The Influence of Oil Contamination on Flow Control Valve Operation
DOMAGALA Mariusz, MOMENI Hassan and FABIS-DOMAGALA Joanna
download PDFAbstract. This study presents CFD simulations of the flow of contaminated oil inside a control valve to investigate the influence of solid contaminants on the valve operational features. The Euler-Lagrange approach has been used to simulate the flow of oil contaminated with solid particles. The CFD simulations allowed determining the effect of solid contamination on the value of hydrodynamic force and a pressure drop for different contamination levels and valve opening.
Keywords
Flow Control Valve, Solid Particle Simulation, CFD Simulation
Published online 7/20/2022, 8 pages
Copyright © 2022 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: DOMAGALA Mariusz, MOMENI Hassan and FABIS-DOMAGALA Joanna, The Influence of Oil Contamination on Flow Control Valve Operation, Materials Research Proceedings, Vol. 24, pp 1-8, 2022
DOI: https://doi.org/10.21741/9781644902059-1
The article was published as article 1 of the book Terotechnology XII
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] S. Li, Z. Yang, H. Tian, C. Chen, Y. Zhu, S. Lu. Failure Analysis for Hydraulic System of Heavy-Duty Machine Tool with Incomplete Failure Data. Appl. Sci. 14 (2021) art. 1249. https://doi.org/10.3390/app11031249
[2] J. Fabis-Domagala, M. Domagala, H. Momeni. A Concept of Risk Prioritization in FMEA Analysis for Fluid Power Systems. Energies 14 (2021) art. 6482. https://doi.org/10.3390/en14206482
[3] L. Zeng, Z. Yu, H. Zhang, X. Zhang, H. Chen. A high sensitive multi-parameter micro sensor for the detection of multi-contamination in hydraulic oil, Sensors and Actuators A: Physical 282 (2018) 197-205. https://doi.org/10.1016/j.sna.2018.09.023.
[4] F. Ng, J.A. Harding, J. Glass. Improving hydraulic excavator performance through in line hydraulic oil contamination monitoring, Mech. Systems and Signal Process. 83 (2017) 176 193. https://doi.org/10.1016/j.ymssp.2016.06.006.
[5] ISO 20763:2004. Petroleum and Related Products—Determination of Anti-Wear Properties of Hydraulic Fluids—Vane Pump Method; International Organization for Standardization: Geneva, Switzerland, 2004
[6] DIN 51389-1. Determination of Lubricants; Mechanical Testing of Hydraulic Fluids in the Vane-Cell-Pump; General Working Principles; DIN Deutsches Institut für Normung e. V.: Berlin, Germany, 1982
[7] ASTM D7043-17. Standard Test Method for Indicating Wear Characteristics of Non-Petroleum and Petroleum Hydraulic Fluids in a Constant Volume Vane Pump; ASTM International: West Conshohocken, PA, USA, 2017
[8] M. Domagala, H. Momeni, J. Fabis-Domagala, G. Filo, M. Krawczyk, J. Rajda. Simulation of Particle Erosion in a Hydraulic Valve, Materials Research Proceedings 5 (2018) 17-24. https://dx.doi.org/10.21741/9781945291814-4
[9] Y. Yaobao, Y. Jiayang, G. Shengrong. Numerical study of solid particle erosion in hydraulic spool valves, Wear 392-393 (2017) 147-189. https://doi.org/10.1016/j.wear.2017.09.021
[10] ISO 4406: Hydraulic fluid power — Fluids — Method for coding the level of contamination by solid particles, International Organization for Standardization: Geneva, Switzerland, 2021
[11] M. Zmindak, L. Radziszewski, Z. Pelagic, M. Falat. FEM/BEM techniques for modelling of local fields in contact mechanics, Communications – Scientific Letters of the University of Zilina 17 (2015) 37-46.
[12] T. Lipiński. Corrosion resistance of 1.4362 steel in boiling 65% nitric acid, Manufacturing Technology 16 (2016) 1004-1009.
[13] Ł.J. Orman Ł.J., N. Radek, J. Pietraszek, M. Szczepaniak. Analysis of enhanced pool boiling heat transfer on laser-textured surfaces. Energies 13 (2020) art. 2700. https://doi.org/10.3390/en13112700
[14] E. Lisowski, J. Rajda, G. Filo, P. Lempa. Flow Analysis of a 2URED6C Cartridge Valve, Lecture Notes in Mechanical Engineering 24 (2021) 40-49. https://doi.org/10.1007/978-3-030-59509-8_4
[15] E. Skrzypczak-Pietraszek. Phytochemistry and biotechnology approaches of the genus Exacum. In: The Gentianaceae – Volume 2: Biotechnology and Applications, 2015, 383-401. https://doi.org/10.1007/978-3-642-54102-5_16
[16] M. Zenkiewicz, T. Zuk, J. Pietraszek, P. Rytlewski, K. Moraczewski, M. Stepczyńska. Electrostatic separation of binary mixtures of some biodegradable polymers and poly(vinyl chloride) or poly(ethylene terephthalate), Polimery/Polymers 61 (2016) 835-843. https://doi.org/10.14314/polimery.2016.835
[17] E. Radzyminska-Lenarcik, R. Ulewicz, M. Ulewicz. Zinc recovery from model and waste solutions using polymer inclusion membranes (PIMs) with 1-octyl-4-methylimidazole, Desalination and Water Treatment 102 (2018) 211-219. https://doi.org/10.5004/dwt.2018.21826
[18] M. Kekez, L. Radziszewski, A. Sapietova. Fuel type recognition by classifiers developed with computational intelligence methods using combustion pressure data and the crankshaft angle at which heat release reaches its maximum, Procedia Engineering 136 (2016) 353-358. https://doi.org/10.1016/j.proeng.2016.01.222
[19] A. Dudek, R. Wlodarczyk. Structure and properties of bioceramics layers used for implant coatings, Solid State Phenom. 165 (2010) 31-36. https://doi.org/10.4028/www.scientific.net/SSP.165.31
[20] N. Radek, J. Pietraszek, A. Gadek-Moszczak, Ł.J. Orman, A. Szczotok. The morphology and mechanical properties of ESD coatings before and after laser beam machining, Materials 13 (2020) art. 2331. https://doi.org/10.3390/ma13102331
[21] N. Radek, J. Pietraszek, A. Goroshko. The impact of laser welding parameters on the mechanical properties of the weld, AIP Conf. Proc. 2017 (2018) art.20025. https://doi.org/10.1063/1.5056288
[22] N. Radek, J. Konstanty, J. Pietraszek, Ł.J. Orman, M. Szczepaniak, D. Przestacki. The effect of laser beam processing on the properties of WC-Co coatings deposited on steel. Materials 14 (2021) art. 538. https://doi.org/10.3390/ma14030538
[23] J. Pietraszek, A. Gadek-Moszczak, N. Radek. The estimation of accuracy for the neural network approximation in the case of sintered metal properties. Studies in Computational Intelligence 513 (2014) 125-134. https://doi.org/10.1007/978-3-319-01787-7_12
[24] J. Pietraszek, E. Skrzypczak-Pietraszek. The uncertainty and robustness of the principal component analysis as a tool for the dimensionality reduction. Solid State Phenom. 235 (2015) 1-8. https://doi.org/10.4028/www.scientific.net/SSP.235.1
[25] J. Pietraszek, R. Dwornicka, A. Szczotok. The bootstrap approach to the statistical significance of parameters in the fixed effects model. ECCOMAS 2016 – Proc. 7th European Congress on Computational Methods in Applied Sciences and Engineering 3, 6061-6068. https://doi.org/10.7712/100016.2240.9206
[26] A. Maszke, R. Dwornicka, R. Ulewicz. Problems in the implementation of the lean concept at a steel works – Case study, MATEC Web of Conf. 183 (2018) art.01014. https://doi.org/10.1051/matecconf/201818301014
[27] T. Styrylska, J. Pietraszek. Numerical modeling of non-steady-state temperature-fields with supplementary data. Zeitschrift fur Angewandte Mathematik und Mechanik 72 (1992) T537-T539.
[28] J. Pietraszek. Response surface methodology at irregular grids based on Voronoi scheme with neural network approximator. 6th Int. Conf. on Neural Networks and Soft Computing JUN 11-15, 2002, Springer, 250-255. https://doi.org/10.1007/978-3-7908-1902-1_35
[29] J. Pietraszek, N. Radek, A.V. Goroshko. Challenges for the DOE methodology related to the introduction of Industry 4.0. Production Engineering Archives 26 (2020) 190-194. https://doi.org/10.30657/pea.2020.26.33
[30] D. Siwiec, R. Dwornicka, A. Pacana. Improving the non-destructive test by initiating the quality management techniques on an example of the turbine nozzle outlet, Materials Research Proceedings 17 (2020) 16-22. https://doi.org/10.21741/9781644901038-3
“”
““