Polyethylene Terephthalate-Clay Nanocomposites
Pinku Chandra Nath, Nishithendu Bikash Nandi, Biplab Roy
This chapter provides a comprehensive overview of clay-based PET nanocomposites. The different methods applied to prepare clay-based PET nanocomposites, their morphological and structural interpretation, improvements in mechanical and material characteristics, melt-state rheological and crystallization behavioural patterns, and, subsequently, current PET-based clay nanocomposites materials applications are all discussed.
Keywords
Poly (Ethylene Terephthalate), Clay, Nanocomposites, Characterization, Properties
Published online , 20 pages
Citation: Pinku Chandra Nath, Nishithendu Bikash Nandi, Biplab Roy, Polyethylene Terephthalate-Clay Nanocomposites, Materials Research Foundations, Vol. 129, pp 183-202, 2022
DOI: https://doi.org/10.21741/9781644902035-8
Part of the book on Advanced Applications of Micro and Nano Clay II
References
[1] A.K. Singh, R. Bedi, B.S. Kaith, Composite materials based on recycled polyethylene terephthalate and their properties – A comprehensive review, Compos. Part B Eng. 219 (2021) 108928. https://doi.org/10.1016/j.compositesb.2021.108928
[2] S. Fu, Z. Sun, P. Huang, Y. Li, N. Hu, Some basic aspects of polymer nanocomposites: A critical review, Nano Mater. Sci. 1 (2019) 2-30. https://doi.org/10.1016/j.nanoms.2019.02.006
[3] D.R. Paul, L.M. Robeson, Polymer nanotechnology: Nanocomposites, Polymer (Guildf). 49 (2008) 3187-3204. https://doi.org/10.1016/j.polymer.2008.04.017
[4] S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci. 28 (2003) 1539-1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002
[5] V. Mittal, Polymer Layered Silicate Nanocomposites: A Review, Materials (Basel). 2 (2009) 992-1057. https://doi.org/10.3390/ma2030992
[6] S.-S. Lee, Y.T. Ma, H.-W. Rhee, J. Kim, Exfoliation of layered silicate facilitated by ring-opening reaction of cyclic oligomers in PET-clay nanocomposites, Polymer (Guildf). 46 (2005) 2201-2210. https://doi.org/10.1016/j.polymer.2005.01.006
[7] S.Y. Hwang, W.D. Lee, J.S. Lim, K.H. Park, S.S. Im, Dispersibility of clay and crystallization kinetics forin situ polymerized PET/pristine and modified montmorillonite nanocomposites, J. Polym. Sci. Part B Polym. Phys. 46 (2008) 1022-1035. https://doi.org/10.1002/polb.21435
[8] M.C. Costache, M.J. Heidecker, E. Manias, C.A. Wilkie, Preparation and characterization of poly(ethylene terephthalate)/clay nanocomposites by melt blending using thermally stable surfactants, Polym. Adv. Technol. 17 (2006) 764-771. https://doi.org/10.1002/pat.752
[9] T. Mariappan, D. Yi, A. Chakraborty, N.K. Singha, C.A. Wilkie, Thermal stability and fire retardancy of polyurea and epoxy nanocomposites using organically modified magadiite, J. Fire Sci. 32 (2014) 346-361. https://doi.org/10.1177/0734904113516268
[10] A. Sanchez-Solis, A. Garcia-Rejon, O. Manero, Production of nanocomposites of PET-montmorillonite clay by an extrusion process, Macromol. Symp. 192 (2003) 281-292. https://doi.org/10.1002/masy.200390038
[11] D. Bikiaris, Can nanoparticles really enhance thermal stability of polymers? Part II: An overview on thermal decomposition of polycondensation polymers, Thermochim. Acta. 523 (2011) 25-45. https://doi.org/10.1016/j.tca.2011.06.012
[12] S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci. 28 (2003) 1539-1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002
[13] A. Amin, E.H. Ahmed, M.W. Sabaa, M.M.H. Ayoub, I.K. Battisha, Dielectric Behavior of Some Vinyl Polymers/Montmorillonite Nanocomposites on the Way to Apply Them as Semiconducting Materials, Open J. Org. Polym. Mater. 03 (2013) 73-80. https://doi.org/10.4236/ojopm.2013.33012
[14] M. Yin, C. Li, G. Guan, X. Yuan, D. Zhang, Y. Xiao, In-situ synthesis of poly(ethylene terephthalate)/clay nanocomposites using TiO 2 /SiO 2 sol-intercalated montmorillonite as polycondensation catalyst, Polym. Eng. Sci. 49 (2009) 1562-1572. https://doi.org/10.1002/pen.21388
[15] S.-S. Lee, Y.T. Ma, H.-W. Rhee, J. Kim, Exfoliation of layered silicate facilitated by ring-opening reaction of cyclic oligomers in PET-clay nanocomposites, Polymer (Guildf). 46 (2005) 2201-2210. https://doi.org/10.1016/j.polymer.2005.01.006
[16] J.-H. Chang, M.K. Mun, I.C. Lee, Poly(ethylene terephthalate) nanocomposite fibers byin situ polymerization: The thermomechanical properties and morphology, J. Appl. Polym. Sci. 98 (2005) 2009-2016. https://doi.org/10.1002/app.22382
[17] M.C. Costache, M.J. Heidecker, E. Manias, C.A. Wilkie, Preparation and characterization of poly(ethylene terephthalate)/clay nanocomposites by melt blending using thermally stable surfactants, Polym. Adv. Technol. 17 (2006) 764-771. https://doi.org/10.1002/pat.752
[18] A. Ammala, C. Bell, K. Dean, Poly(ethylene terephthalate) clay nanocomposites: Improved dispersion based on an aqueous ionomer, Compos. Sci. Technol. 68 (2008) 1328-1337. https://doi.org/10.1016/j.compscitech.2007.12.012
[19] T.-Y. Tsai, C.-H. Li, C.-H. Chang, W.-H. Cheng, C.-L. Hwang, R.-J. Wu, Preparation of Exfoliated Polyester/Clay Nanocomposites, Adv. Mater. 17 (2005) 1769-1773. https://doi.org/10.1002/adma.200401260
[20] M. Kráčalík, M. Studenovský, J. Mikešová, J. Kovářová, A. Sikora, R. Thomann, C. Friedrich, Recycled PET-organoclay nanocomposites with enhanced processing properties and thermal stability, Journal of Applied Polymer Science. 106 (2007) 2092-2100. https://doi.org/10.1002/app.26858
[21] A. Sánchez-Solís, I. Romero-Ibarra, M.R. Estrada, F. Calderas, O. Manero, Mechanical and rheological studies on polyethylene terephthalate-montmorillonite nanocomposites, Polymer Engineering & Science. 44 (2004) 1094-1102. https://doi.org/10.1002/pen.20102
[22] A.L.F. de M. Giraldi, M.T.M. Bizarria, A.A. Silva, J.I. Velasco, M.A. D’Ávila, L.H.I. Mei, Effects of extrusion conditions on the properties of recycled poly(ethylene terephthalate)/nanoclay nanocomposites prepared by a twin-screw extruder, Journal of Applied Polymer Science. 108 (2008) 2252-2259. https://doi.org/10.1002/app.27280
[23] K. Majdzadeh-Ardakani, S. Zekriardehani, M.R. Coleman, S.A. Jabarin, A Novel Approach to Improve the Barrier Properties of PET/Clay Nanocomposites, Int. J. Polym. Sci. 2017 (2017) 1-10. https://doi.org/10.1155/2017/7625906
[24] S.E. Vidotti, A.C. Chinellato, G.-H. Hu, L.A. Pessan, Preparation of poly (ethylene terephthalate)/organoclay nanocomposites using a polyester ionomer as a compatibilizer, Journal of Polymer Science Part B: Polymer Physics. 45 (2007) 3084-3091. https://doi.org/10.1002/polb.21311
[25] S.H. Kim, S.C. Kim, Synthesis and properties of poly(ethylene terephthalate)/clay nanocomposites byin situ polymerization, Journal of Applied Polymer Science. 103 (2007) 1262-1271. https://doi.org/10.1002/app.25120
[26] X.-G. Ge, D.-Y. Wang, C. Wang, M.-H. Qu, J.-S. Wang, C.-S. Zhao, X.-K. Jing, Y.-Z. Wang, A novel phosphorus-containing copolyester/montmorillonite nanocomposites with improved flame retardancy, European Polymer Journal. 43 (2007) 2882-2890. https://doi.org/10.1016/j.eurpolymj.2007.03.040
[27] J.-H. Chang, M.K. Mun, Nanocomposite fibers of poly(ethylene terephthalate) with montmorillonite and mica: thermomechanical properties and morphology, Polymer International. 56 (2007) 57-66. https://doi.org/10.1002/pi.2110
[28] W. Joon Choi, H.-J. Kim, K. Han Yoon, O. Hyeong Kwon, C. Ik Hwang, Preparation and barrier property of poly(ethylene terephthalate)/clay nanocomposite using clay-supported catalyst, Journal of Applied Polymer Science. 100 (2006) 4875-4879. https://doi.org/10.1002/app.23268
[29] X. Xu, Y. Ding, Z. Qian, F. Wang, B. Wen, H. Zhou, S. Zhang, M. Yang, Degradation of poly(ethylene terephthalate)/clay nanocomposites during melt extrusion: Effect of clay catalysis and chain extension, Polymer Degradation and Stability. 94 (2009) 113-123. https://doi.org/10.1016/j.polymdegradstab.2008.09.009
[30] R.R. Chowreddy, K. Nord-Varhaug, F. Rapp, Recycled Poly(Ethylene Terephthalate)/Clay Nanocomposites: Rheology, Thermal and Mechanical Properties, Journal of Polymers and the Environment. 27 (2019) 37-49. https://doi.org/10.1007/s10924-018-1320-6
[31] B. Lecouvet, M. Sclavons, S. Bourbigot, C. Bailly, Towards scalable production of polyamide 12/halloysite nanocomposites via water-assisted extrusion: mechanical modeling, thermal and fire properties, Polym. Adv. Technol. 25 (2014) 137-151. https://doi.org/10.1002/pat.3215
[32] C.N. Barbosa, F. Chabert, V. Nassiet, J.C. Viana, P. Pereira, Effect of Clay Amounts on Morphology and Mechanical Performances in Multiscale PET Composites, in: 2011: pp. 779-784. https://doi.org/10.1063/1.3589610
[33] C. Gao, S. Zhang, F. Wang, B. Wen, C. Han, Y. Ding, M. Yang, Graphene Networks with Low Percolation Threshold in ABS Nanocomposites: Selective Localization and Electrical and Rheological Properties, ACS Appl. Mater. Interfaces. 6 (2014) 12252-12260. https://doi.org/10.1021/am501843s
[34] Y.-J. Ma, C.-W. Xia, H.-Y. Yang, R.J. Zeng, A rheological approach to analyze aerobic granular sludge, Water Res. 50 (2014) 171-178. https://doi.org/10.1016/j.watres.2013.11.049
[35] R. Krishnamoorti, E.P. Giannelis, Rheology of End-Tethered Polymer Layered Silicate Nanocomposites, Macromolecules. 30 (1997) 4097-4102. https://doi.org/10.1021/ma960550a
[36] M. Kráčalík, M. Studenovský, J. Mikešová, J. Kovářová, A. Sikora, R. Thomann, C. Friedrich, Recycled PET-organoclay nanocomposites with enhanced processing properties and thermal stability, J. Appl. Polym. Sci. 106 (2007) 2092-2100. https://doi.org/10.1002/app.26858
[37] J. Bandyopadhyay, S. Sinha Ray, Clay-containing poly(ethylene terephthalate) (PET)-based polymer nanocomposites, in: Adv. Polym. Nanocomposites, Elsevier, 2012: pp. 277-320. https://doi.org/10.1533/9780857096241.2.277
[38] F. Awaja, D. Pavel, Recycling of PET, Eur. Polym. J. 41 (2005) 1453-1477. https://doi.org/10.1016/j.eurpolymj.2005.02.005
[39] S.E. Vidotti, A.C. Chinellato, G.-H. Hu, L.A. Pessan, Preparation of poly(ethylene terephthalate)/organoclay nanocomposites using a polyester ionomer as a compatibilizer, J. Polym. Sci. Part B Polym. Phys. 45 (2007) 3084-3091. https://doi.org/10.1002/polb.21311
[40] J. Bandyopadhyay, S. Sinha Ray, Clay-containing poly(ethylene terephthalate) (PET)-based polymer nanocomposites, in: Adv. Polym. Nanocomposites, Elsevier, 2012: pp. 277-320. https://doi.org/10.1533/9780857096241.2.277
[41] S.S. Ray, Recent Trends and Future Outlooks in the Field of Clay-Containing Polymer Nanocomposites, Macromol. Chem. Phys. 215 (2014) 1162-1179. https://doi.org/10.1002/macp.201400069
[42] A.M. Elbaz, A. Gani, N. Hourani, A.-H. Emwas, S.M. Sarathy, W.L. Roberts, TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil, Energy & Fuels. 29 (2015) 7825-7835. https://doi.org/10.1021/acs.energyfuels.5b01739
[43] A.K. Singh, R. Bedi, B.S. Kaith, Composite materials based on recycled polyethylene terephthalate and their properties – A comprehensive review, Compos. Part B Eng. 219 (2021) 108928. https://doi.org/10.1016/j.compositesb.2021.108928
[44] N. Roy, R. Sengupta, A.K. Bhowmick, Modifications of carbon for polymer composites and nanocomposites, Prog. Polym. Sci. 37 (2012) 781-819. https://doi.org/10.1016/j.progpolymsci.2012.02.002
[45] C.I. Idumah, C.M. Obele, Understanding interfacial influence on properties of polymer nanocomposites, Surfaces and Interfaces. 22 (2021) 100879. https://doi.org/10.1016/j.surfin.2020.100879
[46] K. Cao, C.P. Siepermann, M. Yang, A.M. Waas, N.A. Kotov, M.D. Thouless, E.M. Arruda, Reactive Aramid Nanostructures as High-Performance Polymeric Building Blocks for Advanced Composites, Adv. Funct. Mater. 23 (2013) 2072-2080. https://doi.org/10.1002/adfm.201202466
[47] H. Lu, S. Nutt, Restricted Relaxation in Polymer Nanocomposites near the Glass Transition, Macromolecules. 36 (2003) 4010-4016. https://doi.org/10.1021/ma034049b
[48] X. Xu, Y. Ding, Z. Qian, F. Wang, B. Wen, H. Zhou, S. Zhang, M. Yang, Degradation of poly(ethylene terephthalate)/clay nanocomposites during melt extrusion: Effect of clay catalysis and chain extension, Polym. Degrad. Stab. 94 (2009) 113-123. https://doi.org/10.1016/j.polymdegradstab.2008.09.009
[49] J. Hu, Y. Zhu, H. Huang, J. Lu, Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications, Prog. Polym. Sci. 37 (2012) 1720-1763. https://doi.org/10.1016/j.progpolymsci.2012.06.001
[50] A.P. Kumar, D. Depan, N. Singh Tomer, R.P. Singh, Nanoscale particles for polymer degradation and stabilization-Trends and future perspectives, Prog. Polym. Sci. 34 (2009) 479-515. https://doi.org/10.1016/j.progpolymsci.2009.01.002
[51] Y. Cui, S. Kumar, B. Rao Kona, D. van Houcke, Gas barrier properties of polymer/clay nanocomposites, RSC Adv. 5 (2015) 63669-63690. https://doi.org/10.1039/C5RA10333A
[52] M. Dong, H. Zhang, L. Tzounis, G. Santagiuliana, E. Bilotti, D.G. Papageorgiou, Multifunctional epoxy nanocomposites reinforced by two-dimensional materials: A review, Carbon N. Y. 185 (2021) 57-81. https://doi.org/10.1016/j.carbon.2021.09.009
[53] X.-G. Ge, D.-Y. Wang, C. Wang, M.-H. Qu, J.-S. Wang, C.-S. Zhao, X.-K. Jing, Y.-Z. Wang, A novel phosphorus-containing copolyester/montmorillonite nanocomposites with improved flame retardancy, Eur. Polym. J. 43 (2007) 2882-2890. https://doi.org/10.1016/j.eurpolymj.2007.03.040
[54] Y. Gao, J. Wu, Q. Wang, C.A. Wilkie, D. O’Hare, Flame retardant polymer/layered double hydroxide nanocomposites, J. Mater. Chem. A. 2 (2014) 10996. https://doi.org/10.1039/c4ta01030b
[55] S. Michałowski, K. Pielichowski, Nanoparticles as flame retardants in polymer materials: mode of action, synergy effects, and health/environmental risks, in: Heal. Environ. Saf. Nanomater., Elsevier, 2021: pp. 375-415. https://doi.org/10.1016/B978-0-12-820505-1.00017-1
[56] C.L. Reichert, E. Bugnicourt, M.-B. Coltelli, P. Cinelli, A. Lazzeri, I. Canesi, F. Braca, B.M. Martínez, R. Alonso, L. Agostinis, S. Verstichel, L. Six, S. De Mets, E.C. Gómez, C. Ißbrücker, R. Geerinck, D.F. Nettleton, I. Campos, E. Sauter, P. Pieczyk, M. Schmid, Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability, Polymers (Basel). 12 (2020) 1558. https://doi.org/10.3390/polym12071558
[57] M. Maiti, M. Bhattacharya, A.K. Bhowmick, Elastomer Nanocomposites, Rubber Chem. Technol. 81 (2008) 384-469. https://doi.org/10.5254/1.3548215
[58] F. Rault, S. Giraud, F. Salaün, Flame Retardant/Resistant Based Nanocomposites in Textile, in: 2015: pp. 131-165. https://doi.org/10.1007/978-3-319-03467-6_6