Types, Properties and Characteristics of Piezoelectric Materials

$30.00

Types, Properties and Characteristics of Piezoelectric Materials

Y. Kalyana Lakshmi, K.V. Siva Kumar, S. Bharadwaj

Piezoelectric materials are an important class of materials that find application in science and technology, in engineering and in modern warfare as pressure transducers, sensors and energy harvesting devices. Selection of suitable piezoelectric materials relies on several factors such as the type, Curie temperature, environmental stability, different physical properties and their characterization depending different measurement techniques. Several aspects and typical characteristic constants that are necessary for selection of suitable piezoelectric composition are very broadly highlighted in this chapter. Fundamental properties obtained from different characterization tools were concisely discussed with respect to piezoelectric materials which also show ferroelectric behavior.

Keywords
Piezoelectric Materials

Published online 2022/09/01, 36 pages

Citation: Y. Kalyana Lakshmi, K.V. Siva Kumar, S. Bharadwaj, Types, Properties and Characteristics of Piezoelectric Materials, Materials Research Foundations, Vol. 131, pp 1-36, 2022

DOI: https://doi.org/10.21741/9781644902097-1

Part of the book on Advanced Functional Piezoelectric Materials and Applications

References
[1] P. Dineva, D. Gross, R. Müller, T. Rangelov, Piezoelectric materials: In Dynamic fracture of piezoelectric materials, Springer, Cham, 2014, pp. 7-32. https://doi.org/10.1007/978-3-319-03961-9_2
[2] W. Li, Q. Meng, Y. Zheng, Z. Zhang, W. Xia, Z. Xu, Electric energy storage properties of poly(vinylidene fluoride), Appl. Phys. Lett. 96 (2010) 192905. https://doi.org/10.1063/1.3428656
[3] G.M. Sessler, Piezoelectricity in polyvinylidene fluoride, J. Acoust. Soc. Am. 70 (1981) 1596-1608. https://doi.org/10.1121/1.387225
[4] A. Vinogradov, F. Holloway, Electro-mechanical properties of the piezoelectric polymer PVDF, Ferroelectrics. 226 (1999) 169-181. https://doi.org/10.1080/00150199908230298
[5] M. de Jong, W. Chen, H. Geerlings, M. Asta, K.A. Persson, A database to enable discovery and design of piezoelectric materials, Sci. Data. 2 (2015) 150053. https://doi.org/10.1038/sdata.2015.53
[6] J. Bernard, Antiferroelectric ceramics with field-enforced transitions: a new nonlinear circuit element, Proceedings of the IRE. 49 (1961) 1264-1267. https://doi.org/10.1109/JRPROC.1961.287917
[7] O.B. Wilson, Introduction to the Theory and Design of Sonar Transducers, Peninsula Publishing, Los Altos, CA, 1988, 65-124.
[8] R.C. Turner, Pa A. Fuierer, R. E. Newnham, R. Thomas Shrout, Materials for high temperature acoustic and vibration sensors: A review, Appl. Acoust. 41 (1994) 299-324. https://doi.org/10.1016/0003-682X(94)90091-4
[9] S. Zhang,Y. Fapeng, Piezoelectric materials for high temperature sensors, J. Am. Ceram. Soc. 94 (2011) 3153-3170. https://doi.org/10.1111/j.1551-2916.2011.04792.x
[10] J.A. Gallego-Juarez, Piezoelectric ceramics and ultrasonic transducers, J Phys E Sci Instrum. 22 (1989) 804. https://doi.org/10.1088/0022-3735/22/10/001
[11] S.Zhang, F.Li, X.Jiang, J.Kim, J.Luo, X.Geng, Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers-A review, Prog. Mater. Sci. 68 (2015) 1-66. https://doi.org/10.1016/j.pmatsci.2014.10.002
[12] H.G. Haertling, Ferroelectric ceramics: history and technology, J. Am. Ceram. Soc. 82 (1999) 797-818. https://doi.org/10.1111/j.1151-2916.1999.tb01840.x
[13] X.Jiang, F.Tang, J.T.Wang, T.P. Chen, Growth and properties of PMN-PT single crystals, Physica C Supercond. 364 (2001) 678-683. https://doi.org/10.1016/S0921-4534(01)00878-4
[14] J.Ma, S.Xue, X.Zhao, F.Wang, Y.Tang, Z.Duan, T.Wang, W.Shi, Q.Yue, H.Zhou, H.Luo, High frequency transducer for vessel imaging based on lead-free Mn-doped (K0. 44Na0. 56) NbO3 single crystal, Appl. Phys. Lett.111 (2017) 092903. https://doi.org/10.1063/1.4990072
[15] H.Du, F.Tang, D.Liu, D.Zhu, W.Zhou, S.Qu, The microstructure and ferroelectric properties of (K0. 5Na0. 5) NbO3-LiNbO3 lead-free piezoelectric ceramics, Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 136 (2007) 165-169. https://doi.org/10.1016/j.mseb.2006.09.031
[16] K.K.Sappati, B.Sharmistha, Flexible piezoelectric 0-3 PZT-PDMS thin film for tactile sensing, IEEE Sens. J. 20 (2020) 4610-4617. https://doi.org/10.1109/JSEN.2020.2965083
[17] J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M.Kimura, D. Damjanovic, Transferring lead-free piezoelectric ceramics into application, J. Eur. Ceram. Soc. 35 (2015) 1659-81. https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
[18] C.Hong, H.Kim, B.Choi, H.Han, J.Son, et al., Lead-free piezoceramics-where to move on?, J. Materiom. 2 (2016) 1-24. https://doi.org/10.1016/j.jmat.2015.12.002
[19] S.Wada, K.Takeda, T.Muraishi, H.Kakemoto, T.Tsurumi, T.Kimura, Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties, Jpn. J. Appl. Phys. 46 (2007) 7039-43. https://doi.org/10.1143/JJAP.46.7039
[20] W.F.Liu, X.B.Ren, Large piezoelectric effect in Pb-free ceramics, Phys. Rev. Lett. 103 (2009) 257602. https://doi.org/10.1103/PhysRevLett.103.257602
[21] Y.Liu, Y.Chang, F.Li, B.Yang, Y.Sun, et al., Exceptionally high piezoelectric coefficient and low strain hysteresis in grain-oriented (Ba,Ca)(Ti,Zr)O3 through integrating crystallographic texture and domain engineering, ACS Appl. Mater. Inter. 9 (2017) 29863-71. https://doi.org/10.1021/acsami.7b08160
[22] Y.Saito, H.Takao, T.Tani, T.Nonoyama, K.Takatori, Lead-free piezoceramics, Nature. 432 (2004) 84-87. https://doi.org/10.1038/nature03028
[23] R.Malik, J. Kang, A.Hussain, A.Ahn, H.Han, J.Lee, High strain in lead-free Nb-doped Bi1/2(Na0.84K0.16)1/2TiO3-SrTiO3 incipient piezoelectric ceramics, Appl. Phys. Exp. 7 (2014) 061502. https://doi.org/10.7567/APEX.7.061502
[24] D.Hu, M.Yao, Y.Fan, C.Ma, M.Fan, M.Liu, Strategies to achieve high performance piezoelectric nanogenerators, Nano Energy. 55 (2019) 288-304. https://doi.org/10.1016/j.nanoen.2018.10.053
[25] S. Gong, B. Zhang, J. Zhang, Z.L. Wang, K. Ren, Biocompatible poly(lactic acid)-based hybrid piezoelectric and electret nanogenerator for electronic skin applications, Adv. Funct. Mater. 30 (2020) 1908724. https://doi.org/10.1002/adfm.201908724
[26] S.A. Haddadi, S. Ghaderi, M. Amini, S.A.A. Ramazani, Mechanical and piezoelectric characterizations of electrospun PVDF-nanosilica fibrous scaffolds for biomedical applications, Mater. Today: SAVE Proc. 5 (2018) 15710-15716. https://doi.org/10.1016/j.matpr.2018.04.182
[27] P. Sengupta, A.Ghosh, N.Bose, S.Mukherjee, A.Roy Chowdhury, P.Datta, A comparative assessment of poly (vinylidene fluoride)/conducting polymer electrospun nanofiber membranes for biomedical applications, J. Appl. Polym. Sci. 137 (2020) 49115. https://doi.org/10.1002/app.49115
[28] K.K.Sappati, B.Sharmistha, Piezoelectric polymer and paper substrates: a review, J. Sens. 18 (2018) 3605. https://doi.org/10.3390/s18113605
[29] S.Gong, B.Zhang, J.Zhang, Z.L.Wang, K.Ren, Biocompatible Poly (lactic acid)‐Based Hybrid Piezoelectric and Electret Nanogenerator for Electronic Skin Applications, Adv. Funct. Mater. 30 (2020) 1908724. https://doi.org/10.1002/adfm.201908724
[30] N.Meng, X.Zhu, R.Mao, M.J.Reece, E.Bilotti, Nanoscale interfacial electroactivity in PVDF/PVDF-TrFE blended films with enhanced dielectric and ferroelectric properties, J. Mater. Chem. C. 5 (2017) 3296-3305. https://doi.org/10.1039/C7TC00162B
[31] Ali, Faizan, Waseem Raza, Xilin Li, Hajera Gul, Ki-Hyun Kim., Piezoelectric energy harvesters for biomedical applications, Nano Energy. 57 (2019) 879-902. https://doi.org/10.1016/j.nanoen.2019.01.012
[32] K. Maity, S.Garain, K.Henkel, D.Schmeißer, D.Mandal, Self-powered human-health monitoring through aligned PVDF nanofibers interfaced skin-interactive piezoelectric sensor, ACS Appl. Polym. Mater. 2 (2020) 862-878. https://doi.org/10.1021/acsapm.9b00846
[33] D.Y.Park, D.J.Joe, D.H.Kim, H.Park, J.H.Han, C.K.Jeong, H.Park, J.G.Park, B.Joung, K.J.Lee, Self‐powered real‐time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors, Adv. Mater.29 (2017) 1702308. https://doi.org/10.1002/adma.201702308
[34] M.T.Chorsi, E.J.Curry, H.T.Chorsi, R.Das, J.Baroody, P.K.Purohit, H.Ilies, T.D. Nguyen, Piezoelectric biomaterials for sensors and actuators, Adv. Mater.31 (2019) 1802084. https://doi.org/10.1002/adma.201802084
[35] M.N. Teferra, C.Kourbelis, P.Newman, J.S. Ramos, D.Hobbs, R.A. Clark,K.J. Reynolds, Electronic textile electrocardiogram monitoring in cardiac patients: a scoping review protocol, JBI evid. synth. 17 (2019) 147-156. https://doi.org/10.11124/JBISRIR-2017-003630
[36] J.Lim, H.Jung, C. Baek, G.T. Hwang, J. Ryu, D.Yoon, J. Yoo, K.I. Park, J.H. Kim, All-inkjet-printed flexible piezoelectric generator made of solvent evaporation assisted BaTiO3 hybrid material, Nano Energy. 41 (2017) 337-343. https://doi.org/10.1016/j.nanoen.2017.09.046
[37] Y.Tang, L.Chen, Z.Duan, K.Zhao, Z.Wu, Enhanced compressive strengths and induced cell growth of 1-3-type BaTiO3/PMMA bio-piezoelectric composites, Mater. Sci. Eng. C .120 (2021) 111699. https://doi.org/10.1016/j.msec.2020.111699
[38] Y.Cho, J.Jeong , M.Choi , G.Baek , S.Park, H.Choi , S. Ahn , S.Cha , T. Kim , D.S. Kang, J.Bae, BaTiO3@ PVDF-TrFE Nanocomposites with Efficient Orientation Prepared via Phase Separation Nano-coating Method for Piezoelectric Performance Improvement and Application to 3D-PENG, Chem. Eng. J. (2021) 131030. https://doi.org/10.1016/j.cej.2021.131030
[39] H. Jia, J.Chen, Tailoring the tetragonal distortion to obtain high Curie temperature and large piezoelectric properties in BiFeO3-PbTiO3-BaTiO3 solid solutions, J. Eur. Ceram. Soc. 41 (2021) 2443-2449. https://doi.org/10.1016/j.jeurceramsoc.2020.11.053
[40] A.Yazdani, H.D. Manesh, S.M. Zebarjad, Piezoelectric properties and damping behavior of highly loaded PZT/polyurethane particulate composites, Ceram. Int. (2021) In-press July 15. https://doi.org/10.1016/j.ceramint.2021.07.126
[41] B.S.Kim, J.H. Ji, J.H. Koh, Improved strain and transduction values of low-temperature sintered CuO-doped PZT-PZNN soft piezoelectric materials for energy harvester applications, Ceram. Int. 47 (2021) 6683-6690. https://doi.org/10.1016/j.ceramint.2020.11.008
[42] H.Jia, H.Li, B.Lin, Y.Hu, L.Peng, D.Xu, X.Cheng, Fine scale 2-2 connectivity PZT/epoxy piezoelectric fiber composite for high frequency ultrasonic application, Sens. Actuator A Phys. 324 (2021) 112672. https://doi.org/10.1016/j.sna.2021.112672
[43] R.McQuade, T.Rowe, A.Manjón-Sanz, L.De la Puente, M.R.Dolgos, An investigation into group 13 (Al, Ga, In) substituted (Na0. 5Bi0. 5) TiO3-BaTiO3 (NBT-BT) lead-free piezoelectrics, J. Alloys Compd. 762 (2018) 378-388. https://doi.org/10.1016/j.jallcom.2018.04.329
[44] M.V.Petrovic, F.Cordero, E.Mercadelli, E.Brunengo, N.Ilic, C.Galassi, Z.Despotovic, J.Bobic, A.Dzunuzovic, P.Stagnaro, G.Canu, Flexible lead-free NBT-BT/PVDF composite films by hot pressing for low-energy harvesting and storage, J. Alloys Compd. (2021) 161071. https://doi.org/10.1016/j.jallcom.2021.161071
[45] J.Xiao, J.Wang , S.Liu , Y.Wu , J.Xu , Z.Zhang , F.Wang , X.A.Wang, Y.Tang, H.Luo, Microstructure, electrical and optical properties of NBT-xBZT lead-free single crystals, J. Alloys Compd. 861 (2021) 157949. https://doi.org/10.1016/j.jallcom.2020.157949
[46] K.Batra, N.Sinha, B.Kumar, Ba-doped ZnO nanorods: Efficient piezoelectric filler material for PDMS based flexible nanogenerator, Vacuum. (2021) 110385. https://doi.org/10.1016/j.vacuum.2021.110385
[47] C.Zhang , N.Li , D.Chen , Q.Xu , H.Li , J.He , J.Lu ,The ultrasonic-induced-piezoelectric enhanced photocatalytic performance of ZnO/CdS nanofibers for degradation of bisphenol A, J. Alloys Compd.885 (2021) 160987. https://doi.org/10.1016/j.jallcom.2021.160987
[48] J.W.Li, Y.X.Liu, H.C.Thong, Z.Du, Z.Li , Z.X.Zhu, J.K.Nie, J.F.Geng, W.Gong, K.Wang, Effect of ZnO doping on (K, Na) NbO3-based lead-free piezoceramics: Enhanced ferroelectric and piezoelectric performance, J. Alloys Compd. 847 (2020) 155936. https://doi.org/10.1016/j.jallcom.2020.155936
[49] J.Mayamae, V.Wanwilai, S.Usa, Theerachai Bongkarn, Rangson Muanghlua, Naratip Vittayakorn, High piezoelectric response in lead free 0.9 BaTiO3-(0.1-x) CaTiO3-xBaSnO3 solid solution, Ceram. Int. 43 (2017) S121-S128. https://doi.org/10.1016/j.ceramint.2017.05.252
[50] R.C.Chang, S.Y.Chu, Y.F.Lin, C.S.Hong, P.C.Kao, C.H.Lu, The effects of sintering temperature on the properties of (Na0. 5K0. 5) NbO3-CaTiO3 based lead-free ceramics, Sens. Actuator A Phys. 138 (2007) 355-360. https://doi.org/10.1016/j.sna.2007.05.020
[51] T.E.Hooper, J.I.Roscow, A.Mathieson, H.Khanbareh, A.J.Goetzee-Barral, A.J.Bell, High voltage coefficient piezoelectric materials and their applications, J. Eur. Ceram. Soc. 41 (2021) 6115. https://doi.org/10.1016/j.jeurceramsoc.2021.06.022
[52] S. Banerjee, S.Bairagi, S.W.Ali, A critical review on lead-free hybrid materials for next generation piezoelectric energy harvesting and conversion, Ceram. Int.47 (2021)16402. https://doi.org/10.1016/j.ceramint.2021.03.054
[53] Z.Zhao, Y.Dai, S.X.Dou, J.Liang, Flexible nanogenerators for wearable electronic applications based on piezoelectric materials, Mater. Today Energy. (2021) 100690. https://doi.org/10.1016/j.mtener.2021.100690
[54] J.Chen, Q.Qiu, Y.Han, D.Lau, Piezoelectric materials for sustainable building structures: Fundamentals and applications, Renew. Sustain. Energy Rev.101 (2019) 14-25. https://doi.org/10.1016/j.rser.2018.09.038
[55] A.R.Chowdhury, J.Jaksik, I.Hussain, R.Longoria, O.Faruque, F.Cesano, D.Scarano, J.Parsons, M.J.Uddin, Multicomponent nanostructured materials and interfaces for efficient piezoelectricity, Nano-Struct. Nano-Objects. 17 (2019) 148-184. https://doi.org/10.1016/j.nanoso.2018.12.002
[56] T.Zheng, J.Wu, D.Xiao, J.Zhu, Recent development in lead-free perovskite piezoelectric bulk materials, Prog. Mater. Sci. 98 (2018) 552-624. https://doi.org/10.1016/j.pmatsci.2018.06.002
[57] P.Eltouby, I.Shyha, C.Li , J.Khaliq, Factors Affecting the Piezoelectric Performance of Ceramic-Polymer Composites: A Comprehensive Review, Ceram. Int.47 (2021)17813. https://doi.org/10.1016/j.ceramint.2021.03.126
[58] H.Zhou, Y.Zhang, Y.Qiu, H.Wu, W.Qin, Y.Liao, Q.Yu, H.Cheng, Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices, Biosens. Bioelectron. (2020) 112569. https://doi.org/10.1016/j.bios.2020.112569
[59] H.C.Thong, C.Zhao, Z.Zhou, C.F.Wu, Y.X.Liu, Z.Z. Du, J.F.Li, W.Gong, K.Wang, Technology transfer of lead-free (K, Na) NbO3-based piezoelectric ceramics, Mater. Today 29 (2019) 37-48. https://doi.org/10.1016/j.mattod.2019.04.016
[60] H.Liang, G.Hao, O.Z.Olszewski, A review on vibration-based piezoelectric energy harvesting from the aspect of compliant mechanisms, Sens. Actuator A Phys. 331 (2021) 112743. https://doi.org/10.1016/j.sna.2021.112743
[61] Q.Xu, J.Wen, Y.Qin, Development and outlook of high output piezoelectric nanogenerators, Nano Energy.86 (2021) 106080. https://doi.org/10.1016/j.nanoen.2021.106080
[62] W.R.Ali, M.Prasad, Piezoelectric MEMS based acoustic sensors: A review, Sens. Actuator A Phys. 301 (2020) 111756. https://doi.org/10.1016/j.sna.2019.111756
[63] J.Yan, M.Liu, Y.G. Jeong, W.Kang, L.Li, Y.Zhao, N.Deng, B.Cheng, G.Yang, Performance enhancements in poly (vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting, Nano Energy.56 (2019) 662-692. https://doi.org/10.1016/j.nanoen.2018.12.010
[64] L.Lu, W.Ding, J.Liu, B.Yang, Flexible PVDF based piezoelectric nanogenerators, Nano Energy.78 (2020): 105251. https://doi.org/10.1016/j.nanoen.2020.105251
[65] V.Jella, S.Ippili, J.H.Eom, S.V.Pammi, J.S.Jung, V.D.Tran, V.H.Nguyen, A.Kirakosyan, S.Yun, D.Kim, M.R.Sihn, A comprehensive review of flexible piezoelectric generators based on organic-inorganic metal halide perovskites, Nano Energy.57 (2019) 74-93. https://doi.org/10.1016/j.nanoen.2018.12.038
[66] F.Ali , W.Raza , X.Li , H.Gul , K.H.Kim, Piezoelectric energy harvesters for biomedical applications, Nano Energy.57 (2019) 879-902. https://doi.org/10.1016/j.nanoen.2019.01.012
[67] D.Khare, B.Basu, A.K.Dubey, Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications, Biomaterials. 258 (2020) 120280.
[68] A.T.Le,M.Ahmadipour, S.Y.Pung, A review on ZnO-based piezoelectric nanogenerators: Synthesis, characterization techniques, performance enhancement and applications.” J. Alloys Compd. 844 (2020): 156172. https://doi.org/10.1016/j.jallcom.2020.156172
[69] J.Hao, W.Li, J.Zhai, H.Chen, Progress in high-strain perovskite piezoelectric ceramics, Mater. Sci. Eng. R Rep. 135 (2019) 1-57. https://doi.org/10.1016/j.mser.2018.08.001
[70] J.Le Scornec, B.Guiffard, R.Seveno, V.Le Cam, Frequency tunable, flexible and low cost piezoelectric micro-generator for energy harvesting, Sens. Actuator A Phys. 312 (2020) 112148. https://doi.org/10.1016/j.sna.2020.112148
[71] D.Hu, M.Yao, Y.Fan, C.Ma, M.Fan, M.Liu, Strategies to achieve high performance piezoelectric nanogenerators, Nano Energy.55 (2019) 288-304. https://doi.org/10.1016/j.nanoen.2018.10.053
[72] J.F.Tressler, S.Alkoy, R.E.Newnham , Piezoelectric sensors and sensor materials, J. Electroceramics. 2 (1998) 257-272. https://doi.org/10.1023/A:1009926623551
[73] S.Zhang, Y.Fapeng, Piezoelectric materials for high temperature sensors, J. Am. Ceram. Soc. 94 (2011) 3153-3170. https://doi.org/10.1111/j.1551-2916.2011.04792.x
[74] N.Wu, B.Bao, Q.Wang, Review on engineering structural designs for efficient piezoelectric energy harvesting to obtain high power output, Eng. Struct. 235 (2021) 112068. https://doi.org/10.1016/j.engstruct.2021.112068
[75] H.A.Sodano, D.J.Inman, G.Park, A review of power harvesting from vibration using piezoelectric materials, Shock. Vib. 36 (2004) 197-206. https://doi.org/10.1177/0583102404043275
[76] T. R. Shrout, R. Eitel, C. Randall, High Performance, high Temperature Perovskite Piezoelectric Ceramics, in: N. Setter (Eds.), Piezoelectric Materials in Devices, Lausanne, Switzerland, 2002.
[77] R.C.Turner, P.A.Fuierer, R.E.Newnham, T.R.Shrout, Materials for High Temperature Acoustic and Vibration Sensors: A Review, Appl.Acoustics. 41(1994) 299-324. https://doi.org/10.1016/0003-682X(94)90091-4
[78] S. J. Zhang, J. Luo, D. W. Snyder, and T. R. Shrout, High Performance, High Temperature Piezoelectric Crystals: in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials – Synthesis, Characterization and Applications, Edited by Z. G. Ye. Woodhead Publishing Ltd., Cambridge, England, 2008, pp. 130-57. https://doi.org/10.1533/9781845694005.1.130
[79] D. Damjanovic, Materials for High Temperature Piezoelectric Transducers, Curr. Opinion Solid State Mater. Sci. 3(1998) 469-73. https://doi.org/10.1016/S1359-0286(98)80009-0
[80] N. Setter, ABC of Piezoelectricity and Piezoelectric Materials: in Piezoelectric Materials in Devices, N. Setter(Eds.), Lausanne, Switzerland, 2002 , pp. 1-27.
[81] Y.Yan , J.E.Zhou, D.Maurya, Y.U.Wang, S.Priya, Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO 3 material, Nat. Commun. 7 (2016) 13089. https://doi.org/10.1038/ncomms13089
[82] R. E. Newnham, Properties of Materials – Anisotropy, Symmetry, Structure. Oxford University Press, NY, 2005. https://doi.org/10.1093/oso/9780198520757.003.0005
[83] G. Gautschi, Piezoelectric Sensorices. Springer-Verlag, NY, 2002. https://doi.org/10.1007/978-3-662-04732-3
[84] P.J.Harrop, Temperature Coefficients of Capacitance of Solids, J. Mater. Sci.4 (1969). 370-4. https://doi.org/10.1007/BF00550407
[85] T. R. Shrout, R. Eitel, and C. Randall, High Performance, High Temperature Perovskite Piezoelectric Ceramics, : in Piezoelectric Materials in Devices, N. Setter (Eds.), Lausanne, Switzerland, 2002, pp. 413-32.
[86] R. C. Turner, P. A. Fuierer, R. E. Newnham, T. R. Shrout, Materials for High Temperature Acoustic and Vibration Sensors: A Review, Appl.Acoustics. 41 (1994) 299-324. https://doi.org/10.1016/0003-682X(94)90091-4
[87] S. J. Zhang, J. Luo, D. W. Snyder, T. R. Shrout, High Performance, High Temperature Piezoelectric Crystals: in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials – Synthesis, Characterization and Applications, Z. G. Ye (Eds). Woodhead Publishing Ltd., Cambridge, England, 2008, pp. 130-57. https://doi.org/10.1533/9781845694005.1.130
[88] S. Zhang, R. Xia, L. Lebrun, D. Anderson, T. Shrout, Piezoelectric Materials for High Power, High Temperature Applications, Mater. Lett. 59 (2005) 3471-5. https://doi.org/10.1016/j.matlet.2005.06.016
[89] K. Uchino, Ferroelectric Devices. CRC Press, NY, 2009.
[90] M.M. Choy, W.R. Cook, R.F.S. Hearmon, H. Jaffe, J. Jerphagnon, S.K. Kurtz, and S.T. Liu Landolt-BoÈrnstein Numerical Data and Functional Relationships in Science and Technology, edited by K.-H. Hellwege and A.M. Hellwege, (Springer-Verlag, Heidelberg, New York, 1979), Vol. 11, p. 328
[91] D.Berlincourt, T.Kinsley, T.M.Lambert, D.Schwartz, E.A. Gerber EA, I.E.Fair, IRE Standards on piezoelectric crystals: Measurements of piezoelectric ceramics, Proc. IRE. 149 (1961)1161. https://doi.org/10.1109/JRPROC.1961.287860
[92] B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics, Academic Press – London and New York, 1971, p. 315. https://doi.org/10.1016/B978-0-12-379550-2.50016-8
[93] M.G.Cain, M.Stewart, Standards for piezoelectric and ferroelectric ceramics: in Characterisation of ferroelectric bulk materials and thin films, Springer, Dordrecht, 2014, pp. 267-275. https://doi.org/10.1007/978-1-4020-9311-1_12
[94] J.Fialka, P.Beneš, Measurement of piezoelectric ceramic parameters-A characterization of the elastic, dielectric and piezoelectric properties of NCE51 PZT, :In Proceedings of the 13th International Carpathian Control Conference (ICCC), 2012 , pp. 147-152. https://doi.org/10.1109/CarpathianCC.2012.6228632
[95] J.Fialka, P.Beneš, Comparison of methods of piezoelectric coefficient measurement, :In 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, 2012 , pp. 37-42. https://doi.org/10.1109/I2MTC.2012.6229293
[96] L. Burianová, M. Šulc, M. Prokopová, Determination of the piezoelectric coefficients dij of PZT ceramics and composites by laser interferometry, J. Eur. Ceram. Soc. 21 (2001) 1387-1390. https://doi.org/10.1016/S0955-2219(01)00024-3
[97] J.W. Waanders, Piezoelectric Ceramics: Properties and Applications, Philips Components, Eindhoven – The Netherlands, 1991.
[98] J.Erhart, L. Burianová, What is really measured on a d -meter?, J. Eur. Ceram. Soc. 21 (2001) 1413-1415. https://doi.org/10.1016/S0955-2219(01)00030-9
[99] K.Nakamura, T.Tokiwa, Y.Kawamura, Domain structures in KNbO 3 crystals and their piezoelectric properties, Int. J. Appl. Phys. 91 (2002) 9272-9276. https://doi.org/10.1063/1.1476078
[100] W.Beere, Stresses and deformation at grain boundaries, Philos. Trans. Royal Soc. A PHILOS T R SOC A. 288 (1978) 177-196. https://doi.org/10.1098/rsta.1978.0012
[101] P.Zheng, J.L.Zhang, Y.Q.Tan, C.L.Wang, Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics, Acta Materialia. 60 (2012) 5022-5030. https://doi.org/10.1016/j.actamat.2012.06.015
[102] A.Pathak, C.Prakash, R.Chatterjee, Shape memory effect in PZST system at exact morphotropic phase boundary, Phys. Rev. B Condens. Matter. 404 (2009) 3457-3461. https://doi.org/10.1016/j.physb.2009.05.044
[103] L.X.Zhang, X.Ren, Y.Wang, X.Q.Ke, X.D.Ding, J.Sun, Novel electro-strain-effect in La-doped Pb (Zr, Ti) O 3 relaxor ferroelectrics, : In2009 18th IEEE International Symposium on the Applications of Ferroelectrics, 2009, pp. 1-4. https://doi.org/10.1109/ISAF.2009.5307586
[104] I.Dutta, R.N.Singh, Dynamic in situ x-ray diffraction study of antiferroelectric-ferroelectric phase transition in strontium-modified lead zirconate titanate ceramics, Integr. Ferroelectr. 131 (2011) 153-172. https://doi.org/10.1080/10584587.2011.616441
[105] S.Y.Choi, S.J.Jeong, D.S.Lee, M.S.Kim, J.S.Lee, J.H.Cho, B.I.Kim, Y.Ikuhara, Gigantic electrostrain in duplex structured alkaline niobates, Chem. Mater. 24 (2012) 3363-3369. https://doi.org/10.1021/cm301324h
[106] T.Zheng, W.Wu, J.Wu, J.Zhu, D.Xiao, Balanced development of piezoelectricity, Curie temperature, and temperature stability in potassium-sodium niobhrate lead-free ceramics, J. Mater. Chem. C. 4 (2016) 9779-9787. https://doi.org/10.1039/C6TC03389J
[107] C.Xu, D.Lin, K.W.Kwok, Structure, electrical properties and depolarization temperature of (Bi0. 5Na0. 5) TiO3-BaTiO3 lead-free piezoelectric ceramics, Solid State Sci. 10 (2008) 934-940. https://doi.org/10.1016/j.solidstatesciences.2007.11.003
[108] B.Wu, D.Xiao, W.Wu, J.Zhu, Q.Chen, J.Wu, Microstructure and electrical properties of (Ba0. 98Ca0. 02)(Ti0. 94Sn0. 06) O3-modified Bi0. 51Na0. 50TiO3 lead-free ceramics, Ceram. Int.38 (2012) 5677-5681. https://doi.org/10.1016/j.ceramint.2012.04.011
[109] X. Liu, X. Tan, Giant strains in non‐textured (Bi1/2Na1/2) TiO3‐based lead‐free ceramics, Adv. Mater.28 (2016) 574-578. https://doi.org/10.1002/adma.201503768
[110] Y.Tian, L.Wei, X.Chao, Z.Liu, Z.Yang, Phase transition behavior and large piezoelectricity near the morphotropic phase boundary of lead‐free (Ba 0.85 Ca 0.15)(Zr 0.1 Ti 0.9) O 3 ceramics, J. Am. Ceram. Soc. 96 (2013) 496-502. https://doi.org/10.1111/jace.12049
[111] L.F.Zhu, B.P.Zhang, X.K.Zhao, L.Zhao, F.Z.Yao, X.Han, P.F.Zhou, J.F.Li, Phase transition and high piezoelectricity in (Ba, Ca)(Ti1− x Sn x) O3 lead-free ceramics, Appl. Phys. Lett.103 (2013) 072905. https://doi.org/10.1063/1.4818732
[112] C.Mota, M.Labardi, L.Trombi, L.Astolfi, M.D’Acunto, D.Puppi, G.Gallone, F.Chiellini, S.Berrettini, L.Bruschini, S.Danti, Design, fabrication and characterization of composite piezoelectric ultrafine fibers for cochlear stimulation, Mater. Des. 122 (2017) 206-219. https://doi.org/10.1016/j.matdes.2017.03.013