Analysis of the Physicochemical Properties of The Ti6Al4V Titanium Alloy Produced by the Plastic Working Method and the SLS Method

Analysis of the Physicochemical Properties of The Ti6Al4V Titanium Alloy Produced by the Plastic Working Method and the SLS Method

KIERAT Oliwia, DUDEK Agata and MOSKAL Grzegorz

download PDF

Abstract. This work compared the physicochemical properties of the Ti6Al4V titanium alloy produced by plastic working and selective laser sintering. The corrosion behavior of materials was analyzed in terms of their application in medicine, particularly in implantology. For this purpose, corrosion resistance tests were carried out in Ringer’s fluid. The microstructural analysis of these materials was performed – before and after corrosion tests using the KEYENCE VHX-7000 digital microscope. Phase analysis of these materials was performed using a SEIFERT T-T X-ray diffractometer.

Keywords
Titanium Alloy, Ti6Al4V, Plastic Working, 3D Printing, Corrosion Resistance, Microstructure Analysis

Published online 7/20/2022, 8 pages
Copyright © 2022 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: KIERAT Oliwia, DUDEK Agata and MOSKAL Grzegorz, Analysis of the Physicochemical Properties of The Ti6Al4V Titanium Alloy Produced by the Plastic Working Method and the SLS Method, Materials Research Proceedings, Vol. 24, pp 134-141, 2022

DOI: https://doi.org/10.21741/9781644902059-20

The article was published as article 20 of the book Terotechnology XII

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] K. Karolewska, B. Ligaj. Comparison analysis of titanium alloy Ti6Al4V produced by metallurgical and 3D printing method, AIP Conference Proceedings 2077 (2019) art. 020025. https://doi.org/10.1063/1.5091886
[2] A.D. Dobrzańska-Danikiewicz, T.G. Gaweł, W. Wolany. Ti6Al4V titanium alloy used as a modern biomimetic material, Archives of Materials Science and Engineering 76 (2015) 150-156.
[3] S. Madhukar, A. Shravan, P. Vidyanand Sai, V.V. Satyanarayana. A critical review on cryogenic machining of titanium alloy (Ti-6Al-4V), International Journal of Mechanical Engineering and Technology (IJMET) 7 (2016) 38-45.
[4] S. Kumar, M. Nehra, D. Kedia, N. Dilbaghi, K. Tankeshwar, K.-H. Kim. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects, Materials Science and Engineering: C 106 (2020) art. 110154. https://doi.org/10.1016/j.msec.2019.110154
[5] A. Bandyopadhyay, F. Espana, V.K. Balla, S. Bose, Y. Ohgami, N. M. Davies. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants, Acta Biomaterialia 6 (2010) 1640-1648. https://doi.org/10.1016/j.actbio.2009.11.011
[6] J. Fojt, M. Fousova, E. Jablonska, L. Joska, V. Hybasek, E. Pruchova, D. Vojtech, T. Ruml. Corrosion behaviour and cell interaction of Ti-6Al-4V alloy prepared by two techniques of 3D printing, Materials Science & Engineering C 98 (2018) 911-920. https://doi.org/10.1016/j.msec.2018.08.066
[7] Ż.A. Mierzejewska. SLS Technology – characteristics and application of selective laser sintering in biomedical engineering, J. Technol. Exploit. Mech. Eng. 1 (2015) 178-190.
[8] A. Dudek, B. Lisiecka, R. Ulewicz. The effect of alloying method on the structure and properties of sintered stainless steel, Archives of Metallurgy and Materials 62 (2017) 281-287. https://doi.org/10.1515/amm-2017-0042
[9] L. Dąbek, A. Kapjor, Ł.J. Orman. Distilled water and ethyl alcohol boiling heat transfer on selected meshed surfaces, Mechanics and Industry 20 (2019) art. 701. https://doi.org/10.1051/meca/2019068
[10] Ł.J. Orman Ł.J., N. Radek, J. Pietraszek, M. Szczepaniak. Analysis of enhanced pool boiling heat transfer on laser-textured surfaces. Energies 13 (2020) art. 2700. https://doi.org/10.3390/en13112700
[11] A. Dudek. Surface properties in titanium with hydroxyapatite coating, Optica Applicata 39 (2009) 825-831.
[12] A. Dudek, R. Wlodarczyk. Structure and properties of bioceramics layers used for implant coatings, Solid State Phenom. 165 (2010) 31-36. https://doi.org/10.4028/www.scientific.net/SSP.165.31
[13] N. Radek, A. Sladek, J. Broncek, I. Bilska, A. Szczotok. Electrospark alloying of carbon steel with WC-Co-Al2O3: Deposition technique and coating properties, Advanced Materials Research 874 (2014) 101-106. https://doi.org/10.4028/www.scientific.net/AMR.874.101
[14] M. Szala, A. Dudek, A. Maruszczyk, M. Walczak, J. Chmiel, M. Kowal. Effect of atmospheric plasma sprayed TiO2–10% NiAl cermet coating thickness on cavitation erosion, sliding and abrasive wear resistance, Acta Phys. Pol. A 136 (2019) 335-341. https://doi.org/10.12693/APhysPolA.136.335
[15] N. Radek, J. Pietraszek, A. Goroshko. The impact of laser welding parameters on the mechanical properties of the weld, AIP Conf. Proc. 2017 (2018) art.20025. https://doi.org/10.1063/1.5056288
[16] N. Radek, J. Pietraszek, A. Gadek-Moszczak, Ł.J. Orman, A. Szczotok. The morphology and mechanical properties of ESD coatings before and after laser beam machining, Materials 13 (2020) art. 2331. https://doi.org/10.3390/ma13102331
[17] N. Radek, J. Konstanty, J. Pietraszek, Ł.J. Orman, M. Szczepaniak, D. Przestacki. The effect of laser beam processing on the properties of WC-Co coatings deposited on steel. Materials 14 (2021) art. 538. https://doi.org/10.3390/ma14030538
[18] H. Danielewski, A. Skrzypczyk, W. Zowczak, D. Gontarski, L. Płonecki, H. Wiśniewski, D. Soboń, A. Kalinowski, G. Bracha, K. Borkowski. Numerical analysis of laser-welded flange pipe joints in lap and fillet configurations, Technical Transactions 118 (2021) art. e2021030. https://doi.org/10.37705/TechTrans/e2021030
[19] G. Filo, E. Lisowski, M. Domagała, J. Fabiś-Domagała, H. Momeni. Modelling of pressure pulse generator with the use of a flow control valve and a fuzzy logic controller, AIP Conf. Proc. 2029 (2018) art.20015. https://doi.org/10.1063/1.5066477
[20] G. Filo, E. Lisowski, J. Rajda. Flow analysis of a switching valve with innovative poppet head geometry by means of CFD method, Flow Meas. Instrum. 70 (2019) art.101643. https://doi.org/10.1016/j.flowmeasinst.2019.101643
[21] E. Skrzypczak-Pietraszek. Phytochemistry and biotechnology approaches of the genus Exacum. In: The Gentianaceae – Volume 2: Biotechnology and Applications, 2015, 383-401. https://doi.org/10.1007/978-3-642-54102-5_16
[22] J. Pietraszek, E. Skrzypczak-Pietraszek. The uncertainty and robustness of the principal component analysis as a tool for the dimensionality reduction. Solid State Phenom. 235 (2015) 1-8. https://doi.org/10.4028/www.scientific.net/SSP.235.1
[23] E. Skrzypczak-Pietraszek, K. Reiss, P. Żmudzki, J. Pietraszek. Enhanced accumulation of harpagide and 8-O-acetyl-harpagide in Melittis melissophyllum L. agitated shoot cultures analyzed by UPLC-MS/MS. PLoS ONE 13 (2018) art. e0202556. https://doi.org/10.1371/journal.pone.0202556
[24] T. Lipiński, A. Wach. Influence of outside furnace treatment on purity medium carbon steel, METAL 2014 – 23rd Int. Conf. on Metallurgy and Materials (2014), Ostrava, Tanger 738-743.
[25] T. Lipiński. Corrosion resistance of 1.4362 steel in boiling 65% nitric acid, Manufacturing Technology 16 (2016) 1004-1009.
[26] T. Lipiński. Roughness of 1.0721 steel after corrosion tests in 20% NaCl, Production Engineering Archives 15 (2017) 27-30. https://doi.org/10.30657/pea.2017.15.07
[27] A. Dudek. Investigations of microstructure and properties in bioceramic coatings used in medicine, Archives of Metallurgy and Materials 56 (2011) 135-140. https://doi.org/10.2478/v10172-011-0015-y
[28] A. Dudek, L. Adamczyk. Properties of hydroxyapatite layers used for implant coatings, Optica Applicata 43 (2013) 143-151. https://doi.org/10.5277/oa130118
[29] D. Klimecka-Tatar, K. Radomska, G. Pawlowska. Corrosion resistance, roughness and structure of Co64Cr28Mo5(Fe, Si, Al, Be)3 and Co63Cr29Mo6.5(C, Si, Fe, Mn)1.5 biomedical alloys, J. Balkan Tribol. Assoc. 21 (2015) 204-210.
[30] J. Pietraszek, R. Dwornicka, A. Szczotok. The bootstrap approach to the statistical significance of parameters in the fixed effects model. ECCOMAS – Proc. of the 7th European Congress on Computational Methods in Applied Sciences and Engineering 3, 6061-6068. https://doi.org/10.7712/100016.2240.9206
[31] J. Pietraszek, A. Szczotok, N. Radek. The fixed-effects analysis of the relation between SDAS and carbides for the airfoil blade traces. Archives of Metallurgy and Materials 62 (2017) 235-239. https://doi.org/10.1515/amm-2017-0035
[32] J. Pietraszek, N. Radek, A.V. Goroshko. Challenges for the DOE methodology related to the introduction of Industry 4.0. Production Engineering Archives 26 (2020) 190-194. https://doi.org/10.30657/pea.2020.26.33
[33] J. Pietraszek, A. Gadek-Moszczak, N. Radek. The estimation of accuracy for the neural network approximation in the case of sintered metal properties. Studies in Computational Intelligence 513 (2014) 125-134. https://doi.org/10.1007/978-3-319-01787-7_12
[34] J. Fabiś-Domagała, G. Filo, H. Momeni, M. Domagała. Instruments of identification of hydraulic components potential failures, MATEC Web of Conf. 183 (2018) art.03008. https://doi.org/10.1051/matecconf/201818303008
[35] G. Filo, J. Fabiś-Domagała, M. Domagała, E. Lisowski, H. Momeni. The idea of fuzzy logic usage in a sheet-based FMEA analysis of mechanical systems, MATEC Web of Conf. 183 (2018) art.3009. https://doi.org/10.1051/matecconf/201818303009
[36] J. Fabis-Domagala, M. Domagala, H. Momeni. A concept of risk prioritization in fmea analysis for fluid power systems, Energies 14 (2021) art. 6482. https://doi.org/10.3390/en14206482
[37] J. Fabis-Domagala, M. Domagala, H. Momeni. A matrix FMEA analysis of variable delivery vane pumps, Energies 14 (2021) art. 1741. https://doi.org/10.3390/en14061741
[38] M. Ingaldi. Overview of the main methods of service quality analysis, Production Engineering Archives 18 (2018) 54-59. https://doi.org/10.30657/pea.2018.18.10
[39] A. Pacana, R. Ulewicz. Analysis of causes and effects of implementation of the quality management system compliant with iso 9001, Pol. J. Manag. Stud. 21 (2020) 283 296. https://doi.org/10.17512/pjms.2020.21.1.21
[40] D. Siwiec, R. Dwornicka, A. Pacana. Improving the non-destructive test by initiating the quality management techniques on an example of the turbine nozzle outlet, Materials Research Proceedings 17 (2020) 16-22. https://doi.org/10.21741/9781644901038-3
[41] G. Ostasz, K. Czerwińska, A. Pacana. Quality Management of Aluminum Pistons with the Use of Quality Control Points. Management Systems in Production Engineering 28 (2020) 29-33. https://doi.org/10.2478/mspe-2020-0005
[42] D. Nowakowski, A. Gądek-Moszczak, P. Lempa. Application of machine learning in the analysis of surface quality – the detection the surface layer damage of the vehicle body, METAL 2021 – 30th Int. Conf. Metallurgy and Materials (2021), Ostrava, Tanger 864-869. https://doi.org/10.37904/metal.2021.4210