Polypropylene/Clay Nanocomposites
M. Ramesh, M. Tamil Selvan, P. Hariprasad, D. Ashok Kumar
Polymers play a vital role in material science; they have been utilised for more than a century. Cosmetics, geotextiles, aircraft, and automobiles are just a few of the sectors that employ polypropylene. The addition of appropriate clay, can improve the mechanical and barrier characteristics of the material. This chapter deals with various types of fabrication as extrusion process by using twin screw extruder, solution blending method, melt-blending method, in-situ polymerization method, direct melt compounding, ultra sound-aided extrusion and master batch dilution. To characterize the polypropylene/clay nano composites by different property such as mechanical, thermal, tribological, optical, viscoelasticity, viscoplasticity, creep failure, hygrothermal, rheological and morphological.
Keywords
Polypropylene, Clay, Nanocomposites, Properties, Characterization
Published online , 30 pages
Citation: M. Ramesh, M. Tamil Selvan, P. Hariprasad, D. Ashok Kumar, Polypropylene/Clay Nanocomposites, Materials Research Foundations, Vol. 129, pp 203-232, 2022
DOI: https://doi.org/10.21741/9781644902035-9
Part of the book on Advanced Applications of Micro and Nano Clay II
References
[1] K.R. Reddy, Polypropylene clay nanocomposites. In: Handbook of Polymer nanocomposites. Processing, Performance and Application, Springer, Berlin, Heidelberg, 2014, pp. 153-175. https://doi.org/10.1007/978-3-642-38649-7_2
[2] A. Saravana Kumar, P. Maivizhi Selvi, L. Rajeshkumar, Delamination in drilling of sisal/banana reinforced composites produced by hand lay-up process. Appl. Mech. Mater. 867 (2017) 29-33. https://doi.org/10.4028/www.scientific.net/AMM.867.29
[3] K. Zdiri, A. Elamri, M. Hamdaoui, Advances in thermal and mechanical behaviors of PP/clay nanocomposites. Polym. Plast. Technol. Eng. 56(8) (2017) 824-840. https://doi.org/10.1080/03602559.2016.1233282
[4] M. Ramesh, L. Rajeshkumar, Wood flour filled thermoset composites. In: Abdullah M. Asiri, Anish Khan, Imran Khan, Showkat Ahmad Bhawani (eds.) Thermoset composites: preparation, properties and applications, Materials Research Foundations, 38 (2018) 33-65. https://doi.org/10.21741/9781945291876-2
[5] V. Kumar, A. Singh, Polypropylene clay nanocomposites. Rev. Chem. Eng. 29(6), (2013) 439-448. https://doi.org/10.1515/revce-2013-0014
[6] A. Usuki, N. Hasegawa, M. Kato, S. Kobayashi, Polymer-clay nanocomposites. Inorganic polymeric nanocomposites and membranes, 2005, pp. 135-195. https://doi.org/10.1007/b104481
[7] M. Ramesh, L.R. Kumar, A. Khan, A.M. Asiri, Self-healing polymer composites and its chemistry. In: Anish Khan, Mohammad Jawaid, Abdullah Mohammed Ahmed Asiri (eds.) Self-Healing Composite Materials, Elsevier, 2020, pp. 415-427. https://doi.org/10.1016/B978-0-12-817354-1.00022-3
[8] S. Lapshin, A. I. Isayev, Ultrasound‐aided extrusion process for preparation of polypropylene-clay nanocomposites. J. Vinyl Addit. Technol. 13(1) (2007) 40-45. https://doi.org/10.1002/vnl.20095
[9] J. M. Barbas, A. V. Machado, J.A. Covas, Processing conditions effect on dispersion evolution in a twin‐screw extruder: polypropylene‐clay nanocomposites. Chem. Eng. Technol. 37(2) (2014) 257-266. https://doi.org/10.1002/ceat.201300303
[10] M. Ramesh, L. Rajeshkumar, V. Bhuvaneshwari, Bamboo Fiber Reinforced Composites. In: Jawaid M., Mavinkere Rangappa S., Siengchin S. (eds) Bamboo Fiber Composites. Composites Science and Technology. Springer, Singapore, 2021. https://doi.org/10.1007/978-981-15-8489-3_1
[11] J. Ma, Z. Qi, Y. Hu, Synthesis and characterization of polypropylene/clay nanocomposites. J. Appl. Polym. Sci. 82(14) (2001) 3611-3617. https://doi.org/10.1002/app.2223
[12] J.Y. Wu, T.M. Wu, W.Y. Chen, S.J. Tsai, W.F. Kuo, G.Y. Chang, Preparation and characterization of PP/clay nanocomposites based on modified polypropylene and clay. J. Polym. Sci. Part B: Polym. Phy. 43(22) (2005) 3242-3254. https://doi.org/10.1002/polb.20605
[13] M. Ramesh, L.R. Kumar, Bioadhesives. In: Inamuddin R, Boddula MI, Ahamed, Asiri AM (eds) Green adhesives. 2020, pp. 145-167. https://doi.org/10.1002/9781119655053
[14] N. Rezaiean, H. Ebadi-Dehaghani, H.A. Khonakdar, P. Jafary, S.M.A. Jafari, R. Ghorbani, Microstructure and properties of polypropylene/clay nanocomposites. J. Macromol. Sci. Part B 55(10) (2016) 1022-1038. https://doi.org/10.1080/00222348.2016.1230462
[15] M. Ramesh, C. Deepa, L.R. Kumar, M.R. Sanjay, S. Siengchin, Life-cycle and environmental impact assessments on processing of plant fibres and its bio-composites: a critical review. Journal of Industrial Textiles, (2020). https://doi.org/10.1177/1528083720924730
[16] M.A. Treece, J.P. Oberhauser, Processing of polypropylene-clay nanocomposites: Single‐screw extrusion with in‐line supercritical carbon dioxide feed versus twin‐screw extrusion. J. Appl. Polym. Sci. 103(2) (2007) 884-892. https://doi.org/10.1002/app.25226
[17] M.A. Treece, W. Zhang, R.D. Moffitt, J.P. Oberhauser, Twin‐screw extrusion of polypropylene‐clay nanocomposites: Influence of masterbatch processing, screw rotation mode, and sequence. Polym. Eng. Sci. 47(6) (2007) 898-911. https://doi.org/10.1002/pen.20774
[18] D. Balaji, M. Ramesh, T. Kannan, S. Deepan, V. Bhuvaneswari, L. Rajeshkumar, Experimental investigation on mechanical properties of banana/snake grass fiber reinforced hybrid composites. Mater Today: Proc. 42 (2021) 350-355. https://doi.org/10.1016/j.matpr.2020.09.548
[19] M. Ramesh, C. Deepa, M. Tamil Selvan, L. Rajeshkumar, D. Balaji, V. Bhuvaneswari, Mechanical and water absorption properties of calotropis gigantea plant fibers reinforced polymer composites, Mater. Today: Proc. 46 (2020) 3367-3372. https://doi.org/10.1016/j.matpr.2020.11.480
[20] H. Baniasadi, S.A. Ramazani, S.J. Nikkhah, Investigation of in situ prepared polypropylene/clay nanocomposites properties and comparing to melt blending method. Mater. Des. 31(1) (2010) 76-84. https://doi.org/10.1016/j.matdes.2009.07.014
[21] V. Bhuvaneswari, M. Priyadharshini, C. Deepa. D. Balaji, L. Rajeshkumar, M. Ramesh, Deep learning for material synthesis and manufacturing systems: A review, Mater. Today: Proc. 46(9) (2021) 3263-3269. https://doi.org/10.1016/j.matpr.2020.11.351
[22] M. Kato, M. Matsushita, K. Fukumori, Development of a new production method for a polypropylene‐clay nanocomposite. Polym. Eng. Sci. 44(7) (2004) 1205-1211. https://doi.org/10.1002/pen.20115
[23] C.H. Hong, Y.B. Lee, J.W. Bae, J.Y. Jho, B.U. Nam, T.W. Hwang, Preparation and mechanical properties of polypropylene/clay nanocomposites for automotive parts application. J. Appl. Polym. Sci.98(1) (2005) 427-433. https://doi.org/10.1002/app.21800
[24] M. Pannirselvam, A. Genovese, M. C. Jollands, S.N. Bhattacharya, R.A. Shanks, Oxygen barrier property of polypropylene-polyether treated clay nanocomposite. Exp. Polym. Lett. 2(6) (2008) 429-439. https://doi.org/10.3144/expresspolymlett.2008.52
[25] M. Ramesh, J. Maniraj, L. Rajesh Kumar, Biocomposites for Energy Storage. Biobased Composites: Processing, Characterization, Properties, and Applications. In: Anish Khan, Sanjay M. Rangappa, Suchart Siengchin, Abdullah M. Asiri (eds) Biobased Composites: Processing, Characterization, Properties, and Applications, Wiley Online Library, 2021 pp.123-142. https://doi.org/10.1002/9781119641803.ch9
[26] M. Ramesh, L. Rajeshkumar, D. Balaji, V. Bhuvaneswari, Green composite using agricultural waste reinforcement. In: Thomas S., Balakrishnan P. (eds) Green Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore, 2021, pp 21-34. https://doi.org/10.1007/978-981-15-9643-8_2
[27] A.I. Isayev, Rishi Kumar, T.M. Lewis, Ultrasound assisted twin screw extrusion of polymer-nanocomposites containing carbon nanotubes. Polym. 50 (2009) 250-260. https://doi.org/10.1016/j.polymer.2008.10.052
[28] D.S. Dlamini, S.B. Mishra, A.K. Mishra, B.B. Mamba, Comparative studies of the morphological and thermal properties of clay/polymer nanocomposites synthesized via melt blending and modified solution blending methods. J. Compos. Mater. 45(21) (2011) 2211-2216. https://doi.org/10.1177/0021998311401074
[29] J.A. Tarapow, C.R. Bernal, V.A. Alvarez, Mechanical properties of polypropylene/clay nanocomposites: effect of clay content, polymer/clay compatibility, and processing conditions. J. Appl. Polym. Sci. 111(2) (2009) 768-778. https://doi.org/10.1002/app.29066
[30] M.S. Kim, J. Yan, K.M. Kang, K.H. Joo, Y.J. Kang, S.H. Ahn, Soundproofing ability and mechanical properties of polypropylene/exfoliated graphite nanoplatelet/carbon nanotube (PP/xGnP/CNT) composite. Int. J. Prec. Eng. Manuf. 14(6) (2013) 1087-1092. https://doi.org/10.1007/s12541-013-0146-3
[31] M. Ramesh, L. Rajeshkumar, Technological advances in analyzing of soil chemistry. In: Inamuddin, Mohd Imran Ahamed Rajender Boddula, Tariq Altalhi (eds) Applied Soil Chemistry, Wiley- Scrivener Publishing LLC, USA, 2021, pp 61-78. https://doi.org/10.1002/9781119711520.ch4
[32] M. Avella, S. Cosco, G.D. Volpe, M.E. Errico, Crystallization behavior and properties of exfoliated isotactic polypropylene/organoclay nanocomposites. Adv. Polym. Technol. J. Polym. Proc. Inst. 24(2) (2005) 132-144. https://doi.org/10.1002/adv.20036
[33] M. Ramesh, L. Rajeshkumar, D. Balaji, Aerogels for insulation applications. In: Inamuddin (ed) Aerogels II: Preparation, Properties and Applications. Materials Research Foundations, United states. 2021, pp. 57-76. https://doi.org/10.21741/9781644901298-4
[34] V. Bhuvaneswari, L. Rajeshkumar, K.N.S. Ross, Influence of bioceramic reinforcement on tribological behaviour of aluminium alloy metal matrix composites: experimental study and analysis. J. Mater. Res. Technol. 15 (2021) 2802-2819. https://doi.org/10.1016/j.jmrt.2021.09.090
[35] F.C. Chiu, P.H. Chu, Characterization of solution-mixed polypropylene/clay nanocomposites without compatibilizers. J. Polym. Res. 13(1) (2006) 73-78. https://doi.org/10.1007/s10965-005-9009-7
[36] Y. Wang, S.W. Huang, Solution intercalation and relaxation properties of maleated polypropylene/organoclay nanocomposites. Polym. Plast. Technol. Eng. 46(11) (2007) 1039-1047. https://doi.org/10.1080/03602550701522377
[37] M. Ramesh, L. Rajeshkumar, D. Balaji, Mechanical and dynamic properties of ramie fiber reinforced composites. In: Rajini Nagarajan, Senthil Muthu Kumar Thiagamani, Senthilkumar Krishnasamy, Suchart Siengchin (eds) Mechanical and Dynamic Properties of Biocomposites. Wiley, Germany, 2021, pp 275-322. https://doi.org/10.1002/9783527822331.ch15
[38] S.M. Lai, W.C. Chen, X.S. Zhu, Melt mixed compatibilized polypropylene/clay nanocomposites: Part 1-The effect of compatibilizers on optical transmittance and mechanical properties. Compos. Part A: Appl. Sci. Manuf. 40(6-7) (2009) 754-765. https://doi.org/10.1016/j.compositesa.2009.03.006
[39] M, Ramesh, L. Rajeshkumar, D. Balaji, V. Bhuvaneswari, S. Sivalingam, Self-healable conductive materials. In: Inamuddin, Mohd Imran Ahamed, Rajender Boddula, Tariq A. Altalhi (eds) Self-Healing Smart Materials, Wiley, United States, 2021, pp. 297-320. https://doi.org/10.1002/9781119710219.ch11
[40] M. Ramesh, L. Rajeshkumar, R. Saravanakumar, Mechanically-induced self-healable materials. In: Inamuddin, Mohd Imran Ahamed, Rajender Boddula, Tariq A. Altalhi (eds) Self-Healing Smart Materials, Wiley, United States, 2021, pp. 379-404. https://doi.org/10.1002/9781119710219.ch15
[41] A. Oya, Y. Kurokawa, H. Yasuda, Factors controlling mechanical properties of clay mineral/polypropylene nanocomposites. J. Mater. Sci. 35(5) (2000) 1045-1050. https://doi.org/10.1023/A:1004773222849
[42] M. Ramesh, L. Rajeshkumar, D. Balaji, Influence of process parameters on the properties of additively manufactured fiber-reinforced polymer composite materials: A review. J. Mater. Eng. Perform. 30 (7) (2021) 4792-4807. https://doi.org/10.1007/s11665-021-05832-y
[43] M. Ramesh, C. Deepa, K. Niranjana, L. Rajeshkumar, R. Bhoopathi, D. Balaji, Influence of Haritaki (Terminalia chebula) nano-powder on thermo-mechanical, water absorption and morphological properties of Tindora (Coccinia grandis) tendrils fiber reinforced epoxy composites. J. Nat. Fib. 2021. https://doi.org/10.1080/15440478.2021.1921660
[44] D. Mohankumar, V. Amarnath, V. Bhuvaneswari, S.P. Saran, K. Saravanaraj, M.S. Gogul, S. Sridhar, G. Kathiresan, L. Rajeshkumar, Extraction of plant based natural fibers – A mini review. IOP Conf. Ser.: Mater. Sci. Eng. 1145 (2021) 012023. https://doi.org/10.1088/1757-899X/1145/1/012023
[45] A. Chafidz, I. Ali, M.A. Mohsin, R. Elleithy, S. Al-Zahrani, Nanoindentation and dynamic mechanical properties of PP/clay nanocomposites. J. Polym. Res. 19(7) (2012) 1-12. https://doi.org/10.1007/s10965-012-9906-5
[46] M. Ramesh, C. Deepa, L. Rajeshkumar, K. Tamilselvan, D. Balaji, Influence of fiber surface treatment on the tribological properties of Calotropis gigantea plant fiber reinforced polymer composites. Polym. Compos. (2021). https://doi.org/10.1002/pc.26149. https://doi.org/10.1002/pc.26149
[47] M. Ramesh, L. Rajeshkumar. Case-studies on green corrosion inhibitors. Sustainable Corrosion Inhibitors, Materials Research Foundations, 107, 2021, pp. 204-221. https://doi.org/10.21741/9781644901496-9
[48] R.S. Chen, S. Ahmad, S. Gan, Characterization of recycled thermoplastics-based nanocomposites: Polymer-clay compatibility, blending procedure, processing condition, and clay content effects. Compos. Part B: Eng. 131 (2017) 91-99. https://doi.org/10.1016/j.compositesb.2017.07.057
[49] A.F. Sahayaraj, M. Muthukrishnan, M. Ramesh, L. Rajeshkumar, Effect of hybridization on properties of tamarind (Tamarindus indica L.) seed nano-powder incorporated jute-hemp fibers reinforced epoxy composites. Polym. Compos. (2021), https://doi.org/10.1002/pc.26326. https://doi.org/10.1002/pc.26326
[50] M. Ramesh, L. Rajeshkumar, R. Bhoopathi. Carbon substrates: A review on fabrication, properties and applications. Carbon Lett. 31 (2021) 557-580. https://doi.org/10.1007/s42823-021-00264-z
[51] B. Devarajan, R. Saravanakumar, S. Sivalingam, V. Bhuvaneswari, K. Fatemeh, L. Rajeshkumar, Catalyst derived from wastes for biofuel production: a critical review and patent landscape analysis. Appl. Nanosci. (2021), https://doi.org/10.1007/s13204-021-01948-8. https://doi.org/10.1007/s13204-021-01948-8
[52] M. Ramesh, D. Balaji, L. Rajeshkumar, V. Bhuvaneswari, R. Saravanakumar, Anish Khan, A.M. Asiri, tribological behavior of glass/sisal fiber reinforced polyester composites. In: Jawaid M., Khan A. (eds) Vegetable Fiber Composites and their Technological Applications. Composites Science and Technology. Springer, Singapore. 2021, pp.445-459. https://doi.org/10.1007/978-981-16-1854-3_20
[53] T. Sun, J.M. Garces, High‐performance polypropylene-clay nanocomposites by in‐situ polymerization with metallocene/clay catalysts. Adv. Mater. 14(2) (2002) 128-130. https://doi.org/10.1002/1521-4095(20020116)14:2<128::AID-ADMA128>3.0.CO;2-7
[54] K. Hariprasad, K. Ravichandran, V. Jayaseelan, T. Muthuramalingam. Acoustic and mechanical characterisation of polypropylene composites reinforced by natural fibres for automotive applications. J. Mater. Res. Technol. 9 (2020) 14029-14035. https://doi.org/10.1016/j.jmrt.2020.09.112
[55] K. Shirvanimoghaddam, K.V. Balaji, R. Yadav, O. Zabihi, M. Ahmadi, P. Adetunji, M. Naebe, Balancing the toughness and strength in polypropylene composites. Compos. Part B: Eng. (2021) 109121. https://doi.org/10.1016/j.compositesb.2021.109121
[56] M. Ramesh, L. Rajeshkumar, C. Deepa, M. Tamil Selvan, V. Kushvaha, M. Asrofi, Impact of silane treatment on characterization of ipomoea staphylina plant fiber reinforced epoxy composites. J. Nat. Fib. (2021). https://doi.org/10.1080/15440478.2021.1902896
[57] I.O. Oladele, M.O. Oladejo, A.A. Adediran, B.A. Makinde-Isola, A.F. Owa, E.T. Akinlabi, Influence of designated properties on the characteristics of dombeya buettneri fiber/graphite hybrid reinforced polypropylene composites. Sci. Rep. 10 (2020) 1-13. https://doi.org/10.1038/s41598-020-68033-y
[58] L. Lei, Z. Yao, J. Zhou, B. Wei, H. Fan. 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance. Compos. Sci. Technol. 200 (2020) 108479. https://doi.org/10.1016/j.compscitech.2020.108479
[59] H. Hadiji, M. Assarar, W. Zouari, F. Pierre, K. Behlouli, B. Zouari, R. Ayad, Damping analysis of nonwoven natural fibre-reinforced polypropylene composites used in automotive interior parts. Polym. Test. 89 (2020) 106692. https://doi.org/10.1016/j.polymertesting.2020.106692