El-Guebaly, R. Miller, A. Team, Options for the use of high temperature superconductor in tokamak fusion reactor designs, Fusion Engineering and Design 54 (2001) 167-180. https://doi.org/10.1016/S0920-3796(00)00432-4
[21] H. Hashizume, S. Kitajima, S. Ito, K. Yagi, Y. Usui, Y. Hida, A. Sagara, Advanced fusion reactor design using remountable HTc SC magnet, J. Plasma Fusion Res. Ser. 5 (2002) 532-536.
[22] N. Yanagi, S. Ito, Y. Terazaki, Y. Seino, S. Hamaguchi, H. Tamura, J. Miyazawa, T. Mito, H. Hashizume, A. Sagara, Design and development of high-temperature superconducting magnet system with joint-winding for the helical fusion reactor, Nuclear Fusion 55 (2015) 053021. https://doi.org/10.1088/0029-5515/55/5/053021
[23] N. Yanagi, T. Mito, R. Champailler, G. Bansal, H. Tamura, A. Sagara, Design progress on the high-temperature superconducting coil option for the heliotron-type fusion energy reactor FFHR, Fusion Science and Technology 60 (2011) 648-652. https://doi.org/10.13182/FST60-648
[24] A. Sagara, J. Miyazawa, H. Tamura, T. Tanaka, T. Goto, N. Yanagi, R. Sakamoto, S. Masuzaki, H. Ohtani, Two conceptual designs of helical fusion reactor FFHR-d1A based on ITER technologies and challenging ideas, Nuclear Fusion 57 (2017) 086046. https://doi.org/10.1088/1741-4326/aa6b12
[25] A. Sagara, H. Tamura, T. Tanaka, N. Yanagi, J. Miyazawa, T. Goto, R. Sakamoto, J. Yagi, T. Watanabe, S. Takayama, Helical reactor design FFHR-d1 and c1 for steady-state DEMO, Fusion Engineering and Design 89 (2014) 2114-2120. https://doi.org/10.1016/j.fusengdes.2014.02.076
[26] F.K. Ariyo, M. Omoigui, Investigation of the damping of electromechanical oscillations using power system stabilizers (pss) in nigerian 330 kv electrical network, Electrical and Electronic Engineering 2 (2012) 236-244. https://doi.org/10.5923/j.eee.20120204.10
[27] S. Helmy, A.S. El-Wakeel, M.A. Rahman, M.A. Badr, Mitigating Subsynchronous resonance torques using dynamic braking resistor, Journal of Energy and Power Engineering 6 (2012) 833-839.
[28] A. Rahim, A. Al-Sammak, Optimal switching of dynamic braking resistor, reactor or capacitor for transient stability of power systems, IEE Proceedings C (Generation, Transmission and Distribution), IET, 1991, pp. 89-93. https://doi.org/10.1049/ip-c.1991.0011
[29] J. Usman, M.W. Mustafa, G. Aliyu, Design of AVR and PSS for power system stability based on iteration particle swarm optimization, International Journal of Engineering and Innovative Technology (IJEIT) 2 (2012).
[30] D. Connolly, A Review of Energy Storage Technologies: for the integration of fluctuating renewable energy, (2010).
[31] R. Patel, T. Bhatti, D. Kothari, Improvement of power system transient stability by coordinated operation of fast valving and braking resistor, IEE Proceedings-Generation, Transmission and Distribution 150 (2003) 311-316. https://doi.org/10.1049/ip-gtd:20030301
[32] S. Zhang, F.L. Luo, Power system stabilizer based on improved simple adaptive control, 2008 3rd IEEE Conference on Industrial Electronics and Applications, IEEE, 2008, pp. 908-913.
[33] P.F. Ribeiro, B.K. Johnson, M.L. Crow, A. Arsoy, Y. Liu, Energy storage systems for advanced power applications, Proceedings of the IEEE 89 (2001) 1744-1756. https://doi.org/10.1109/5.975900
[34] X.Y. Chen, J.X. Jin, Y. Xin, B. Shu, C.L. Tang, Y.P. Zhu, R.M. Sun, Integrated SMES technology for modern power system and future smart grid, IEEE Transactions on Applied Superconductivity 24 (2014) 1-5. https://doi.org/10.1109/TASC.2014.2346502
[35] M. Sander, F. Brighenti, R. Gehring, T. Jordan, M. Klaeser, D. Kraft, R. Mueller, H. Neumann, T. Schneider, G. Stern, LIQHYSMES-Liquid H2 and SMES for renewable energy applications, International journal of hydrogen energy 39 (2014) 12007-12017. https://doi.org/10.1016/j.ijhydene.2014.06.008
[36] P. Zhao, J. Wang, Y. Dai, Capacity allocation of a hybrid energy storage system for power system peak shaving at high wind power penetration level, Renewable Energy 75 (2015) 541-549. https://doi.org/10.1016/j.renene.2014.10.040
[37] P. Mukherjee, V. Rao, Design and development of high temperature superconducting magnetic energy storage for power applications-A review, Physica C: Superconductivity and its applications 563 (2019) 67-73. https://doi.org/10.1016/j.physc.2019.05.001
[38] S. Ran, Gravity probe B: Exploring Einstein’s universe with gyroscopes, NASA (2004) 26.
[39] N.J. Kelley, C. Wakefield, M. Nassi, P. Corsaro, S. Spreafico, D.W.V. Dollen, J. Jipping, Field demonstration of a 24-kV warm dielectric HTS cable, IEEE Transactions on Applied Superconductivity 11 (2001) 2461-2466. https://doi.org/10.1109/77.920361
[40] A. Sergeev, I. Golev, High-Temperature Superconducting Materials Based on Bismuth with a Low Critical Current, Materials Today: Proceedings 11 (2019) 489-493. https://doi.org/10.1016/j.matpr.2019.01.019
[41] A. Cansiz, E. Akyerden, The use of high temperature superconductor bulk in a co-axial magnetic gear, Cryogenics 98 (2019) 80-86. https://doi.org/10.1016/j.cryogenics.2019.01.008
[42] E. Gouda, S. Mezani, L. Baghli, A. Rezzoug, Comparative Study Between Mechanical and Magnetic Planetary Gears, IEEE Transactions on Magnetics 47 (2011) 439-450. https://doi.org/10.1109/TMAG.2010.2090890
[43] J. Rens, K. Atallah, S.D. Calverley, D. Howe, A Novel Magnetic Harmonic Gear, IEEE Transactions on Industry Applications 46 (2010) 206-212. https://doi.org/10.1109/TIA.2009.2036507
[44] M.M. Taşkın, A. Cansız, Design and Optimization of Generator for Narrow Body Commercial Aircraft, 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), 2019, pp. 1007-1011. https://doi.org/10.23919/ELECO47770.2019.8990621
[45] B. Dianati, H. Heydari, S.A. Afsari, Analytical Computation of Air-Gap Magnetic Field in a Viable Superconductive Magnetic Gear, IEEE Transactions on Applied Superconductivity 26 (2016) 1-12. https://doi.org/10.1109/TASC.2016.2544832
[46] G. Malé, S. Mezani, T. Lubin, J. Lévèque, A Fast Analytical Method to Compute the Radial Flux Density Distribution in the Airgap of a Superconducting Inductor, IEEE Transactions on Applied Superconductivity 21 (2011) 1114-1118. https://doi.org/10.1109/TASC.2010.2096172
[47] J.L. Perez-Diaz, E. Diez-Jimenez, I. Valiente-Blanco, C. Cristache, M.-A. Alvarez-Valenzuela, J. Sanchez-Garcia-Casarrubios, C. Ferdeghini, F. Canepa, W. Hornig, G. Carbone, J. Plechacek, A. Amorim, T. Frederico, P. Gordo, J. Abreu, V. Sanz, E.-M. Ruiz-Navas, J.-A. Martinez-Rojas, Performance of Magnetic-Superconductor Non-Contact Harmonic Drive for Cryogenic Space Applications, Machines 3 (2015) 138-156. https://doi.org/10.3390/machines3030138
[48] X. Yin, Y. Fang, P. Pfister, A Novel Single-PM-Array Magnetic Gear With HTS Bulks, IEEE Transactions on Applied Superconductivity 27 (2017) 1-5. https://doi.org/10.1109/TASC.2017.2672676