Piezoelectric Materials for Biomedical and Energy Harvesting Applications
Tanzeel Munawar, Nadia Akram, Khawaja Taimoor Rashid, Asim Mansha, Akbar Ali
Researchers explore alternative energy harvesting technologies because nonrenewable energy sources cause environmental pollution and energy crises. Mechanical energy can be turned into usable electricity, which may help to fulfill energy demand without environmental issues because it is the most common form of energy. Piezoelectric behavior is the distended energy harvesting mechanism based on high electromechanical connection influence and piezoelectric influence. Recent research in mineral, polymer, natural, and advance functional piezoelectric materials (AFPM) with biological effects is discussed. Piezoelectric power harvesting at different scales (nano, micro, etc.) has been discussed in various fields like transport, biomedical uses, wearing and inserting electronic devices, and tissue redevelopment. Piezocomposite and piezoelectric energy harvesting technology are examined along with their developments, limitations, and possible enhancements. This study covers a wide range of piezoelectric materials that may provide power to wireless devices in various applications.
Keywords
Advance Functional Piezoelectric Materials (AFPM), Piezoelectric Energy Harvesting, Biomedical uses of Piezocomposite, Applications of Piezoelectric Materials
Published online 2022/09/01, 21 pages
Citation: Tanzeel Munawar, Nadia Akram, Khawaja Taimoor Rashid, Asim Mansha, Akbar Ali, Piezoelectric Materials for Biomedical and Energy Harvesting Applications, Materials Research Foundations, Vol. 131, pp 165-185, 2022
DOI: https://doi.org/10.21741/9781644902097-6
Part of the book on Advanced Functional Piezoelectric Materials and Applications
References
[1] T. Siponkoski, M. Nelo, N. Ilonen, J. Juuti, H. Jantunen, High performance piezoelectric composite fabricated at ultra low temperature, Compos. B. Eng. 229 (2022) 109486. https://doi.org/10.1016/j.compositesb.2021.109486
[2] M. Iacob, V. Tiron, G.-T. Stiubianu, M. Dascalu, L. Hernandez, C.-D. Varganici, C. Tugui, M. Cazacu, Bentonite as an active natural filler for silicone leading to piezoelectric-like response material, J. Mater. Res. Technol. 17 (2022) 79-94. https://doi.org/10.1016/j.jmrt.2021.12.125
[3] Q.T. Nguyen, D.G. Baird, Preparation of polymer-clay nanocomposites and their properties, Adv. Polym. Technol. 25 (2006) 270-285. https://doi.org/10.1002/adv.20079
[4] M. Iacob, C. Tugui, V. Tiron, A. Bele, S. Vlad, T. Vasiliu, M. Cazacu, A.-L. Vasiliu, C. Racles, Iron oxide nanoparticles as dielectric and piezoelectric enhancers for silicone elastomers, Smart Mater. Struct. 26 (2017) 105046. https://doi.org/10.1088/1361-665X/aa867c
[5] L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, X. Zhang. Properties and applications of the beta phase poly (vinylidene fluoride). Polymers. 10 (2018) 228. https://doi.org/10.3390/polym10030228
[6] Z. Cui, N.T. Hassankiadeh, Y. Zhuang, E. Drioli, Y.M. Lee. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 51 (2015) 94-126. https://doi.org/10.1016/j.progpolymsci.2015.07.007
[7] H.K. Park, K.Y. Lee, J.S. Seo, J.A. Jeong, H.K. Kim, D. Choi, S.W. Kim, Charge‐generating mode control in high‐performance transparent flexible piezoelectric nanogenerators, Adv. Funct. Mater. 21 (2011) 1187-1193. https://doi.org/10.1002/adfm.201002099
[8] C.-Y. Chen, G. Zhu, Y. Hu, J.-W. Yu, J. Song, K.-Y. Cheng, L.-H. Peng, L.-J. Chou, Z.L. Wang, Gallium nitride nanowire based nanogenerators and light-emitting diodes, ACS. nano. 6 (2012) 5687-5692. https://doi.org/10.1021/nn301814w
[9] J.M. Wu, C.C. Kao, Self-powered pendulum and micro-force active sensors based on a ZnS nanogenerator, RSC. Advances. 4 (2014) 13882-13887. https://doi.org/10.1039/C3RA47435F
[10] P.G. Kang, B.K. Yun, K.D. Sung, T.K. Lee, M. Lee, N. Lee, S.H. Oh, W. Jo, H.J. Seog, C.W. Ahn, Piezoelectric power generation of vertically aligned lead-free (K, Na) NbO 3 nanorod arrays, RSC. Advances. 4 (2014) 29799-29805. https://doi.org/10.1039/C4RA02921F
[11] Z.-H. Lin, Y. Yang, J.M. Wu, Y. Liu, F. Zhang, Z.L. Wang, BaTiO3 nanotubes-based flexible and transparent nanogenerators, J. Phys. Chem. Lett. 3 (2012) 3599-3604. https://doi.org/10.1021/jz301805f
[12] J.H. Jung, M. Lee, J.-I. Hong, Y. Ding, C.-Y. Chen, L.-J. Chou, Z.L. Wang, Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator, ACS. nano. 5 (2011) 10041-10046. https://doi.org/10.1021/nn2039033
[13] M.-R. Joung, H. Xu, I.-T. Seo, D.-H. Kim, J. Hur, S. Nahm, C.-Y. Kang, S.-J. Yoon, H.-M. Park, Piezoelectric nanogenerators synthesized using KNbO 3 nanowires with various crystal structures, J. Mater. Chem. A 2 (2014) 18547-18553. https://doi.org/10.1039/C4TA03551H
[14] C.K. Jeong, K.I. Park, J. Ryu, G.T. Hwang, K.J. Lee, Large‐area and flexible lead‐free nanocomposite generator using alkaline niobate particles and metal nanorod filler, Adv. Funct. Mater. 24 (2014) 2620-2629. https://doi.org/10.1002/adfm.201303484
[15] Q.-t. Xue, Z. Wang, H. Tian, Y. Huan, Q.-Y. Xie, Y. Yang, D. Xie, C. Li, Y. Shu, X.-H. Wang, A record flexible piezoelectric KNN ultrafine-grained nanopowder-based nanogenerator, AIP. Adv. 5 (2015) 017102. https://doi.org/10.1063/1.4905698
[16] M.M. Alam, S.K. Ghosh, A. Sultana, D. Mandal, Lead-free ZnSnO3/MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation, Nanotechnology. 26 (2015) 165403. https://doi.org/10.1088/0957-4484/26/16/165403
[17] K.S. Ramadan, D. Sameoto, S. Evoy, A review of piezoelectric polymers as functional materials for electromechanical transducers, Smart Mater. Struct. 23 (2014) 033001. https://doi.org/10.1088/0964-1726/23/3/033001
[18] B.Y. Lee, J. Zhang, C. Zueger, W.-J. Chung, S.Y. Yoo, E. Wang, J. Meyer, R. Ramesh, S.-W. Lee, Virus-based piezoelectric energy generation, Nat. Nanotechnol.7 (2012) 351-356. https://doi.org/10.1038/nnano.2012.69
[19] J. Yang, Q.S. Chen, F. Xu, H. Jiang, W. Liu, X. Q. Zhang, Z.X. Jiang, G.D. Zhu. Epitaxy enhancement of piezoelectric properties in P(VDF-TrFE) copolymer films and applications in sensing and energy harvesting. Adv. Electron. Mater. 6 (2020) 2000578.. https://doi.org/10.1002/aelm.202000578
[20] J.S. Andrew, D.R. Clarke Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers. Langmuir. 24 (2008) 24, 670-672. https://doi.org/10.1021/la7035407
[21] C. Baur, Y. Zhou, J. Sipes, S. Priya, W. Voit, Organic, flexible, polymer composites for high-temperature piezoelectric applications, Energy Harvest. Syst. 1 (2014) 167-177. https://doi.org/10.1515/ehs-2013-0015
[22] A. Palshikar, N. Sharma, Review on Piezoelectric Materials as Thin Films with their Applications. Mater. Sci. Res. India. 12 (2015) 79-84. https://doi.org/10.13005/msri/120113
[23] S.P. Beeby, M.J. Tudor, N. White, Energy harvesting vibration sources for microsystems applications, Meas. Sci. Technol. 17 (2006) R175. https://doi.org/10.1088/0957-0233/17/12/R01
[24] Q. Zheng, B. Shi, Z. Li, Z.L. Wang, Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems, Adv. Sci. 4 (2017) 1700029. https://doi.org/10.1002/advs.201700029
[25] P. Judeinstein, C. Sanchez, Hybrid organic-inorganic materials: a land of multidisciplinarity, J. Mater. Chem. 6 (1996) 511-525. https://doi.org/10.1039/JM9960600511
[26] A.B. Gonçalves, A.S. Mangrich, A.J.G. Zarbin, Polymerization of pyrrole between the layers of α-Tin (IV) Bis (hydrogenphosphate), Synth. Met. 114 (2000) 119-124. https://doi.org/10.1016/S0379-6779(00)00227-7
[27] F.A. Beleze, A.J. Zarbin, Synthesis and characterization of organic-inorganic hybrids formed between conducting polymers and crystalline antimonic acid, J. Braz. Chem. Soc. 12 (2001) 542-547. https://doi.org/10.1590/S0103-50532001000400017
[28] M.M. Chamakh, D. Ponnamma, M.A.A. Al-Maadeed, Vapor sensing performances of PVDF nanocomposites containing titanium dioxide nanotubes decorated multi-walled carbon nanotubes, J. Mater. Sci. Mater. Electron. 29 (2018) 4402-4412. https://doi.org/10.1007/s10854-017-8387-z
[29] M. Silva, C.M. Costa, V. Sencadas, A. Paleo, S. Lanceros-Méndez, Degradation of the dielectric and piezoelectric response of β-poly (vinylidene fluoride) after temperature annealing, J. Polym. Res. 18 (2011) 1451-1457. https://doi.org/10.1007/s10965-010-9550-x
[30] E. Fukada, New piezoelectric polymers, Jpn. J. Appl. Phys. 37 (1998) 2775. https://doi.org/10.1143/JJAP.37.2775
[31] S. B. Lang, S. Muensit. Review of some lesser-known applications of piezoelectric and pyroelectric polymers. Appl. Phys. A . 85 (2006) 125-134. https://doi.org/10.1007/s00339-006-3688-8
[32] S. Mathur, J. Scheinbeim, B. Newman, Piezoelectric properties and ferroelectric hysteresis effects in uniaxially stretched nylon‐11 films, J. Appl. Phys. 56 (1984) 2419-2425. https://doi.org/10.1063/1.334294
[33] S. Sinha, S. Bhadra, D. Khastgir, Effect of dopant type on the properties of polyaniline, J. Appl. Polym. Sci. 112 (2009) 3135-3140. https://doi.org/10.1002/app.29708
[34] V.L. Reena, J.D. Sudha, C. Pavithran, Role of amphiphilic dopants on the shape and properties of electrically conducting polyaniline‐clay nanocomposite, J. Appl. Polym. Sci. 113 (2009) 4066-4076. https://doi.org/10.1002/app.30525
[35] J. Liu, X. Wang, X. Hu, A. Xiao, M. Wan, Studies of influence of naphthalene mono/disulfonic acid dopant on thermal stability of polypyrrole, J. Appl. Polym. Sci. 109 (2008) 997-1001. https://doi.org/10.1002/app.28051
[36] M. Liu, K. Tzou, R. Gregory, Influence of the doping conditions on the surface energies of conducting polymers, Synth. Met. 63 (1994) 67-71. https://doi.org/10.1016/0379-6779(94)90251-8
[37] A. Hänninen, E. Sarlin, I. Lyyra, T. Salpavaara, M. Kellomäki, S. Tuukkanen, Nanocellulose and chitosan based films as low cost, green piezoelectric materials, Carbohydr. Polym. 202 (2018) 418-424. https://doi.org/10.1016/j.carbpol.2018.09.001
[38] L. Csoka, I.C. Hoeger, P. Peralta, I. Peszlen, O.J. Rojas, Dielectrophoresis of cellulose nanocrystals and alignment in ultrathin films by electric field-assisted shear assembly, J. Colloid. Interface. Sci. 363 (2011) 206-212. https://doi.org/10.1016/j.jcis.2011.07.045
[39] L. Csoka, I.C. Hoeger, O.J. Rojas, I. Peszlen, J.J. Pawlak, P.N. Peralta, Piezoelectric effect of cellulose nanocrystals thin films, ACS. Macro. Lett. 1 (2012) 867-870. https://doi.org/10.1021/mz300234a
[40] C. Kumar, A. Gaur, S. Tiwari, A. Biswas, S.K. Rai, P. Maiti, Bio-waste polymer hybrid as induced piezoelectric material with high energy harvesting efficiency, Compos. Commun.11 (2019) 56-61. https://doi.org/10.1016/j.coco.2018.11.004
[41] S. Banerjee, S. Bairagi, S.W. Ali, A critical review on lead-free hybrid materials for next generation piezoelectric energy harvesting and conversion, Ceram. Int. 47 (2021) 16402-16421. https://doi.org/10.1016/j.ceramint.2021.03.054
[42] M. Jaafar, Development of hybrid fillers/polymer nanocomposites for electronic applications, Book: Hybrid Nanomaterials: Advances in Energy, Environment and Polymer Nanocomposites, John Wiley & Sons, Inc., Hoboken, NJ, USA (2017) 349-369. https://doi.org/10.1002/9781119160380.ch7
[43] Z.M. Dang, Y.Q. Lin, H.P. Xu, C.Y. Shi, S.T. Li, J. Bai, Fabrication and dielectric characterization of advanced BaTiO3/polyimide nanocomposite films with high thermal stability, Adv. Funct. Mater. 18 (2008) 1509-1517. https://doi.org/10.1002/adfm.200701077
[44] J. Li, Seok SIl Chu B., Dogan F., Zhang Q., Wang Q. Nanocomposites of Ferroelectric Polymers with TiO2 Nanoparticles Exhibiting Significantly Enhanced Electrical Energy Density, Adv. Mater. 21 (2009) 217-221. https://doi.org/10.1002/adma.200801106
[45] P. Kim, S.C. Jones, P.J. Hotchkiss, J.N. Haddock, B. Kippelen, S.R. Marder, J.W. Perry, Phosphonic acid‐modified barium titanate polymer nanocomposites with high permittivity and dielectric strength, Adv. Mater. 19 (2007) 1001-1005. https://doi.org/10.1002/adma.200602422
[46] F.R. Fan, W. Tang, Z.L. Wang, Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28 (2016) 4283-4305. https://doi.org/10.1002/adma.201504299
[47] C. Dias, D. Das-Gupta, Inorganic ceramic/polymer ferroelectric composite electrets, IEEE Trans. Dielectr. Electr. Insul. 3 (1996) 706-734. https://doi.org/10.1109/94.544188
[48] D.W. Hu, M.G. Yao, Y. Fan, C.R. Ma, M.J. Fan, M. Liu. Strategies to Achieve High Performance Piezoelectric Nanogenerators. Nano. Energy. 55 (2019) 288-304 https://doi.org/10.1016/j.nanoen.2018.10.053
[49] L. Pauer, Flexible piezoelectric material, IEEE Int. Conv. Rec. 21 (1973) 1-3.
[50] L.J. Lu, W. Q. Ding, J.Q. Liu, B. Yang. Flexible PVDF based piezoelectric nanogenerators. Nano. Energy 78 (2020) 78, 105251. https://doi.org/10.1016/j.nanoen.2020.105251
[51] J.Z. Gui, Y.Z. Zhu, L.L. Zhang, X. Shu, W. Liu, S.S. Cuo, X.Z. Zhao, Enhanced output-performance of piezoelectric poly(vinylidene fluoride trifluoroethylene) fibers-based nanogenerator with interdigital electrodes and well-ordered cylindrical cavities. Appl. Phys. Lett. 112 (2018) 072902. https://doi.org/10.1063/1.5019319
[52] M. Lee, C.Y. Chen, S. Wang, S.N. Cha, Y.J. Park, J.M. Kim, L.J. Chou, Z.L. Wang, A hybrid piezoelectric structure for wearable nanogenerators, Adv. Mater. 24 (2012) 1759-1764. https://doi.org/10.1002/adma.201200150
[53] J.Z. Gui, Y.Z. Zhu, L.L. Zhang, X.Shu, W. Liu, S. S. Cuo, X. Z. Zhao Enhanced output-performance of piezoelectric poly(vinylidene fluoride trifluoroethylene) fibers-based nanogenerator with interdigital electrodes and well-ordered cylindrical cavities. Appl. Phys. Lett. 112 (2018) 072902. https://doi.org/10.1063/1.5019319
[54] X. Li, L. Zhang, Y. Feng, X. Zhang, D. Wang, F. Zhou, Solid-liquid triboelectrification control and antistatic materials design based on interface wettability control, Adv. Funct. Mater. 29 (2019) 1903587. https://doi.org/10.1002/adfm.201903587
[55] Y. Yang, L. Lin, Y. Zhang, Q. Jing, T.-C. Hou, Z.L. Wang, Self-powered magnetic sensor based on a triboelectric nanogenerator, ACS. nano. 6 (2012) 10378-10383. https://doi.org/10.1021/nn304374m
[56] L. Zhang, X. Li, Y. Zhang, Y. Feng, F. Zhou, D. Wang, Regulation and influence factors of triboelectricity at the solid-liquid interface, Nano. Energy. 78 (2020) 105370. https://doi.org/10.1016/j.nanoen.2020.105370
[57] X. Xie, Q. Wang, Energy harvesting from a vehicle suspension system, Energy. 86 (2015) 385-392. https://doi.org/10.1016/j.energy.2015.04.009
[58] K. Shi, B. Sun, X. Huang, P. Jiang, Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators, Nano. Energy. 52 (2018) 153-162. https://doi.org/10.1016/j.nanoen.2018.07.053
[59] H. Madinei, H.H. Khodaparast, S. Adhikari, M. Friswell, Design of MEMS piezoelectric harvesters with electrostatically adjustable resonance frequency, Mech. Syst. Signal Process. 81 (2016) 360-374. https://doi.org/10.1016/j.ymssp.2016.03.023
[60] M. Shirvanimoghaddam, K. Shirvanimoghaddam, M.M. Abolhasani, M. Farhangi, V.Z. Barsari, H. Liu, M. Dohler, M. Naebe, Towards a green and self-powered Internet of Things using piezoelectric energy harvesting, IEEE. Access. 7 (2019) 94533-94556. https://doi.org/10.1109/ACCESS.2019.2928523
[61] Y. Sun, J. Chen, X. Li, Y. Lu, S. Zhang, Z. Cheng, Flexible piezoelectric energy harvester/sensor with high voltage output over wide temperature range, Nano. Energy. 61 (2019) 337-345. https://doi.org/10.1016/j.nanoen.2019.04.055
[62] A.C. Turkmen, C. Celik, Energy harvesting with the piezoelectric material integrated shoe, Energy. 150 (2018) 556-564. https://doi.org/10.1016/j.energy.2017.12.159
[63] L.J. Lu, W.Q. Ding,J.Q. Liu, B. Yang. Flexible PVDF based piezoelectric nanogenerators. Nano. Energy 78 (2020) 105251. https://doi.org/10.1016/j.nanoen.2020.105251
[64] Z.C. He, F. Rault, M. Lewandowski, E. Mohsenzadeh, F. Salaün. Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the phase and crystallinity enhancement. Polymers. 13 (2021) 174. https://doi.org/10.3390/polym13020174
[65] C. Dagdeviren, B.D. Yang, Y. Su, P.L. Tran, P. Joe, E. Anderson, J. Xia, V. Doraiswamy, B. Dehdashti, X. Feng, Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm, Proc. Natl. Acad. Sci. 111 (2014) 1927-1932. https://doi.org/10.1073/pnas.1317233111
[66] M. Háková, L.C. Havlíková, J. Chvojka, J. Erben, P. Solich, F. Švec, D. Šatínský, A comparison study of nanofiber, microfiber, and new composite nano/microfiber polymers used as sorbents for on-line solid phase extraction in chromatography system, Anal. Chim. Acta. 1023 (2018) 44-52. https://doi.org/10.1016/j.aca.2018.04.023
[67] B. Ren, S.W. Or, X. Zhao, H. Luo, Energy harvesting using a modified rectangular cymbal transducer based on 0.71 Pb (Mg 1/3 Nb 2/3) O 3-0.29 PbTiO 3 single crystal, J. Appl. Phys. 107 (2010) 034501. https://doi.org/10.1063/1.3296156
[68] M. Han, H. Wang, Y. Yang, C. Liang, W. Bai, Z. Yan, H. Li, Y. Xue, X. Wang, B. Akar, Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants, Nat. Electron. 2 (2019) 26-35. https://doi.org/10.1038/s41928-018-0189-7
[69] D.-M. Shin, H.J. Han, W.-G. Kim, E. Kim, C. Kim, S.W. Hong, H.K. Kim, J.-W. Oh, Y.-H. Hwang, Bioinspired piezoelectric nanogenerators based on vertically aligned phage nanopillars, Energy. Environ. Sci. 8 (2015) 3198-3203. https://doi.org/10.1039/C5EE02611C
[70] V. Vivekananthan, N.R. Alluri, Y. Purusothaman, A. Chandrasekhar, S. Selvarajan, S.-J. Kim, Biocompatible collagen nanofibrils: an approach for sustainable energy harvesting and battery-free humidity sensor applications, ACS. Appl. Mater. Interfaces. 10 (2018) 18650-18656. https://doi.org/10.1021/acsami.8b02915
[71] B.J. Hansen, Y. Liu, R. Yang, Z.L. Wang, Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy, ACS. nano. 4 (2010) 3647-3652. https://doi.org/10.1021/nn100845b
[72] G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, Z.L. Wang, Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator, Nano. Lett. 13 (2013) 847-853. https://doi.org/10.1021/nl4001053
[73] A. Baji, Y. W. Mai, Q. Li, Y. Liu. Electrospinning induced ferroelectricity in poly(vinylidene fluoride) fibers. Nanoscale. 3 (2011) 3068-3071. https://doi.org/10.1039/c1nr10467e
[74] C.X. Zhao, J. Niu, Y.Y. Zhang, C. Li, P. H. Hu. Coaxially aligned MWCNTs improve performance of electrospun P(VDF-TrFE)- based fibrous membrane applied in wearable piezoelectric nanogenerator. Compos. B Eng. 178 (2019) 107447. https://doi.org/10.1016/j.compositesb.2019.107447
[75] S. Bodkhe, G. Turcot, F.P. Gosselin, D. Therriault, One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures, ACS. Appl. Mater. Interfaces. 9 (2017) 20833-20842. https://doi.org/10.1021/acsami.7b04095
[76] E.J. Curry, K. Ke, M.T. Chorsi, K.S. Wrobel, A.N. Miller, A. Patel, I. Kim, J. Feng, L. Yue, Q. Wu, Biodegradable piezoelectric force sensor, Proc. Natl. Acad. Sci. 115 (2018) 909-914. https://doi.org/10.1073/pnas.1710874115
[77] J. Joseph, S.G. Singh, S.R.K. Vanjari, Leveraging innate piezoelectricity of ultra-smooth silk thin films for flexible and wearable sensor applications, IEEE Sens. J. 17 (2017) 8306-8313. https://doi.org/10.1109/JSEN.2017.2766163
[78] K. Shi, M. Ren, I. Zhitomirsky, Activated carbon-coated carbon nanotubes for energy storage in supercapacitors and capacitive water purification, ACS Sustain. Chem. Eng. 2 (2014) 1289-1298. https://doi.org/10.1021/sc500118r
[79] X. Wang, Y. Gu, Z. Xiong, Z. Cui, T. Zhang, Silk‐molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals, Adv. Mater. 26 (2014) 1336-1342. https://doi.org/10.1002/adma.201304248
[80] D.-M. Shin, S.W. Hong, Y.-H. Hwang, Recent advances in organic piezoelectric biomaterials for energy and biomedical applications, Nanomater. 10 (2020) 123. https://doi.org/10.3390/nano10010123
[81] Z. Liu, S. Zhang, Y. Jin, H. Ouyang, Y. Zou, X. Wang, L. Xie, Z. Li, Flexible piezoelectric nanogenerator in wearable self-powered active sensor for respiration and healthcare monitoring, Semicond. Sci. Technol. 32 (2017) 064004. https://doi.org/10.1088/1361-6641/aa68d1
[82] J. Park, M. Kim, Y. Lee, H.S. Lee, H. Ko, Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli, Sci. Adv. 1 (2015) e1500661. https://doi.org/10.1126/sciadv.1500661
[83] X. Cheng, X. Xue, Y. Ma, M. Han, W. Zhang, Z. Xu, H. Zhang, H. Zhang, Implantable and self-powered blood pressure monitoring based on a piezoelectric thinfilm: Simulated, in vitro and in vivo studies, Nano. Energy. 22 (2016) 453-460. https://doi.org/10.1016/j.nanoen.2016.02.037
[84] D.Y. Park, D.J. Joe, D.H. Kim, H. Park, J.H. Han, C.K. Jeong, H. Park, J.G. Park, B. Joung, K.J. Lee, Self‐powered real‐time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors, Adv. Mater. 29 (2017) 1702308. https://doi.org/10.1002/adma.201702308
[85] K. Kapat, Q.T. Shubhra, M. Zhou, S. Leeuwenburgh, Piezoelectric nano‐biomaterials for biomedicine and tissue regeneration, Adv. Funct. Mater. 30 (2020) 1909045. https://doi.org/10.1002/adfm.201909045
[86] C. Shuai, G. Liu, Y. Yang, W. Yang, C. He, G. Wang, Z. Liu, F. Qi, S. Peng, Functionalized BaTiO3 enhances piezoelectric effect towards cell response of bone scaffold, Colloids Surf. B: Biointerfaces.185 (2020) 110587. https://doi.org/10.1016/j.colsurfb.2019.110587
[87] A. Zaszczyńska, A. Gradys, P. Sajkiewicz, Progress in the applications of smart piezoelectric materials for medical devices, Polymers. 12 (2020) 2754. https://doi.org/10.3390/polym12112754
[88] S.M. Damaraju, Y. Shen, E. Elele, B. Khusid, A. Eshghinejad, J. Li, M. Jaffe, T.L. Arinzeh, Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation, Biomaterials. 149 (2017) 51-62. https://doi.org/10.1016/j.biomaterials.2017.09.024
[89] M. Hoop, X.-Z. Chen, A. Ferrari, F. Mushtaq, G. Ghazaryan, T. Tervoort, D. Poulikakos, B. Nelson, S. Pané, Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes, Sci. Rep. 7 (2017) 1-8. https://doi.org/10.1038/s41598-017-03992-3
[90] Y.-S.L.a.T.L. Arinzeh, The Influence of Piezoelectric Scaffolds on Neural Differentiation of Human Neural Stem/Progenitor Cells, Tissue Eng. 18 (2012) 19-20. https://doi.org/10.1089/ten.tea.2011.0540
[91] J. Jacob, N. More, K. Kalia, G. Kapusetti, Piezoelectric smart biomaterials for bone and cartilage tissue engineering, Inflamm. Regen. 38 (2018) 1-11. https://doi.org/10.1186/s41232-018-0059-8
[92] A.H. Rajabi, M. Jaffe, T.L. Arinzeh, Piezoelectric materials for tissue regeneration: A review, Acta Biomater. 24 (2015) 12-23. https://doi.org/10.1016/j.actbio.2015.07.010
[93] F. Ali, W. Raza, X. Li, H. Gul, K.-H. Kim, Piezoelectric energy harvesters for biomedical applications, Nano. Energy. 57 (2019) 879-902. https://doi.org/10.1016/j.nanoen.2019.01.012