Nontronite-Starch based Nano-Composites and Applications

$30.00

Nontronite-Starch based Nano-Composites and Applications

A. Bajpai, M. Markam, V. Raj

Polymer nano-composites consist of two or more constituents with at least one being of nanoscale dimension. Being naturally abundant, affordable, non-toxic and biocompatible, clay-based minerals and biopolymers are advantageous to afford eco-friendly nanocomposites, especially useful for biological applications. Starch, a common polysaccharide, finds traditional use in the food industry, and has recently become relevant in several advanced technologies. Nontronite, an iron rich smectite clay, still remains underexplored in the context of nanocomposite preparation. This book chapter attempts to provide a brief overview of syntheses and applications of nanocomposites based on nontronite, starch and polysaccharide-clay.

Keywords
Starch, Nontronite, Biopolymers, Smectite, Polymer Nano-Composites, Bionanocomposites

Published online , 30 pages

Citation: A. Bajpai, M. Markam, V. Raj, Nontronite-Starch based Nano-Composites and Applications, Materials Research Foundations, Vol. 129, pp 153-182, 2022

DOI: https://doi.org/10.21741/9781644902035-7

Part of the book on Advanced Applications of Micro and Nano Clay II

References
[1] H.H. Murray, Traditional and new applications for kaolin, smectite, and palygorskite: a general overview, Appl. Clay Sci. 17 (2000) 207-221. https://doi.org/10.1016/S0169-1317(00)00016-8
[2] A. Al-Futaisi, A. Jamrah, A. Al-Rawas, S. Al-Hanai, Adsorption capacity and mineralogical and physico-chemical characteristics of Shuwaymiyah palygorskite (Oman), Environ. Geol. 51 (2007) 1317-1327. https://doi.org/10.1007/s00254-006-0430-y
[3] Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, Mechanical properties of nylon 6-clay hybrid, J. Mater. Res. 8 (1993) 1185-1189. https://doi.org/10.1557/JMR.1993.1185
[4] P.C. Lebaron, Z. Wang, T.J. Pinnavaia, Polymer-layered silicate nanocomposites: an overview, Appl. Clay Sci. 15 (1999) 11-29. https://doi.org/10.1016/S0169-1317(99)00017-4
[5] E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, T.C. Chung, Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties, Chem. Mater. 13 (2001) 3516-3523. https://doi.org/10.1021/cm0110627
[6] T. Lan, P.D. Kaviratna, T.J.Pinnavaia, Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites, Chem. Mater. 7 (1995) 2144-2150. https://doi.org/10.1021/cm00059a023
[7] Y.I. Tien, K.H. Wei, Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios, Polymer. 42 (2001) 3213-3221. https://doi.org/10.1016/S0032-3861(00)00729-1
[8] J.C. Huang, Z.K. Zhu, J. Yin, X.F. Qian, Y.Y. Sun, Poly(etherimide)/montmorillonite nanocomposites prepared by melt intercalation: morphology, solvent resistance properties and thermal properties, Polymer. 42 (2001) 873-877. https://doi.org/10.1016/S0032-3861(00)00411-0
[9] T. Agag, T. Takeichi, Polybenzoxazine-montmorillonite hybrid nanocomposites: synthesis and characterization, Polymer. 41 (2000) 7083-7090. https://doi.org/10.1016/S0032-3861(00)00064-1
[10] G. Galgali, C. Ramesh, A. Lele, Rheological study on the kinetics of hybrid formation in polypropylene nanocomposites, Macromolecules. 34 (2001) 852-858. https://doi.org/10.1021/ma000565f
[11] X. Fu, S. Qutubuddin, Polymer-clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene, Polymer. 42 (2001) 807-813. https://doi.org/10.1016/S0032-3861(00)00385-2
[12] M. Okamoto, S. Morita, Y.H. Kim, T. Kotaka, H. Tateyama, Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization, Polymer. 41 (2000) 3887-3890. https://doi.org/10.1016/S0032-3861(99)00655-2
[13] M. Okamoto, S. Morita, T. Kotaka, Dispersed structure and ionic conductivity of smectic clay/polymer nanocomposites, Polymer. 42 (2001) 2685-2688. https://doi.org/10.1016/S0032-3861(00)00642-X
[14] P.B. Messersmith, E.P. Giannelis, Synthesis and barrier properties of poly(ε-caprolactone) layered silicate nanocomposites, J. Polym. Sci. Part A Polym. Chem. 33 (1995) 1047-1057. https://doi.org/10.1002/pola.1995.080330707
[15] M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, A. Okada, Preparation and mechanical properties of polypropylene-clay hybrids, Macromolecules. 30 (1997) 6333-6338. https://doi.org/10.1021/ma961786h
[16] N. Hasegawa, M. Kawasumi, M. Kato, A. Usuki, A. Okada, Preparation and Mechanical Properties of Polypropylene – Clay Hybrids Using a Maleic anhydride-modified polypropylene oligomer. J. Appl. Polym. Sci. 67, 8792. https://doi.org/10.1002/(SICI)1097-4628(19980103)67:1<87::AID-APP10>3.0.CO;2-2
[17] R. E. Grim, Crystal Structures of Clay Minerals and their X-Ray Identification, G.W. Brindley, G. Brown (Eds.), Mineralogical Society, London, 1980, Volume 18, Issue 1, pp 84-85.
[18] S. Sinha Ray, Environmentally friendly nanofillers as reinforcements for composites, Environmentally Friendly Polymer Nanocomposites, Woodhead Publishing Ltd., 2013, pp 41-73. https://doi.org/10.1533/9780857097828.1.41
[19] M. Biswas, S.S. Ray, Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites, Adv. Polym. Sci. 155 (2001) 167-221. https://doi.org/10.1007/3-540-44473-4_3
[20] S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci. 28 (2003) 1539-1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002
[21] S.S. Ray, M. Bousmina, Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world, Prog. Mater. Sci. 50 (2005) 962-1079. https://doi.org/10.1016/j.pmatsci.2005.05.002
[22] R.A. Vaia, G. Price, P.N. Ruth, H.T. Nguyen, J. Lichtenhan, Polymer/layered silicate nanocomposites as high performance ablative materials, Appl. Clay Sci. 15 (1999) 67-92. https://doi.org/10.1016/S0169-1317(99)00013-7
[23] J. F. Kennedy, R. M. Alanís, Polysaccharides: structural diversity and functional versatility, second ed., Marcel Dekker, New York, Carbohydrate Polymers, 62(3), 2005, 301-301. https://doi.org/10.1016/j.carbpol.2005.05.027
[24] I.I. Muhamad, N.A.M. Lazim, S. Selvakumaran, Natural polysaccharide-based composites for drug delivery and biomedical applications, M S Hasnain, A. K. Nayak (Eds.), Natural Polysaccharides in Drug Delivery and Biomedical Applications, Elsevier Inc., 2019, pp 419-440. https://doi.org/10.1016/B978-0-12-817055-7.00018-2
[25] Z. Shriver, S. Raguram, R. Sasisekharan, Glycomics: A pathway to a class of new and improved therapeutics, Nat. Rev. Drug Discov. 3 (2004) 863-873. https://doi.org/10.1038/nrd1521
[26] R. A. Gross, B. Kalra, Biodegradable polymers for the environment, Science. 297 (2002) 803-7. https://doi.org/10.1126/science.297.5582.803
[27] J. Venkatesan, S. Anil, S.K. Singh, S.K. Kim, Preparations and Applications of Alginate Nanoparticles, J. Venkatesan, S Anil and S-K Kim (Eds.), Elsevier Inc., 2017, pp 251-268. https://doi.org/10.1016/B978-0-12-809816-5.00013-X
[28] S. Yadav, A. Yadav, N. Bagotia, A.K. Sharma, S. Kumar, Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater – A review, J. Water Process Eng. 42 (2021) 102148. https://doi.org/10.1016/j.jwpe.2021.102148
[29] X. Qi, X. Tong, W. Pan, Q. Zeng, S. You, J. Shen, Recent advances in polysaccharide-based adsorbents for wastewater treatment, J. Clean. Prod. 315 (2021) 128221. https://doi.org/10.1016/j.jclepro.2021.128221
[30] M.M. Ghobashy, The application of natural polymer-based hydrogels for agriculture, Hydrogels Based Nat. Polym. (2020) 329-356.. https://doi.org/10.1016/B978-0-12-816421-1.00013-6
[31] S.K. Dubey, Dheeraj, S. Hejmady, A. Alexander, S. Tiwari, G. Singhvi, Graft-modified polysaccharides in biomedical applications, A Nayak, M S Hasnain, T Aminabhavi (Eds.), Tailor-Made Polysaccharides Biomed. Appl., Elsevier Inc., 2020, pp 69-100. https://doi.org/10.1016/B978-0-12-821344-5.00004-7
[32] P. Prasher, M. Sharma, M. Mehta, S. Satija, A.A. Aljabali, M.M. Tambuwala, K. Anand, N. Sharma, H. Dureja, N.K. Jha, G. Gupta, M. Gulati, S.K. Singh, D.K. Chellappan, K.R. Paudel, P.M. Hansbro, K. Dua, Current-status and applications of polysaccharides in drug delivery systems, Colloid Interface Sci. Commun. 42 (2021) 100418. https://doi.org/10.1016/j.colcom.2021.100418
[33] S. Ahmad, M. Ahmad, K. Manzoor, R. Purwar, S. Ikram, A review on latest innovations in natural gums based hydrogels: Preparations & applications, Int. J. Biol. Macromol. 136 (2019) 870-890. https://doi.org/10.1016/j.ijbiomac.2019.06.113
[34] R. Malviya, P.K. Sharma, S.K. Dubey, Modification of polysaccharides: Pharmaceutical and tissue engineering applications with commercial utility (patents), Mater. Sci. Eng. C. 68 (2016) 929-938. https://doi.org/10.1016/j.msec.2016.06.093
[35] B. Maji, Introduction to natural polysaccharides, Funct. Polysaccharides Biomed. Appl. (2019) 1-31. https://doi.org/10.1016/B978-0-08-102555-0.00001-7
[36] I.I. Muhamad, N.A.M. Lazim, S. Selvakumaran, Natural polysaccharide-based composites for drug delivery and biomedical applications, Nat. Polysaccharides Drug Deliv. Biomed. Appl. (2019) 419-440. https://doi.org/10.1016/B978-0-12-817055-7.00018-2
[37] A.M. Morales-Burgos, E. Carvajal-Millan, N. Sotelo-Cruz, A.C. Campa-Mada, A. Rascón-Chu, Y. Lopez-Franco, J. Lizardi-Mendoza, Polysaccharides in Alternative Methods for Insulin Delivery, Biopolym. Grafting Synth. Prop. (2018) 175-197. https://doi.org/10.1016/B978-0-323-48104-5.00004-4
[38] A.A. Aly, M.K. El-Bisi, Grafting of Polysaccharides: Recent Advances, Biopolym. Grafting Synth. Prop. (2018) 469-519. https://doi.org/10.1016/B978-0-323-48104-5.00011-1
[39] V. Kumar, S. Nagar, P. Sharma, Opportunity of plant oligosaccharides and polysaccharides in drug development, Carbohydrates Drug Discov. Dev. (2020) 587-639. https://doi.org/10.1016/B978-0-12-816675-8.00015-4
[40] A. Orsuwan, R. Sothornvit, Polysaccharide Nanobased Packaging Materials for Food Application, Elsevier Inc., 2018. https://doi.org/10.1016/B978-0-12-811516-9.00007-5
[41] H.E. Tahir, Z. Xiaobo, G.K. Mahunu, M. Arslan, M. Abdalhai, L. Zhihua, Recent developments in gum edible coating applications for fruits and vegetables preservation: A review, Carbohydr. Polym. 224 (2019) 115141. https://doi.org/10.1016/j.carbpol.2019.115141
[42] G. Sason, A. Nussinovitch, Hydrocolloids for edible films, coatings, and food packaging, Handb. Hydrocoll. (2021) 195-235. https://doi.org/10.1016/B978-0-12-820104-6.00023-1
[43] J. Shuren, Production and use of modified starch and starch derivatives in China, in: R.H. Howeler, SL. Tan (Eds.), Proc. 6th Reg. Work., Ho Chi Minh City, Vietnam, 2000: pp. 553.-563.
[44] K. Ali, P. K. Roy, C. M. Hossain, D. Dutta, R. Vichare, M. R. Biswal, Starch-based nanomaterials in drug delivery applications, in: H.Bera, C. M. Hossain, S. Saha (Eds.), Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications, Academic Press,(2021), pp 31-56, ISBN 9780128208748. https://doi.org/10.1016/B978-0-12-820874-8.00023-3
[45] F.Z. Arrakhiz, K. Benmoussa, R. Bouhfid, A. Qaiss, Pine cone fiber/clay hybrid composite: Mechanical and thermal properties, Mater. Des. 50 (2013) 376-381. https://doi.org/10.1016/j.matdes.2013.03.033
[46] F. Wypych, F. Bergaya, R.A. Schoonheydt, From polymers to clay polymer nanocomposites, Dev. Clay Sci. 9 (2018) 331-359. https://doi.org/10.1016/B978-0-08-102432-4.00010-X
[47] M. Adamu, M.R. Rahman, S. Hamdan, Formulation optimization and characterization of bamboo/polyvinyl alcohol/clay nanocomposite by response surface methodology, Compos. Part B Eng. 176 (2019) 107297. https://doi.org/10.1016/j.compositesb.2019.107297
[48] B. Dogaru, B. Simionescu, M. Popescu, International Journal of Biological Macromolecules Synthesis and characterization of κ -carrageenan bio-nanocomposite fi lms reinforced with bentonite nanoclay, Int. J. Biol. Macromol. 154 (2020) 9-17. https://doi.org/10.1016/j.ijbiomac.2020.03.088
[49] S. Mamaghani Shishavan, T. Azdast, S. Rash Ahmadi, Investigation of the effect of nanoclay and processing parameters on the tensile strength and hardness of injection molded Acrylonitrile Butadiene Styrene-organoclay nanocomposites, Mater. Des. 58 (2014) 527-534. https://doi.org/10.1016/j.matdes.2014.02.014
[50] S. S. Ray, Environmentally friendly nanofillers as reinforcements for composites. Environmentally Friendly, Polym. Nanocompos. (2013) 41-73. https://doi.org/10.1533/9780857097828.1.41
[51] M. V. Nagarpita, P. Roy, S.B. Shruthi, R.R.N. Sailaja, Synthesis and swelling characteristics of chitosan and CMC grafted sodium acrylate-co-acrylamide using modified nanoclay and examining its efficacy for removal of dyes, Int. J. Biol. Macromol. 102 (2017) 1226-1240. https://doi.org/10.1016/j.ijbiomac.2017.04.099
[52] M.A. Adebayo, J.I. Adebomi, T.O. Abe, F.I. Areo, Removal of aqueous Congo red and malachite green using ackee apple seed-bentonite composite, Colloids Interface Sci. Commun. 38 (2020) 100311. https://doi.org/10.1016/j.colcom.2020.100311
[53] Q. Wang, Y. Wang, L. Chen, A green composite hydrogel based on cellulose and clay as efficient absorbent of colored organic effluent, Carbohydr. Polym. 210 (2019) 314-321. https://doi.org/10.1016/j.carbpol.2019.01.080
[54] Y. Bulut, G. Akçay, D. Elma, I.E. Serhatli, Synthesis of clay-based superabsorbent composite and its sorption capability, J. Hazard. Mater. 171 (2009) 717-723. https://doi.org/10.1016/j.jhazmat.2009.06.067
[55] S. Zhu, S. Wang, X. Yang, S. Tufail, C. Chen, X. Wang, J. Shang, Green sustainable and highly efficient hematite nanoparticles modified biochar-clay granular composite for Cr(VI) removal and related mechanism, J. Clean. Prod. 276 (2020) 123009. https://doi.org/10.1016/j.jclepro.2020.123009
[56] X. Hu, Y. Ke, Y. Zhao, S. Lu, Q. Deng, C. Yu, F. Peng, Synthesis, characterization and solution properties of β-cyclodextrin-functionalized polyacrylamide/montmorillonite nanocomposites, Colloids Surfaces A Physicochem. Eng. Asp. 560 (2019) 336-343. https://doi.org/10.1016/j.colsurfa.2018.10.035
[57] V.G.L. Souza, J.R.A. Pires, É.T. Vieira, I.M. Coelhoso, M.P. Duarte, A.L. Fernando, Activity of chitosan-montmorillonite bionanocomposites incorporated with rosemary essential oil: From in vitro assays to application in fresh poultry meat, Food Hydrocoll. 89 (2019) 241-252. https://doi.org/10.1016/j.foodhyd.2018.10.049
[58] M. Koosha, S. Hamedi, Intelligent Chitosan/PVA nanocomposite films containing black carrot anthocyanin and bentonite nanoclays with improved mechanical, thermal and antibacterial properties, Prog. Org. Coatings. 127 (2019) 338-347. https://doi.org/10.1016/j.porgcoat.2018.11.028
[59] K. El Bourakadi, M.E.M. Mekhzoum, A. el kacem Qaiss, R. Bouhfid, Processing and Biomedical Applications of Polymer/Organo-modified Clay Bionanocomposites, in: Sarat Kumar Swain and Mohammad Jawaid (Eds.), A volume in Micro and Nano Technologies, Elsevier Inc., 2019, pp 405-428. https://doi.org/10.1016/B978-0-12-816771-7.00021-1
[60] K. Majeed, M. Jawaid, A. Hassan, A. Abu Bakar, H.P.S. Abdul Khalil, A.A. Salema, I. Inuwa, Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites, Mater. Des. 46 (2013) 391-410. https://doi.org/10.1016/j.matdes.2012.10.044
[61] S. Nir, Y. El-Nahhal, T. Undabeytia, G. Rytwo, T. Polubesova, Y. Mishael, O. Rabinovitz, B. Rubin, Clays, Clay Minerals, and Pesticides, Dev. Clay Sci. 5 (2013) 645-662. https://doi.org/10.1016/B978-0-08-098259-5.00022-6
[62] Y. Brouard, N. Belayachi, D. Hoxha, N. Ranganathan, S. Méo, Mechanical and hygrothermal behavior of clay – Sunflower (Helianthus annuus) and rape straw (Brassica napus) plaster bio-composites for building insulation, Constr. Build. Mater. 161 (2018) 196-207. https://doi.org/10.1016/j.conbuildmat.2017.11.140
[63] R.M. Apetrei, P. Camurlu, The effect of montmorillonite functionalization on the performance of glucose biosensors based on composite montmorillonite/PAN nanofibers, Electrochim. Acta. 353 (2020) 136484. https://doi.org/10.1016/j.electacta.2020.136484
[64] I. Colijn, K. Schroën, Thermoplastic bio-nanocomposites: From measurement of fundamental properties to practical application, Adv. Colloid Interface Sci. 292 (2021) 102419. https://doi.org/10.1016/j.cis.2021.102419
[65] A. Al Rashid, S.A. Khan, S. G. Al-Ghamdi, M. Koç, Additive manufacturing of polymer nanocomposites: Needs and challenges in materials, processes, and applications, J. Mater. Res. Technol. 14 (2021) 910-941. https://doi.org/10.1016/j.jmrt.2021.07.016
[66] U.C. Ugochukwu, Characteristics of clay minerals relevant to bioremediation of environmental contaminated systems, in: A.L. Mariano Mercurio, Binoy Sarkar (Eds.), Modif. Clay Zeolite Nanocomposite Mater., Elsevier, 2019: pp. 219-242. https://doi.org/10.1016/B978-0-12-814617-0.00006-2
[67] A. Wang, W. Wang, Introduction. Nanomaterials from Clay Minerals. in: A. Wang, W. Wang (Eds.). Micro and Nano Technologies, Elsevier, (2019), pp 1-20. https://doi.org/10.1016/B978-0-12-814533-3.00001-6
[68] E. Koutsopoulou, I. Koutselas, G.E. Christidis, A. Papagiannopoulos, I. Marantos, Effect of layer charge and charge distribution on the formation of chitosan – smectite bionanocomposites, Appl. Clay Sci. 190 (2020) 105583. https://doi.org/10.1016/j.clay.2020.105583
[69] A. Gil, L. Santamaría, S.A. Korili, M.A. Vicente, L.V. Barbosa, S.D. de Souza, L. Marçal, E.H. de Faria, K.J. Ciuffi, A review of organic-inorganic hybrid clay based adsorbents for contaminants removal: Synthesis, perspectives and applications, J. Environ. Chem. Eng. 9 (2021) 105808. https://doi.org/10.1016/j.jece.2021.105808
[70] B. Coppola, N. Cappetti, L. Di Maio, P. Scarfato, L. Incarnato, Layered silicate reinforced polylactic acid filaments for 3D printing of polymer nanocomposites, RTSI 2017 – IEEE 3rd Int. Forum Res. Technol. Soc. Ind. Conf. Proc. (2017) 3-6. https://doi.org/10.1109/RTSI.2017.8065892
[71] S. Saadat, G. Pandey, M. Tharmavaram, V. Braganza, D. Rawtani, Nano-interfacial decoration of Halloysite Nanotubes for the development of antimicrobial nanocomposites, Adv. Colloid Interface Sci. 275 (2020) 102063. https://doi.org/10.1016/j.cis.2019.102063
[72] S. Letaïef, P. Aranda, E. Ruiz-Hitzky, Influence of iron in the formation of conductive polypyrrole-clay nanocomposites, Appl. Clay Sci. 28 (2005) 183-198. https://doi.org/10.1016/j.clay.2004.02.008
[73] https://www.mindat.org/min-2924.html (accessed 13 September 2021)
[74] J. Cervini-Silva, E. Palacios, V. Gómez-Vidales, Nontronite as natural source and growth template for (nano)maghemite [γ-Fe2O3] and (nano)Wüstite [Fe1−xO], Appl. Clay Sci. 156 (2018) 178-186. https://doi.org/10.1016/j.clay.2018.02.009
[75] A. Gil , L. Santamaría , S.A. Korili , M.A. Vicente , L.V. Barbosa , S.D. de Souza , L. Marçal, E.H. de Faria, K.J. Ciuffi, A review of organic-inorganic hybrid clay based adsorbents for contaminants removal: Synthesis, perspectives and applications, J. Environ. Chem. Eng. 9 (2021) 105808. https://doi.org/10.1016/j.jece.2021.105808
[76] F. Bergaya, C. Detellier, J.-F. Lambert, G. Lagaly, Introduction to Polymer – Clay Nanocomposites, F. Bergaya, G. Lagaly (Eds.), Handbook of Clay Science, (2013) 655-677. https://doi.org/10.1016/B978-0-08-098258-8.00020-1
[77] R. Mukhopadhyay, N. De, Nano clay polymer composite: synthesis, characterization, properties and application in Rainfed Agriculture, Global J. Bio-Sci. Biotechnol. 3 (2014) 133-138.
[78] A.K. Naskar, J.K. Keum, R.G. Boeman, Polymer matrix nanocomposites for automotive structural components, Nat. Nanotechnol. 11 (2016) 1026-1030. https://doi.org/10.1038/nnano.2016.262
[79] A. Bhat, S. Budholiya, S.A. Raj, M.T.H. Sultan, D. Hui, A.U.M. Shah, S.N.A. Safri, Review on nanocomposites based on aerospace applications, Nanotechnol. Rev. 10 (2021) 237-253. https://doi.org/10.1515/ntrev-2021-0018
[80] Y.K. Kadokawa J, Shimohigoshi R, Yamashita K, Synthesis of chitin and chitosan stereoisomers by thermostable a-glucan phosphorylase catalyzed enzymatic polymerization of a-D-glucosamine 1-phosphate., Org Biomol Chem. 13 (2015) 4336-43. https://doi.org/10.1039/C5OB00167F
[81] R.R. Palem, K.M. Rao, G. Shimoga, R.G. Saratale, S.K. Shinde, G.S. Ghodake, S.H. Lee, Physicochemical characterization, drug release, and biocompatibility evaluation of carboxymethyl cellulose-based hydrogels reinforced with sepiolite nanoclay, Int. J. Biol. Macromol. 178 (2021) 464-476. https://doi.org/10.1016/j.ijbiomac.2021.02.195
[82] S. Memiş, F. Tornuk, F. Bozkurt, M.Z. Durak, Production and characterization of a new biodegradable fenugreek seed gum based active nanocomposite film reinforced with nanoclays, Int. J. Biol. Macromol. 103 (2017) 669-675. https://doi.org/10.1016/j.ijbiomac.2017.05.090
[83] R. Sharma, S.M. Jafari, S. Sharma, Antimicrobial bio-nanocomposites and their potential applications in food packaging, Food Control. 112 (2020) 107086. https://doi.org/10.1016/j.foodcont.2020.107086
[84] D. Qureshi, K.P. Behera, D. Mohanty, S.K. Mahapatra, S. Verma, P. Sukyai, I. Banerjee, S.K. Pal, B. Mohanty, D. Kim, K. Pal, Synthesis of novel poly (vinyl alcohol)/tamarind gum/bentonite-based composite films for drug delivery applications, Colloids Surfaces A Physicochem. Eng. Asp. 613 (2021) 126043. https://doi.org/10.1016/j.colsurfa.2020.126043
[85] R. Mukhopadhyay, D. Bhaduri, B. Sarkar, R. Rusmin, D. Hou, R. Khanam, S. Sarkar, J. Kumar Biswas, M. Vithanage, A. Bhatnagar, Y.S. Ok, Clay-polymer nanocomposites: Progress and challenges for use in sustainable water treatment, J. Hazard. Mater. 383 (2020) 121125. https://doi.org/10.1016/j.jhazmat.2019.121125
[86] L. Corre, D. Bras, J.A. Dufresne, Starch nanoparticles: a review. Biomacromolecules 11 (5) (2010) 1139-1153. https://doi.org/10.1021/bm901428y
[87] E. Ogunsona, E. Ojogbo, T. Mekonnen, Advanced material applications of starch and its derivatives, Eur. Polym. J. 108 (2018) 570-581. https://doi.org/10.1016/j.eurpolymj.2018.09.039
[88] S. Agarwal, Major factors affecting the characteristics of starch based biopolymer films, Eur. Polym. J. 160 (2021) 110788. https://doi.org/10.1016/j.eurpolymj.2021.110788
[89] E. Ojogbo, J. Jardin, T.H. Mekonnen, Robust and sustainable starch ester nanocomposite films for packaging applications, Ind. Crops Prod. 160 (2021) 113-153. https://doi.org/10.1016/j.indcrop.2020.113153
[90] N. Soykeabkaew, C. Thanomsilp, O. Suwantong, A review: Starch-based composite foams, Compos. Part A Appl. Sci. Manuf. 78 (2015) 246-263. https://doi.org/10.1016/j.compositesa.2015.08.014
[91] Á. L. Santana, M. Angela A. Meireles, New Starches are the Trend for Industry Applications: A Review, Food Public Heal. 4 (2014) 229-241. https://doi.org/10.5923/j.fph.20140405.04
[92] B. Ghanbarzadeh, H. Almasi, A.A. Entezami, Physical properties of edible modified starch/carboxymethyl cellulose films, Innov. Food Sci. Emerg. Technol. 11 (2010) 697-702. https://doi.org/10.1016/j.ifset.2010.06.001
[93] A.M. Nafchi, R. Nassiri, S. Sheibani, F. Ariffin, A.A. Karim, Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide, Carbohydr. Polym. 96 (2013) 233-239. https://doi.org/10.1016/j.carbpol.2013.03.055
[94] M.N. Abdorreza, L.H. Cheng, A.A. Karim, Food Hydrocoll. 25 (2011) 56-60. https://doi.org/10.1016/j.foodhyd.2010.05.005
[95] A. M. Nafchi, L.H. Cheng, A.A. Karim, Effects of plasticizers on thermal properties and heat sealability of sago starch films, Food Hydrocoll. 25 (2011) 56-60. https://doi.org/10.1016/j.foodhyd.2010.05.005
[96] M. Darder, P. Aranda, E. Ruiz-Hitzky, Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials, Adv. Mater. 19 (2007) 1309-1319. https://doi.org/10.1002/adma.200602328
[97] L.C. Geoffrey A Ozin, André Arsenault, Nanochemistry: A Chemical Approach to Nanomaterials, Second ed., Royal Society of Chemistry, Cambridge, 2009.
[98] A.M Nafchi, M. Moradpour, M. Saeidi, A.K. Alias, Thermoplastic starches: Properties, challenges, and prospects, Starch/Staerke. 65 (2013) 61-72. https://doi.org/10.1002/star.201200201
[99] R. Alebooyeh, A. Mohammadinafchi, M. Jokar, The Effects of ZnOnanorodson the Characteristics of Sago Starch Biodegradable Films, J. Chem. Heal. Risk. 2 (2012) 13-16.
[100] K. Shameli, M. Bin Ahmad, W.M.Z.W. Yunus, A. Rustaiyan, N.A. Ibrahim, M. Zargar, Y. Abdollahi, Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity, Int. J. Nanomedicine. 5 (2010) 875-887. https://doi.org/10.2147/IJN.S13632
[101] R. Yamaoki, T. Tsujino, S. Kimura, Y. Mino, M. Ohta, Detection of organic free radicals in irradiated Foeniculi fructus by electron spin resonance spectroscopy, J. Nat. Med. 63 (2009) 28-31. https://doi.org/10.1007/s11418-008-0284-6
[102] W.J. Jia, C.B. Liu, L. Yang, J.L. Yang, L.Y. Fan, M.J. Huang, H. Zhang, G.T. Chao, Z.Y. Qian, B. Kan, A.L. Huang, K. Lei, C.Y. Gong, J. Zhao, J.M. Zhang, H.X. Deng, M.J. Tu, Y.Q. Wei, Synthesis, characterization, and thermal properties of biodegradable polyetheresteramide-based polyurethane, Mater. Lett. 60 (2006) 3686-3692. https://doi.org/10.1016/j.matlet.2006.03.089
[103] Y. Chen, S. Zhou, H. Yang, G. Gu, L. Wu, Preparation and characterization of nanocomposite polyurethane, J. Colloid Interface Sci. 279 (2004) 370-378. https://doi.org/10.1016/j.jcis.2004.06.074
[104] R. Babalola, A.O. Ayeni, P.S. Joshua, A.A. Ayoola, U.O. Isaac, U. Aniediong, V.E. Efeovbokhan, J.A. Omoleye, Synthesis of thermal insulator using chicken feather fibre in starch-clay nanocomposites, Heliyon. 6 (2020) 05384. https://doi.org/10.1016/j.heliyon.2020.e05384
[105] A. Tariq, S.A. Bhawani, M. Nisar, M.R. Asaruddin, K.M. Alotaibi, Starch-based nanocomposites for gene delivery, in: Polysaccharide-Based Nanocomposites Gene Deliv. Tissue Eng., Elsevier, 2021: pp. 263-277. https://doi.org/10.1016/B978-0-12-821230-1.00007-4
[106] T. Bai, B. Zhu, H. Liu, Y. Wang, G. Song, C. Liu, C. Shen, Biodegradable poly(lactic acid) nanocomposites reinforced and toughened by carbon nanotubes/clay hybrids, Int. J. Biol. Macromol. 151 (2020) 628-634. https://doi.org/10.1016/j.ijbiomac.2020.02.209
[107] M. Iman, T.K. Maji, Effect of crosslinker and nanoclay on starch and jute fabric based green nanocomposites, Carbohydr. Polym. 89 (2012) 290-297. https://doi.org/10.1016/j.carbpol.2012.03.012
[108] M.S. Mohseni, M.A. Khalilzadeh, M. Mohseni, F.Z. Hargalani, M.I. Getso, V. Raissi, O. Raiesi, Green synthesis of Ag nanoparticles from pomegranate seeds extract and synthesis of Ag-Starch nanocomposite and characterization of mechanical properties of the films, Biocatal. Agric. Biotechnol. 25 (2020) 101569. https://doi.org/10.1016/j.bcab.2020.101569
[109] M.A. El-Sheikh, A novel photosynthesis of carboxymethyl starch-stabilized silver nanoparticles, Sci. World J. (2014) 1-11. https://doi.org/10.1155/2014/514563
[110] B. Kumar, K. Smita, L. Cumbal, A. Debut, R.N. Pathak, Sonochemical synthesis of silver nanoparticles using starch: A comparison, Bioinorg. Chem. Appl. (2014) 1-8. https://doi.org/10.1155/2014/784268
[111] L. do Val Siqueira, C.I.L.F. Arias, B.C. Maniglia, C.C. Tadini, Starch-based biodegradable plastics: methods of production, challenges and future perspectives, Curr. Opin. Food Sci. 38 (2021) 122-130. https://doi.org/10.1016/j.cofs.2020.10.020
[112] C. Mutungi, F. Rost, C. Onyango, D. Jaros, H. Rohm, Crystallinity, thermal and morphological characteristics of resistant starch type iii produced by hydrothermal treatment of debranched Cassava starch, Starch/Staerke. 61 (2009) 634-645. https://doi.org/10.1002/star.200900167
[113] D.F. Apopei, M. V. Dinu, E.S. Drǎgan, Graft copolymerization of acrylonitrile onto potatoes starch by ceric ion, Dig. J. Nanomater. Biostructures. 7 (2012) 707-716.
[114] H. Namazi, F. Fathi, A. Dadkhah, Hydrophobically modified starch using long-chain fatty acids for preparation of nanosized starch particles, Sci. Iran. 18 (2011) 439-445. https://doi.org/10.1016/j.scient.2011.05.006
[115] E. Ojogbo, R. Blanchard, T. Mekonnen, Hydrophobic and Melt Processable Starch-Laurate Esters: Synthesis, Structure-Property Correlations, J. Polym. Sci. Part A Polym. Chem. 56 (2018) 2611-2622. https://doi.org/10.1002/pola.29237
[116] E. Ojogbo, E.O. Ogunsona, T.H. Mekonnen, Chemical and physical modifications of starch for renewable polymeric materials, Mater. Today Sustain. 7-8 (2020) 100028. https://doi.org/10.1016/j.mtsust.2019.100028
[117] E.O. Ogunsona, T.H. Mekonnen, Multilayer assemblies of cellulose nanocrystal – polyvinyl alcohol films featuring excellent physical integrity and multi-functional properties, J. Colloid Interface Sci. 580 (2020) 56-67. https://doi.org/10.1016/j.jcis.2020.07.012
[118] M. Shayan, H. Azizi, I. Ghasemi, M. Karrabi, Effect of modified starch and nanoclay particles on biodegradability and mechanical properties of cross-linked poly lactic acid, Carbohydr. Polym. 124 (2015) 237-244. https://doi.org/10.1016/j.carbpol.2015.02.001
[119] J. Li, M. Zhou, G. Cheng, F. Cheng, Y. Lin, P.X. Zhu, Fabrication and characterization of starch-based nanocomposites reinforced with montmorillonite and cellulose nanofibers, Carbohydr. Polym. 210 (2019) 429-436. https://doi.org/10.1016/j.carbpol.2019.01.051
[120] C.M.O. Müller, J.B. Laurindo, F. Yamashita, Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films, Ind. Crops Prod. 33 (2011) 605-610. https://doi.org/10.1016/j.indcrop.2010.12.021
[121] D.K.M. Matsuda, A.E.S. Verceheze, G.M. Carvalho, F. Yamashita, S. Mali, Baked foams of cassava starch and organically modified nanoclays, Ind. Crops Prod. 44 (2013) 705-711. https://doi.org/10.1016/j.indcrop.2012.08.032
[122] A.R. Yousefi, B. Savadkoohi, Y. Zahedi, M. Hatami, K. Ako, Fabrication and characterization of hybrid sodium montmorillonite/TiO2 reinforced cross-linked wheat starch-based nanocomposites, Int. J. Biol. Macromol. 131 (2019) 253-263. https://doi.org/10.1016/j.ijbiomac.2019.03.083
[123] J. Li, M. Zhou, F. Cheng, Y. Lin, P. Zhu, Bioinspired approach to enhance mechanical properties of starch based nacre-mimetic nanocomposite, Carbohydr. Polym. 221 (2019) 113-119. https://doi.org/10.1016/j.carbpol.2019.05.090
[124] B. Ayana, S. Suin, B.B. Khatua, Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay, Carbohydr. Polym. 110 (2014) 430-439. https://doi.org/10.1016/j.carbpol.2014.04.024
[125] K.M. Dang, R. Yoksan, E. Pollet, L. Avérous, Morphology and properties of thermoplastic starch blended with biodegradable polyester and filled with halloysite nanoclay, Carbohydr. Polym. 242 (2020) 116392. https://doi.org/10.1016/j.carbpol.2020.116392
[126] V. Sessini, M.P. Arrieta, J.M. Raquez, P. Dubois, J.M. Kenny, L. Peponi, Thermal and composting degradation of EVA/Thermoplastic starch blends and their nanocomposites, Polym. Degrad. Stab. 159 (2019) 184-198. https://doi.org/10.1016/j.polymdegradstab.2018.11.025
[127] V. Kanikireddy, K. Varaprasad, M.S. Rani, P. Venkataswamy, B.J. Mohan Reddy, M. Vithal, Biosynthesis of CMC-Guar gum-Ag nanocomposites for inactivation of food pathogenic microbes and its effect on the shelf life of strawberries, Carbohydr. Polym. 236 (2020) 116053. https://doi.org/10.1016/j.carbpol.2020.116053
[128] K. Vaezi, G. Asadpour, S.H. Sharifi, Bio nanocomposites based on cationic starch reinforced with montmorillonite and cellulose nanocrystals: Fundamental properties and biodegradability study, Int. J. Biol. Macromol. 146 (2020) 374-386. https://doi.org/10.1016/j.ijbiomac.2020.01.007
[129] Z. Waheed, Y. Dong, N. Han, S. Liu, Water and gas barrier properties of polyvinyl alcohol ( PVA )/ starch ( ST )/ glycerol ( GL )/ halloysite nanotube ( HNT ) bionanocomposite films : Experimental characterisation and modelling approach, Compos. Part B. 174 (2019) 107033. https://doi.org/10.1016/j.compositesb.2019.107033
[130] G. Mansour, M. Zoumaki, A. Marinopoulou, D. Tzetzis, M. Prevezanos, S.N. Raphaelides, Characterization and properties of non-granular thermoplastic starch-Clay biocomposite films, Carbohydr. Polym. 245 (2020) 116629. https://doi.org/10.1016/j.carbpol.2020.116629
[131] M. Kaur, A. Kalia, A. Thakur, Effect of biodegradable chitosan-rice-starch nanocomposite films on post-harvest quality of stored peach fruit, Starch/Staerke. 69 (2017) 1600208. https://doi.org/10.1002/star.201600208
[132] F. Sadegh-Hassani, A. Mohammadi Nafchi, Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay, Int. J. Biol. Macromol. 67 (2014) 458-462. https://doi.org/10.1016/j.ijbiomac.2014.04.009
[133] Á. García-Padilla, K.A. Moreno-Sader, Á. Realpe, M. Acevedo-Morantes, J.B.P. Soares, Evaluation of adsorption capacities of nanocomposites prepared from bean starch and montmorillonite, Sustain. Chem. Pharm. 17 (2020). https://doi.org/10.1016/j.scp.2020.100292
[134] K. Moreno-Sader, A. García-Padilla, A. Realpe, M. Acevedo-Morantes, J.B.P. Soares, Removal of Heavy Metal Water Pollutants (Co2+ and Ni2+) Using Polyacrylamide/Sodium Montmorillonite (PAM/Na-MMT) Nanocomposites, ACS Omega. 4 (2019) 10834-10844. https://doi.org/10.1021/acsomega.9b00981
[135] Y.S. Al-Degs, M.I. El-Barghouthi, A.A. Issa, M.A. Khraisheh, G.M. Walker, Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: Equilibrium and kinetic studies, Wat. Res. 40 (2006) 2645-2658. https://doi.org/10.1016/j.watres.2006.05.018
[136] T.H. Tran, H. Okabe, Y. Hidaka, K. Hara, Removal of metal ions from aqueous solutions using carboxymethyl cellulose/sodium styrene sulfonate gels prepared by radiation grafting, Carbohydr. Polym. 157 (2017) 335-343. https://doi.org/10.1016/j.carbpol.2016.09.049
[137] B.M. Ibrahim, N.A. Fakhre, Crown ether modification of starch for adsorption of heavy metals from synthetic wastewater, Int. J. Biol. Macromol. 123 (2019) 70-80. https://doi.org/10.1016/j.ijbiomac.2018.11.058
[138] M. Naushad, T. Ahamad, G. Sharma, A.H. Al-Muhtaseb, A.B. Albadarin, M.M. Alam, Z.A. ALOthman, S.M. Alshehri, A.A. Ghfar, Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion, Chem. Eng. J. 300 (2016) 306-316. https://doi.org/10.1016/j.cej.2016.04.084
[139] F. Wang, P.R. Chang, P. Zheng, X. Ma, Monolithic porous rectorite/starch composites: fabrication, modification and adsorption, Appl. Surf. Sci. 349 (2015) 251-258. https://doi.org/10.1016/j.apsusc.2015.05.013
[140] M. Şölener, S. Tunali, A.S. Özcan, A. Özcan, T. Gedikbey, Adsorption characteristics of lead(II) ions onto the clay/poly(methoxyethyl)acrylamide (PMEA) composite from aqueous solutions, Desalination. 223 (2008) 308-322. https://doi.org/10.1016/j.desal.2007.01.221
[141] A.M. Atta, H.A. Al-Lohedan, Z.A. ALOthman, A.A. Abdel-Khalek, A.M. Tawfeek, Characterization of reactive amphiphilic montmorillonite nanogels and its application for removal of toxic cationic dye and heavy metals water pollutants, J. Ind. Eng. Chem. 31 (2015) 374-384. https://doi.org/10.1016/j.jiec.2015.07.012
[142] A.U. Rajapaksha, K.S. Dilrukshi Premarathna, V. Gunarathne, A. Ahmed, M. Vithanage, Sorptive removal of pharmaceutical and personal care products from water and wastewater, Pharm. Pers. Care Prod. Waste Manag. Treat. Technol. Emerg. Contam. Micro Pollut. (2019) 213-238. https://doi.org/10.1016/B978-0-12-816189-0.00009-3
[143] Y. Abdellaoui, M.T. Olguín, M. Abatal, B. Ali, S.E. Díaz Méndez, A.A. Santiago, Comparison of the divalent heavy metals (Pb, Cu and Cd) adsorption behavior by montmorillonite-KSF and their calcium- and sodium-forms, Superlattices Microstruct. 127 (2019) 165-175. https://doi.org/10.1016/j.spmi.2017.11.061
[144] M.E. Mahmoud, G.M. Nabil, M.M. Zaki, M.M. Saleh, Starch functionalization of iron oxide by-product from steel industry as a sustainable low cost nanocomposite for removal of divalent toxic metal ions from water, Int. J. Biol. Macromol. 137 (2019) 455-468. https://doi.org/10.1016/j.ijbiomac.2019.06.170
[145] E.I. Unuabonah, A. Taubert, Clay-polymer nanocomposites (CPNs): Adsorbents of the future for water treatment, Appl. Clay. Sci. 99 (2014) 83-92. https://doi.org/10.1016/j.clay.2014.06.016
[146] H. Zuo, R. Kukkadapu, Z. Zhu, S. Ni, L. Huang, Q. Zeng, C. Liu, H. Dong, Role of clay-associated humic substances in catalyzing bioreduction of structural Fe(III) in nontronite by Shewanella putrefaciens CN32, Sci. Tot. Env. 741 (2020) 140213. https://doi.org/10.1016/j.scitotenv.2020.140213
[147] Y. Sheng, H. Dong, R.K. Kukkadapu, S. Ni, Q. Zeng, J. Hu, E. Coffin, S. Zhao, A.J. Sommer, R.M. McCarrick, G.A. Lorigan, Lignin-enhanced reduction of structural Fe(III) in nontronite: Dual roles of lignin as electron shuttle and donor, Geochim. Cosmochim. Acta. 307 (2021) 1-21. https://doi.org/10.1016/j.gca.2021.05.037
[148] Q. Zeng, H. Dong, X. Wang, T. Yu, W. Cui, Degradation of 1, 4-dioxane by hydroxyl radicals produced from clay minerals, J. Hazard. Mater. 331 (2017) 88-98. https://doi.org/10.1016/j.jhazmat.2017.01.040
[149] K. Pastorková, K. Jesenák, M. Kadlečíková, J. Breza, M. Kolmačka, M. Čaplovičová, F. Lazišťan, M. Michalka, The growth of multi-walled carbon nanotubes on natural clay minerals (kaolinite, nontronite and sepiolite), Appl. Surf. Sci. 258 (2012) 2661-2666. https://doi.org/10.1016/j.apsusc.2011.10.114
[150] R. Singh, H. Dong, Q. Zeng, L. Zhang, K. Rengasamy, Hexavalent chromium removal by chitosan modified-bioreduced nontronite, Geochim. Cosmochim. Acta. 210 (2017) 25-41. https://doi.org/10.1016/j.gca.2017.04.030