Use of Nanomaterials-based Enzymes in Vaccine Production and Immunization
Mamata Singh, Paulin Nzeyimana, Ahumuza Benjamin, Amita Soumya, N.P. Singh, Vivek Mishra
The production of standard vaccines is increasing rapidly. The improvement is needed due to соnсerns of low immunogenicity, instability, and the need for more vассines. To оverсоme these concerns, development of vассines has been integrated with and facilitated by nanotechnology. Nanotechnology is increasingly рlаying а key role in vaccination by the development of NP-based delivery systems which have aided in increasing cellular and humoral immune responses. The nano carrier-based system facilitates the delivery of vaccine antigens to target cells and increases antigen resistance and immunogenicity. Many nano-sized particles have been studied and are being used as adjuvants and vehicles to deliver vaccine antigens. The efficiency of NPs as nanocarriers is due to their size and рrоmоting specialized and selective immune responses. This сhарter will focus on nanonzyme аnd their use in vассine prоduсtiоn аnd immunizаtiоn.
Keywords
Nаnо-Enzyme, Vассine Delivery, Immunity, Immune Resроnse, Nаnоvассinоlоgy
Published online , 21 pages
Citation: Mamata Singh, Paulin Nzeyimana, Ahumuza Benjamin, Amita Soumya, N.P. Singh, Vivek Mishra, Use of Nanomaterials-based Enzymes in Vaccine Production and Immunization, Materials Research Foundations, Vol. 126, pp 240-260, 2022
DOI: https://doi.org/10.21741/9781644901977-9
Part of the book on Nanomaterial-Supported Enzymes
References
[1] D.J. Irvine, M.A. Swartz, G.L. Szeto, Engineering synthetic vaccines using cues from natural immunity, Nature Materials. 12 (2013) 978-990. https://doi.org/10.1038/nmat3775
[2] Enzyme Technology: Application and Commercial Production of Enzymes, (n.d.). https://www.biologydiscussion.com/enzymes/enzyme-technology/enzyme-technology-application-and-commercial-production-of-enzymes/10185 (accessed July 16, 2021).
[3] J. Shah, S. Dave, A. Vyas, M. Shah, H. Arya, A. Gajipara, A. Vijapura, M. Bakshi, P. Thakore, R. Shah, V. Saxena, A. Shamal, S. Singh, Nanomaterials-Based Next Generation Synthetic Enzymes: Current Challenges and Future Opportunities in Biological Applications, Nanotechnology in Modern Animal Biotechnology: Concepts and Applications. (2019) 37-58. https://doi.org/10.1016/B978-0-12-818823-1.00004-1
[4] G. Ibrahim Fouad, A proposed insight into the antiviral potential of metallic nanoparticles against novel coronavirus disease-19 (COVID-19), Bulletin of the National Research Centre. 45 (2021). https://doi.org/10.1186/s42269-021-00487-0
[5] E.M. Melchor-Martínez, N.E. Torres Castillo, R. Macias-Garbett, S.L. Lucero-Saucedo, R. Parra-Saldívar, J.E. Sosa-Hernández, Modern World Applications for Nano-Bio Materials: Tissue Engineering and COVID-19, Frontiers in Bioengineering and Biotechnology. 9 (2021). https://doi.org/10.3389/fbioe.2021.597958
[6] Y. Huang, J. Ren, X. Qu, Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications, Chemical Reviews. 119 (2019) 4357-4412. https://doi.org/10.1021/acs.chemrev.8b00672
[7] M. Kumawat, A. Umapathi, E. Lichtfouse, H.K. Daima, Nanozymes to fight the COVID-19 and future pandemics., Environmental Chemistry Letters. (2021) 1-7. https://doi.org/10.1007/s10311-021-01252-5
[8] M. Kumawat, A. Umapathi, E. Lichtfouse, H.K. Daima, Nanozymes to fight the COVID-19 and future pandemics, Environmental Chemistry Letters. (2021). https://doi.org/10.1007/s10311-021-01252-5
[9] W. Tao, H.S. Gill, M2e-immobilized gold nanoparticles as influenza A vaccine: Role of soluble M2e and longevity of protection, Vaccine. 33 (2015) 2307-2315. https://doi.org/10.1016/j.vaccine.2015.03.063
[10] D.L. Jarvis, Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production, Virology. 310 (2003) 1-7. https://doi.org/10.1016/S0042-6822(03)00120-X
[11] C. Weiss, M. Carriere, L. Fusco, L. Fusco, I. Capua, J.A. Regla-Nava, M. Pasquali, M. Pasquali, M. Pasquali, J.A. Scott, F. Vitale, F. Vitale, M.A. Unal, C. Mattevi, D. Bedognetti, A. Merkoçi, A. Merkoçi, E. Tasciotti, E. Tasciotti, A. Yilmazer, A. Yilmazer, Y. Gogotsi, F. Stellacci, L.G. Delogu, Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic, ACS Nano. 14 (2020) 6383-6406. https://doi.org/10.1021/acsnano.0c03697
[12] M.G. Sharaf, S. Cetinel, L. Heckler, K. Damji, L. Unsworth, C. Montemagno, Nanotechnology-Based Approaches for Ophthalmology Applications: Therapeutic and Diagnostic Strategies., Asia-Pacific Journal of Ophthalmology (Philadelphia, Pa.). 3 (n.d.) 172-80. https://doi.org/10.1097/APO.0000000000000059
[13] I.Y. Wong, S.N. Bhatia, M. Toner, Nanotechnology: Emerging tools for biology and medicine, Genes and Development. 27 (2013) 2397-2408. https://doi.org/10.1101/gad.226837.113
[14] J.J. Donnelly, B. Wahren, M.A. Liu, DNA Vaccines: Progress and Challenges, The Journal of Immunology. 175 (2005) 633-639. https://doi.org/10.4049/jimmunol.175.2.633
[15] A. Facciolà, G. Visalli, P. Laganà, V. la Fauci, R. Squeri, G.F. Pellicanò, G. Nunnari, M. Trovato, A. di Pietro, The new era of vaccines: The “nanovaccinology,” European Review for Medical and Pharmacological Sciences. 23 (2019) 7163-7182.
[16] D.A.G. Skibinski, B.C. Baudner, M. Singh, D.T. O’hagan, Combination vaccines, Journal of Global Infectious Diseases. 3 (2011) 63-72. https://doi.org/10.4103/0974-777X.77298
[17] N. Ketabchi, M. Naghibzadeh, M. Adabi, S.S. Esnaashari, R. Faridi-Majidi, Preparation and optimization of chitosan/polyethylene oxide nanofiber diameter using artificial neural networks, Neural Computing and Applications. 28 (2017) 3131-3143. https://doi.org/10.1007/s00521-016-2212-0
[18] D.R. Bhumkar, H.M. Joshi, M. Sastry, V.B. Pokharkar, Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin, Pharmaceutical Research. 24 (2007) 1415-1426. https://doi.org/10.1007/s11095-007-9257-9
[19] K. Zhao, G. Chen, X. ming Shi, T. ting Gao, W. Li, Y. Zhao, F. qiang Zhang, J. Wu, X. Cui, Y.F. Wang, Preparation and Efficacy of a Live Newcastle Disease Virus Vaccine Encapsulated in Chitosan Nanoparticles, PLoS ONE. 7 (2012). https://doi.org/10.1371/journal.pone.0053314
[20] WP (William P. Jencks, Catalysis in chemistry and enzymology, (1987) 836.
[21] K. Hult, P. Berglund, Engineered enzymes for improved organic synthesis, Current Opinion in Biotechnology. 14 (2003) 395-400. https://doi.org/10.1016/S0958-1669(03)00095-8
[22] R. Boyer, Chapter 6: Enzymes I, Reactions, Kinetics, and Inhibition, Concepts in Biochemistry. (2002) 137-8.
[23] D. Blow, So do we understand how enzymes work?, Structure. 8 (2000) R77-R81. https://doi.org/10.1016/S0969-2126(00)00125-8
[24] M.M. Cox, D.L. Nelson, Chapter 6.2: How enzymes work, Lehninger Principles of Biochemistry. (2013) 195. https://www.amazon.co.uk/Lehninger-Principles-Biochemistry-David-Nelson/dp/1464109621/ref=sr_1_1?s=books&ie=UTF8&qid=1425406097&sr=1-1&keywords=9781464109621 (accessed July 18, 2021).
[25] Suzuki H, S. H, Chapter 8: Control of Enzyme Activity, How Enzymes Work: From Structure to Function. (2015) 141-69. https://doi.org/10.1201/b18087-9
[26] R. Ravee, H.H. Goh, H.-H. Goh, discovery of digestive enzymes in carnivorous plants with focus on proteases, PeerJ. 6 (2018) e4914. https://doi.org/10.7717/peerj.4914
[27] P. Morino, F. Mascagni, A. McDonald, T. Hökfelt, Cholecystokinin corticostriatal pathway in the rat: Evidence for bilateral origin from medial prefrontal cortical areas, Neuroscience. 59 (1994) 939-52. https://doi.org/10.1016/0306-4522(94)90297-6
[28] Enzyme Definition and Classification – Creative Enzymes, (n.d.). https://www.creative-enzymes.com/resource/enzyme-definition-and-classification_18.html (accessed July 18, 2021).
[29] D.J. Mikolajczak, A.A. Berger, B. Koksch, Catalytically Active Peptide‐Gold Nanoparticle Conjugates: Prospecting for Artificial Enzymes, Angewandte Chemie. 132 (2020) 8858-8867. https://doi.org/10.1002/ange.201908625
[30] Y. Lin, J. Ren, X. Qu, Catalytically Active Nanomaterials: A Promising Candidate for Artificial Enzymes, Accounts of Chemical Research. 47 (2014) 1097-1105. https://doi.org/10.1021/ar400250z
[31] Q. Wang, X. Zhang, L. Huang, Z. Zhang, S. Dong, GOx@ZIF-8(NiPd) Nanoflower: An Artificial Enzyme System for Tandem Catalysis, Angewandte Chemie International Edition. 56 (2017) 16082-16085. https://doi.org/10.1002/anie.201710418
[32] H.B. Albada, F. Soulimani, B.M. Weckhuysen, R.M.J. Liskamp, Scaffolded amino acids as a close structural mimic of type-3 copper binding sites, Chemical Communications. (2007) 4895-7. https://doi.org/10.1039/b709400k
[33] L. Gao, X. Yan, Nanozymes: an emerging field bridging nanotechnology and biology, Science China Life Sciences. 59 (2016) 400-402. https://doi.org/10.1007/s11427-016-5044-3
[34] L. Pasquato, P. Pengo, P. Scrimin, Nanozymes: Functional Nanoparticle-based Catalysts, Supramolecular Chemistry. 17 (2005) 163-171. https://doi.org/10.1080/10610270412331328817
[35] L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Single-atom nanozymes, Science Advances. 5 (2019) eaav5490. https://doi.org/10.1126/sciadv.aav5490
[36] Y. Zhao, Y. Huang, H. Zhu, Q. Zhu, Y. Xia, Three-in-One: Sensing, Self-Assembly, and Cascade Catalysis of Cyclodextrin Modified Gold Nanoparticles, Journal of the American Chemical Society. 138 (2016) 16645-16654. https://doi.org/10.1021/jacs.6b07590
[37] T. Merdan, J. Kopeček, T. Kissel, Prospects for cationic polymers in gene and oligonucleotide therapy against cancer, Advanced Drug Delivery Reviews. 54 (2002) 715-758. https://doi.org/10.1016/S0169-409X(02)00046-7
[38] N. Pippa, M. Gazouli, S. Pispas, Recent Advances and Future Perspectives in Polymer-Based Nanovaccines., Vaccines. 9 (2021). https://doi.org/10.3390/vaccines9060558
[39] H. Cheng, Y. Liu, Y. Hu, Y. Ding, S. Lin, W. Cao, Q. Wang, J. Wu, F. Muhammad, X. Zhao, D. Zhao, Z. Li, H. Xing, H. Wei, Monitoring of Heparin Activity in Live Rats Using Metal-Organic Framework Nanosheets as Peroxidase Mimics, Analytical Chemistry. 89 (2017) 11552-11559. https://doi.org/10.1021/acs.analchem.7b02895
[40] L. Qin, X. Wang, Y. Liu, H. Wei, 2D-Metal-Organic-Framework-Nanozyme Sensor Arrays for Probing Phosphates and Their Enzymatic Hydrolysis, Analytical Chemistry. 90 (2018) 9983-9989. https://doi.org/10.1021/acs.analchem.8b02428
[41] K. Pusic, Z. Aguilar, J. McLoughlin, S. Kobuch, H. Xu, M. Tsang, A. Wang, G. Hui, Iron oxide nanoparticles as a clinically acceptable delivery platform for a recombinant blood-stage human malaria vaccine, FASEB Journal. 27 (2013) 1153-1166. https://doi.org/10.1096/fj.12-218362
[42] J. Xi, G. Wei, L. An, Z. Xu, Z. Xu, L. Fan, L. Gao, Copper/Carbon Hybrid Nanozyme: Tuning Catalytic Activity by the Copper State for Antibacterial Therapy, Nano Letters. 19 (2019) 7645-7654. https://doi.org/10.1021/acs.nanolett.9b02242
[43] M. Liang, X. Yan, Nanozymes: From New Concepts, Mechanisms, and Standards to Applications, Accounts of Chemical Research. 52 (2019) 2190-2200. https://doi.org/10.1021/acs.accounts.9b00140
[44] Y. Huang, J. Ren, X. Qu, Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications, Chemical Reviews. 119 (2019) 4357-4412. https://doi.org/10.1021/acs.chemrev.8b00672
[45] J.J. Gooding, Can Nanozymes Have an Impact on Sensing?, ACS Sensors. 4 (2019) 2213-2214. https://doi.org/10.1021/acssensors.9b01760
[46] L.G.D.A.S.B.D.A. S Al-Halifa, Nanoparticle-based vaccines against respiratory viruses, Front Immunol. 10 (2019) 22. https://doi.org/10.3389/fimmu.2019.00022
[47] K.C. Petkar, S.M. Patil, S.S. Chavhan, K. Kaneko, K.K. Sawant, NK. Kunda, I.Y. Saleem, An Overview of Nanocarrier-Based Adjuvants for Vaccine Delivery., Pharmaceutics. 13 (2021). https://doi.org/10.3390/pharmaceutics13040455
[48] P. Li, Z. Luo, P. Liu, N. Gao, Y. Zhang, H. Pan, L. Liu, C. Wang, L. Cai, Y. Ma, Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses, Journal of Controlled Release. 168 (2013) 271-279. https://doi.org/10.1016/j.jconrel.2013.03.025
[49] I.P. Nascimento, L.C.C. Leite, Recombinant vaccines and the development of new vaccine strategies, Brazilian Journal of Medical and Biological Research. 45 (2012) 1102-1111. https://doi.org/10.1590/S0100-879X2012007500142
[50] Q. Wang, H. Wei, Z. Zhang, E. Wang, S. Dong, Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay, TrAC Trends in Analytical Chemistry. 105 (2018) 218-224. https://doi.org/10.1016/j.trac.2018.05.012
[51] TAPF Pimentel, Z. Yan, S.A. Jeffers, K. v. Holmes, R.S. Hodges, P. Burkhard, Peptide nanoparticles as novel immunogens: Design and analysis of a prototypic severe acute respiratory syndrome vaccine, Chemical Biology and Drug Design. 73 (2009) 53-61. https://doi.org/10.1111/j.1747-0285.2008.00746.x
[52] B. Pulendran, R. Ahmed, Translating innate immunity into immunological memory: Implications for vaccine development, Cell. 124 (2006) 849-863. https://doi.org/10.1016/j.cell.2006.02.019
[53] T.H. Mogensen, Pathogen recognition and inflammatory signaling in innate immune defenses, Clinical Microbiology Reviews. 22 (2009) 240-273. https://doi.org/10.1128/CMR.00046-08
[54] Y. Honda-Okubo, F. Saade, N. Petrovsky, AdvaxTM, a polysaccharide adjuvant derived from delta inulin, provides improved influenza vaccine protection through broad-based enhancement of adaptive immune responses, Vaccine. 30 (2012) 5373-5381. https://doi.org/10.1016/j.vaccine.2012.06.021
[55] L. Xu, Y. Liu, Z. Chen, W. Li, Y. Liu, L. Wang, Y. Liu, X. Wu, Y. Ji, Y. Zhao, L. Ma, Y. Shao, C. Chen, Surface-engineered gold nanorods: Promising DNA vaccine adjuvant for HIV-1 treatment, Nano Letters. 12 (2012) 2003-2012. https://doi.org/10.1021/nl300027p
[56] C.N. Fries, J.-L. Chen, M.L. Dennis, N.L. Votaw, J. Eudailey, B.E. Watts, K.M. Hainline, D.W. Cain, R. Barfield, C. Chan, M.A. Moody, B.F. Haynes, K.O. Saunders, S.R. Permar, G.G. Fouda, J.H. Collier, HIV envelope antigen valency on peptide nanofibers modulates antibody magnitude and binding breadth, Scientific Reports. 11 (2021) 14494. https://doi.org/10.1038/s41598-021-93702-x
[57] J.B. Ulmer, J.J. Donnelly, S.E. Parker, G.H. Rhodes, P.L. Felgner, V.J. Dwarki, S.H. Gromkowski, R.R. Deck, C.M. DeWitt, A. Friedman, L.A. Hawe, K.R. Leander, D. Martinez, H.C. Perry, J.W. Shiver, D.L. Montgomery, M.A. Liu, Heterologous protection against influenza by injection of DNA encoding a viral protein, Science. 259 (1993) 1745-1749. https://doi.org/10.1126/science.8456302
[58] Y. Shi, D.H. Yang, J. Xiong, J. Jia, B. Huang, Y.X. Jin, Inhibition of genes expression of SARS coronavirus by synthetic small interfering RNAs, Cell Research. 15 (2005) 193-200. https://doi.org/10.1038/sj.cr.7290286
[59] Z. Wang, L. Ren, X. Zhao, T. Hung, A. Meng, J. Wang, Y.-G. Chen, Inhibition of Severe Acute Respiratory Syndrome Virus Replication by Small Interfering RNAs in Mammalian Cells, Journal of Virology. 78 (2004) 7523-7527. https://doi.org/10.1128/JVI.78.14.7523-7527.2004
[60] J.R. Petree, K. Yehl, K. Galior, R. Glazier, B. Deal, K. Salaita, Site-Selective RNA Splicing Nanozyme: DNAzyme and RtcB Conjugates on a Gold Nanoparticle, ACS Chemical Biology. 13 (2017) 215-224. https://doi.org/10.1021/acschembio.7b00437
[61] K.C. Petkar, S.M. Patil, S.S. Chavhan, K. Kaneko, K.K. Sawant, NK. Kunda, I.Y. Saleem, An Overview of Nanocarrier-Based Adjuvants for Vaccine Delivery., Pharmaceutics. 13 (2021). https://doi.org/10.3390/pharmaceutics13040455
[62] M.F. Bachmann, G.T. Jennings, Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns, Nature Reviews Immunology. 10 (2010) 787-796. https://doi.org/10.1038/nri2868
[63] M. Henriksen-Lacey, K.S. Korsholm, P. Andersen, Y. Perrie, D. Christensen, Liposomal vaccine delivery systems, Expert Opinion on Drug Delivery. 8 (2011) 505-519. https://doi.org/10.1517/17425247.2011.558081
[64] A.M. Reichmuth, M.A. Oberli, A. Jaklenec, R. Langer, D. Blankschtein, mRNA vaccine delivery using lipid nanoparticles, Therapeutic Delivery. 7 (2016) 319. https://doi.org/10.4155/tde-2016-0006
[65] M.E. Baca-Estrada, M. Foldvari, M. Snider, K. Harding, B. Kournikakis, L.A. Babiuk, P. Griebel, Intranasal immunization with liposome-formulated Yersinia pestis vaccine enhances mucosal immune responses, Vaccine. 18 (2000) 2203-2211. https://doi.org/10.1016/S0264-410X(00)00019-0
[66] R. Pala, V.T. Anju, M. Dyavaiah, S. Busi, S.M. Nauli, Nanoparticle-mediated drug delivery for the treatment of cardiovascular diseases, International Journal of Nanomedicine. 15 (2020) 3741-3769. https://doi.org/10.2147/IJN.S250872
[67] N. Wang, R. Qian, T. Liu, T. Wu, T. Wang, Nanoparticulate carriers used as vaccine adjuvant delivery systems, Critical Reviews in Therapeutic Drug Carrier Systems. 36 (2019) 449-484. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2019027047
[68] H.Q. Mao, K. Roy, V.L. Troung-Le, K.A. Janes, K.Y. Lin, Y. Wang, J.T. August, K.W. Leong, Chitosan-DNA nanoparticles as gene carriers: Synthesis, characterization and transfection efficiency, Journal of Controlled Release. 70 (2001) 399-421. https://doi.org/10.1016/S0168-3659(00)00361-8
[69] C.R. Alving, R.L. Richards, J. Moss, L.I. Alving, J.D. Clements, T. Shiba, S. Kotani, R.A. Wirtz, W.T. Hockmeyer, Effectiveness of liposomes as potential carriers of vaccines: applications to cholera toxin and human malaria sporozoite antigen, Vaccine. 4 (1986) 166-172. https://doi.org/10.1016/0264-410X(86)90005-8
[70] S. Dhar, W.L. Daniel, D.A. Giljohann, C.A. Mirkin, S.J. Lippard, Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum(IV) warheads, Journal of the American Chemical Society. 131 (2009) 14652-14653. https://doi.org/10.1021/ja9071282
[71] NanoFlu Influenza Vaccine Phase 3 Study Launches – Precision Vaccinations, (n.d.). https://www.precisionvaccinations.com/novavax-nanoflu-matrix-m-adjuvanted-recombinant-nanoparticle-vaccine-eliciting-antibodies-neutralize (accessed July 18, 2021).
[72] V. F, C. K, F. Vahedifard, K. Chakravarthy, Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19, Emergent Materials. 4 (2021) 75-99. https://doi.org/10.1007/s42247-021-00168-8
[73] I.D.L. Cavalcanti, M. Cajubá de Britto Lira Nogueira, Pharmaceutical nanotechnology: which products are been designed against COVID-19? 22 (2020) 276. https://doi.org/10.1007/s11051-020-05010-6
[74] G. Chauhan, M.J. Madou, S. Kalra, V. Chopra, D. Ghosh, S.O. Martinez-Chapa, Nanotechnology for COVID-19: Therapeutics and Vaccine Research, ACS Nano. 14 (2020) 7760-7782. https://doi.org/10.1021/acsnano.0c04006
[75] LD. Falo, Advances in skin science enable the development of a COVID-19 vaccine, Journal of the American Academy of Dermatology. 83 (2020) 1226-1227. https://doi.org/10.1016/j.jaad.2020.05.126
[76] S. MD, S. S, C. YH, B. V, C. SK, O.-R. OA, W. DM, C. A, S. M, P. JK, S. NF, M.D. Shin, S. Shukla, Y.H. Chung, V. Beiss, S.K. Chan, O.A. Ortega-Rivera, D.M. Wirth, A. Chen, M. Sack, J.K. Pokorski, N.F. Steinmetz, COVID-19 vaccine development and a potential nanomaterial path forward, Nature Nanotechnology. 15 (2020) 646-655. https://doi.org/10.1038/s41565-020-0737-y
[77] M. Pereira-Silva, G. Chauhan, M.D. Shin, C. Hoskins, M.J. Madou, S.O. Martinez-Chapa, N.F. Steinmetz, F. Veiga, A.C. Paiva-Santos, Unleashing the potential of cell membrane-based nanoparticles for COVID-19 treatment and vaccination, Expert Opinion on Drug Delivery. (2021). https://doi.org/10.1080/17425247.2021.1922387
[78] S.P. Kaur, V. Gupta, COVID-19 Vaccine: A comprehensive status report, Virus Research. 288 (2020). https://doi.org/10.1016/j.virusres.2020.198114
[79] A. Samad, Y. Sultana, M. Aqil, Liposomal Drug Delivery Systems: An Update Review, Current Drug Delivery. 4 (2007) 297-305. https://doi.org/10.2174/156720107782151269
[80] M.J. Copland, M.A. Baird, T. Rades, J.L. McKenzie, B. Becker, F. Reck, P.C. Tyler, NM. Davies, Liposomal delivery of antigen to human dendritic cells, Vaccine. 21 (2003) 883-890. https://doi.org/10.1016/S0264-410X(02)00536-4
[81] G.F.A. Kersten, D.J.A. Crommelin, Liposomes and ISCOMS as vaccine formulations, BBA – Reviews on Biomembranes. 1241 (1995) 117-138. https://doi.org/10.1016/0304-4157(95)00002-9
[82] G.L. Ada, The ideal Vaccine, World Journal of Microbiology & Biotechnology. 7 (1991) 105-109. https://doi.org/10.1007/BF00328978
[83] H. Koike, M. Katsuno, Emerging infectious diseases, vaccines and Guillain-Barré syndrome., Clinical & Experimental Neuroimmunology. (2021). https://www.ncbi.nlm.nih.gov/pubmed/34230841 (accessed July 18, 2021).
[84] A. Stern, H. Markel, The history of vaccines and immunization: familiar patterns, unew challenges, Health Affairs. 24 (2005) 611-621. https://doi.org/10.1377/hlthaff.24.3.611
[85] Centers for Disease Control, Understanding How Vaccines Work, Centers for Disease Control. (2018) 1-2. https://www.cdc.gov/vaccines/hcp/conversations/downloads/vacsafe-understand-color-office.pdf.
[86] A.M. Harandi, D. Medaglini, R.J. Shattock, Vaccine adjuvants: A priority for vaccine research, Vaccine. 28 (2010) 2363-2366. https://doi.org/10.1016/j.vaccine.2009.12.084
[87] I.G. Barr, A. Sjölander, J.C. Cox, ISCOMs and other saponin based adjuvants, Advanced Drug Delivery Reviews. 32 (1998) 247-271 https://doi.org/10.1016/S0169-409X(98)00013-1
[88] M. de Veer, E. Meeusen, New developments in vaccine research–unveiling the secret of vaccine adjuvants., Discovery Medicine. 12 (2011) 195-204.
[89] S.L. Giannini, E. Hanon, P. Moris, M. van Mechelen, S. Morel, F. Dessy, MA Fourneau, B. Colau, J. Suzich, G. Losonksy, M.T. Martin, G. Dubin, M.A. Wettendorff, Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only, Vaccine. 24 (2006) 5937-5949. https://doi.org/10.1016/j.vaccine.2006.06.005
[90] Y. Shi, H. HogenEsch, F.E. Regnier, S.L. Hem, Detoxification of endotoxin by aluminum hydroxide adjuvant, Vaccine. 19 (2001) 1747-1752. https://doi.org/10.1016/S0264-410X(00)00394-7
[91] A.S. McKee, M.W. Munks, M.K.L. MacLeod, C.J. Fleenor, N. van Rooijen, J.W. Kappler, P. Marrack, Alum Induces Innate Immune Responses through Macrophage and Mast Cell Sensors, But These Sensors Are Not Required for Alum to Act As an Adjuvant for Specific Immunity, The Journal of Immunology. 183 (2009) 4403-4414. https://doi.org/10.4049/jimmunol.0900164
[92] R.S. Raghuvanshi, Y.K. Katare, K. Lalwani, M.M. Ali, O. Singh, A.K. Panda, Improved immune response from biodegradable polymer particles entrapping tetanus toxoid by use of different immunization protocol and adjuvants, International Journal of Pharmaceutics. 245 (2002) 109-121. https://doi.org/10.1016/S0378-5173(02)00342-3
[93] M. Diwan, M. Tafaghodi, J. Samuel, Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres, Journal of Controlled Release. 85 (2002) 247-262. https://doi.org/10.1016/S0168-3659(02)00275-4
[94] R.K. Gupta, A.C. Chang, P. Griffin, R. Rivera, G.R. Siber, In vivo distribution of radioactivity in mice after injection of biodegradable polymer microspheres containing 14C-labeled tetanus toxoid, Vaccine. 14 (1996) 1412-1416. https://doi.org/10.1016/S0264-410X(96)00073-4
[95] I. Das, A. Padhi, S. Mukherjee, D.P. Dash, S. Kar, A. Sonawane, Biocompatible chitosan nanoparticles as an efficient delivery vehicle for Mycobacterium tuberculosis lipids to induce potent cytokines and antibody response through activation of γδ T cells in mice, Nanotechnology. 28 (2017). https://doi.org/10.1088/1361-6528/aa60fd
[96] X. Wang, T. Uto, T. Akagi, M. Akashi, M. Baba, Induction of Potent CD8 + T-Cell Responses by Novel Biodegradable Nanoparticles Carrying Human Immunodeficiency Virus Type 1 gp120 , Journal of Virology. 81 (2007) 10009-10016. https://doi.org/10.1128/JVI.00489-07
[97] E. Mohr, A.F. Cunningham, K.M. Toellner, S. Bobat, R.E. Coughlan, R.A. Bird, I.C.M. MacLennan, K. Serre, IFN-γ produced by CD8 T cells induces T-bet-dependent and -independent class switching in B cells in responses to alum-precipitated protein vaccine, Proceedings of the National Academy of Sciences of the United States of America. 107 (2010) 17292-17297. https://doi.org/10.1073/pnas.1004879107
[98] K. Hasegawa, Y. Noguchi, F. Koizumi, A. Uenaka, M. Tanaka, M. Shimono, H. Nakamura, H. Shiku, S. Gnjatic, R. Murphy, Y. Hiramatsu, LJ Old, E. Nakayama, In vitro stimulation of CD8 and CD4 T cells by dendritic cells loaded with a complex of cholesterol-bearing hydrophobized pullulan and NY-ESO-1 protein: Identification of a new HLA-DR15-binding CD4 T-cell epitope, Clinical Cancer Research. 12 (2006) 1921-1927. https://doi.org/10.1158/1078-0432.CCR-05-1900
[99] G. Kumar, T. Ganapathi, C. Revathi, L. Srinivas, V. Bapat, Expression of hepatitis B surface antigen in transgenic banana plants, Planta. 222 (2005) 484-493. https://doi.org/10.1007/s00425-005-1556-y
[100] D.J. Bharali, V. Pradhan, G. Elkin, W. Qi, A. Hutson, S.A. Mousa, Y. Thanavala, Novel nanoparticles for the delivery of recombinant hepatitis B vaccine, Nanomedicine: Nanotechnology, Biology, and Medicine. 4 (2008) 311-317. https://doi.org/10.1016/j.nano.2008.05.006
[101] C. Prego, P. Paolicelli, B. Díaz, S. Vicente, A. Sánchez, Á. González-Fernández, M.J. Alonso, Chitosan-based nanoparticles for improving immunization against hepatitis B infection, Vaccine. 28 (2010) 2607-2614. https://doi.org/10.1016/j.vaccine.2010.01.011