Applications of Nanoparticles-based Enzymes in the Diagnosis of Diseases

$30.00

Applications of Nanoparticles-based Enzymes in the Diagnosis of Diseases

Ali Haider, Aqsa Kanwal, Habibullah Nadeem, Farrukh Azeem, Roshan Zameer, Muhammad Umar Rafique and Ijaz Rasul

Nanozymes (NSEs), which are efficient nanomaterials with enzyme-like appearances, have proved themselves highly-stable compared to the natural enzymes. They are also organized with the exclusive fundamental properties of nanomaterials such as luminescence and magnetism. Thus, in the biomedical field, their expansions demonstrate that their catalytic movements have opened up new applications as well as opportunities. Nanozymes are excellent in the informal mass production as well as long term storage. They are also helpful in the field of biomedical technology for the treatment of many diseases. They may incorporate various therapeutically effects in the anti-inflammatory, cytoprotecting, brain diseases and dental biofilms as well as in cardiovascular diseases. They have also performed as impartial therapeutics with other therapeutic approaches to increase antitumor effects. This chapter describes their fascinating applications in therapeutics the associated mechanism.

Keywords
Nanozymes (NSEs), Therapeutics, Cardiovascular Diseases, Neural Diseases

Published online , 30 pages

Citation: Ali Haider, Aqsa Kanwal, Habibullah Nadeem, Farrukh Azeem, Roshan Zameer, Muhammad Umar Rafique and Ijaz Rasul, Applications of Nanoparticles-based Enzymes in the Diagnosis of Diseases, Materials Research Foundations, Vol. 126, pp 162-191, 2022

DOI: https://doi.org/10.21741/9781644901977-6

Part of the book on Nanomaterial-Supported Enzymes

References
[1] Y. Ma, Characterization of nanomaterials in nanotoxicological analyses, Toxicology of Nanomaterials (2016). https://doi.org/10.1002/9783527689125.ch1
[2] K. Slezakova, S. Morais, M. do Carmo Pereira, Atmospheric nanoparticles and their impacts on public health, Current topics in public health, IntechOpen2013. https://doi.org/10.5772/54775
[3] R. Singhania, A. Patel, L. Thomas, M. Goswami, B. Giri, A. Pandey, Industrial enzymes, Industrial biorefineries & white biotechnology, Elsevier2015, pp. 473-497. https://doi.org/10.1016/B978-0-444-63453-5.00015-X
[4] Q.M. Dudley, A.S. Karim, M. Jewett, Cell‐free metabolic engineering: biomanufacturing beyond the cell, Biotechnology journal 10 (2015) 69-82. https://doi.org/10.1002/biot.201400330
[5] R. Ahmad, M. Sardar, Enzyme immobilization: an overview on nanoparticles as immobilization matrix, J Biochemistry Analytical Biochemistry 4 (2015) 1.
[6] G. Li, P. Ma, Y. He, Y. Zhang, Y. Luo, C. Zhang, H. Fan, Enzyme-nanowire mesocrystal hybrid materials with an extremely high biocatalytic activity, Nano letters 18 (2018) 5919-5926. https://doi.org/10.1021/acs.nanolett.8b02620
[7] E.P. Cipolatti, A. Valerio, R.O. Henriques, D.E. Moritz, J.L. Ninow, D.M. Freire, E.A. Manoel, R. Fernandez-Lafuente, D. de Oliveira, Nanomaterials for biocatalyst immobilization-state of the art and future trends, RSC advances 6 (2016) 104675-104692. https://doi.org/10.1039/C6RA22047A
[8] D.S. Benoit, H. Koo, Targeted, triggered drug delivery to tumor and biofilm microenvironments, Future Medicine, 2016. https://doi.org/10.2217/nnm-2016-0014
[9] J. Wu, S. Li, H. Wei, Multifunctional nanozymes: enzyme-like catalytic activity combined with magnetism and surface plasmon resonance, Nanoscale horizons 3 (2018) 367-382. https://doi.org/10.1039/C8NH00070K
[10] T. Kang, Y.G. Kim, D. Kim, T.J.C.C.R. Hyeon, Inorganic nanoparticles with enzyme-mimetic activities for biomedical applications, 403 (2020) 213092. https://doi.org/10.1016/j.ccr.2019.213092
[11] B. Cao, X. Lyu, C. Wang, S. Lu, D. Xing, X. Hu, Rational collaborative ablation of bacterial biofilms ignited by physical cavitation and concurrent deep antibiotic release, Biomaterials 262 (2020) 120341. https://doi.org/10.1016/j.biomaterials.2020.120341
[12] J. Shi, R. Yan, Y. Zhu, X. Zhang, Determination of NH3 gas by combination of nanosized LaCoO3 converter with chemiluminescence detector, Talanta 61 (2003) 157-164. https://doi.org/10.1016/S0039-9140(03)00240-6
[13] S. Mohtashamian, S. Boddohi, Nanostructured polysaccharide-based carriers for antimicrobial peptide delivery, Journal of Pharmaceutical Investigation 47 (2017) 85-94. https://doi.org/10.1007/s40005-016-0289-1
[14] K. Fan, C. Cao, Y. Pan, D. Lu, D. Yang, J. Feng, L. Song, M. Liang, X. Yan, Magnetoferritin nanoparticles for targeting and visualizing tumour tissues, Nature nanotechnology 7 (2012) 459-464. https://doi.org/10.1038/nnano.2012.90
[15] R. Singla, A. Guliani, A. Kumari, S.K. Yadav, Metallic nanoparticles, toxicity issues and applications in medicine, Nanoscale materials in targeted drug delivery, theragnosis and tissue regeneration, Springer2016, pp. 41-80. https://doi.org/10.1007/978-981-10-0818-4_3
[16] H. Huang, W. Feng, Y. Chen, Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications, Chemical Society Reviews (2021). https://doi.org/10.1039/D0CS01138J
[17] Zhang, Pornpattananangkul, C.-M. Hu, C.-M. Huang, Development of nanoparticles for antimicrobial drug delivery, Current medicinal chemistry 17 (2010) 585-594. https://doi.org/10.2174/092986710790416290
[18] J. Lin, K. Nishino, M. Roberts, M. Tolmasky, R. Aminov, L. Zhang, Mechanisms of antibiotic resistance, Frontiers in microbiology 6 (2015) 34. https://doi.org/10.3389/fmicb.2015.00034
[19] D. Liu, C. Ju, C. Han, R. Shi, X. Chen, D. Duan, J. Yan, X. Yan, Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen, Biosensors Bioelectronics 173 (2021) 112817. https://doi.org/10.1016/j.bios.2020.112817
[20] C. Fang, M. Zhang, Nanoparticle-based theragnostics: Integrating diagnostic and therapeutic potentials in nanomedicine, Journal of controlled release: official journal of the Controlled Release Society 146 (2010) 2. https://doi.org/10.1016/j.jconrel.2010.05.013
[21] N. Alizadeh, A. Salimi, R. Hallaj, F. Fathi, F. Soleimani, Ni-hemin metal-organic framework with highly efficient peroxidase catalytic activity: toward colorimetric cancer cell detection and targeted therapeutics, Journal of nanobiotechnology 16 (2018) 1-14. https://doi.org/10.1186/s12951-018-0421-7
[22] N. Cheng, Y. Song, M.M. Zeinhom, Y.-C. Chang, L. Sheng, H. Li, D. Du, L. Li, M.-J. Zhu, Y. Luo, Nanozyme-mediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens, ACS applied materials interfaces 9 (2017) 40671-40680. https://doi.org/10.1021/acsami.7b12734
[23] X.J. Yang, R.S. Li, C.M. Li, Y.F. Li, C.Z. Huang, Cobalt oxyhydroxide nanoflakes with oxidase-mimicking activity induced chemiluminescence of luminol for glutathione detection, Talanta 215 (2020) 120928. https://doi.org/10.1016/j.talanta.2020.120928
[24] M. Lobatto, V. Fuster, Z. Fayad, W. Mulder, Perspectives and opportunities for nanomedicine in the management of atherosclerosis, Nature Reviews Drug Discovery 10 (2011) 835-852. https://doi.org/10.1038/nrd3578
[25] S.E. Son, P. Gupta, W. Hur, H. Choi, H.B. Lee, Y. Park, G.H. Seong, Determination of glycated albumin using a Prussian blue nanozyme-based boronate affinity sandwich assay, Analytica Chimica Acta 1134 (2020) 41-49. https://doi.org/10.1016/j.aca.2020.08.015
[26] C. Cao, X. Wang, Y. Cai, L. Sun, L. Tian, H. Wu, X. He, H. Lei, W. Liu, G. Chen, Targeted in vivo imaging of microscopic tumors with ferritin‐based nanoprobes across biological barriers, Advanced materials 26 (2014) 2566-2571. https://doi.org/10.1002/adma.201304544
[27] T.M. Allen, P. Cullis, Liposomal drug delivery systems: from concept to clinical applications, Advanced drug delivery reviews 65 (2013) 36-48. https://doi.org/10.1016/j.addr.2012.09.037
[28] G.R. Rudramurthy, M.K. Swamy, Potential applications of engineered nanoparticles in medicine and biology: An update, JBIC Journal of Biological Inorganic Chemistry 23 (2018) 1185-1204. https://doi.org/10.1007/s00775-018-1600-6
[29] R. De La Rica, D. Aili, M. Stevens, Enzyme-responsive nanoparticles for drug release and diagnostics, Advanced drug delivery reviews 64 (2012) 967-978. https://doi.org/10.1016/j.addr.2012.01.002
[30] Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications, Chemical reviews 119 (2019) 4357-4412. https://doi.org/10.1021/acs.chemrev.8b00672
[31] A. Adhikari, S. Mondal, S. Darbar, S.K. Pal, Role of nanomedicine in redox mediated healing at molecular level, J Biomolecular concepts 10 (2019) 160-174. https://doi.org/10.1515/bmc-2019-0019
[32] L.B. Cohn, Single Cell Analysis of the HIV-1 Latent Reservoir, (2018).
[33] A. Bhaskar, M. Munshi, S.Z. Khan, S. Fatima, R. Arya, S. Jameel, A. Singh, Measuring glutathione redox potential of HIV-1-infected macrophages, Journal of Biological Chemistry 290 (2015) 1020-1038. https://doi.org/10.1074/jbc.M114.588913
[34] J. Li, J. Wang, Y. Wang, M. Trau, Simple and rapid colorimetric detection of melanoma circulating tumor cells using bifunctional magnetic nanoparticles, Analyst 142 (2017) 4788-4793. https://doi.org/10.1039/C7AN01102D
[35] F. Wang, Y. Zhang, Z. Du, J. Ren, X. Qu, Designed heterogeneous palladium catalysts for reversible light-controlled bioorthogonal catalysis in living cells, Nature communications 9 (2018) 1-8. https://doi.org/10.1038/s41467-017-02088-w
[36] L. Tian, J. Qi, X. Ma, X. Wang, C. Yao, W. Song, Y. Wang, A facile DNA strand displacement reaction sensing strategy of electrochemical biosensor based on N-carboxymethyl chitosan/molybdenum carbide nanocomposite for microRNA-21 detection, Biosensors Bioelectronics 122 (2018) 43-50. https://doi.org/10.1016/j.bios.2018.09.037
[37] M. Li, Y.-H. Lao, R. Mintz, Z. Chen, D. Shao, H. Hu, H.-X. Wang, Y. Tao, K. Leong, A multifunctional mesoporous silica-gold nanocluster hybrid platform for selective breast cancer cell detection using a catalytic amplification-based colorimetric assay, Nanoscale 11 (2019) 2631-2636. https://doi.org/10.1039/C8NR08337A
[38] F. Wang, Y. Zhang, Z. Du, J. Ren, X. Qu, Designed heterogeneous palladium catalysts for reversible light-controlled bioorthogonal catalysis in living cells, Nature communications 9 (2018) 1-8. https://doi.org/10.1038/s41467-017-02088-w
[39] M. Santhosh, S. Chinnadayyala, A. Kakoti, P. Goswami, Selective and sensitive detection of free bilirubin in blood serum using human serum albumin stabilized gold nanoclusters as fluorometric and colorimetric probe, Biosensors Bioelectronics 59 (2014) 370-376. https://doi.org/10.1016/j.bios.2014.04.003
[40] A.R. Collins, B. Annangi, L. Rubio, R. Marcos, M. Dorn, C. Merker, I. Estrela‐Lopis, M.R. Cimpan, M. Ibrahim, E. Cimpan, High throughput toxicity screening and intracellular detection of nanomaterials, Wiley Interdisciplinary Reviews: Nanomedicine Nanobiotechnology 9 (2017) e1413. https://doi.org/10.1002/wnan.1413
[41] G.Y. Tonga, Y. Jeong, B. Duncan, T. Mizuhara, R. Mout, R. Das, S.T. Kim, Y.-C. Yeh, B. Yan, S. Hou, Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts, Nature chemistry 7 (2015) 597-603. https://doi.org/10.1038/nchem.2284
[42] R. Yu, R. Wang, Z. Wang, Q. Zhu, Z. Dai, Applications of DNA-nanozyme-based sensors, Analyst 146 (2021) 1127-1141.
[43] P. Zamani, N. Fereydouni, A. Butler, J.G. Navashenaq, A. Sahebkar, The therapeutic and diagnostic role of exosomes in cardiovascular diseases, Trends in cardiovascular medicine 29 (2019) 313-323. https://doi.org/10.1016/j.tcm.2018.10.010
[44] J.H. Park, D. Dehaini, J. Zhou, M. Holay, R. Fang, L. Zhang, Biomimetic nanoparticle technology for cardiovascular disease detection and treatment, Nanoscale horizons 5 (2020) 25-42. https://doi.org/10.1039/C9NH00291J
[45] C. Shi, H. Xie, Y. Ma, Z. Yang, J. Zhang, Nanoscale technologies in highly sensitive diagnosis of cardiovascular diseases, Frontiers in Bioengineering Biotechnology 8 (2020) 531. https://doi.org/10.3389/fbioe.2020.00531
[46] M. Sevostyanov, A. Baikin, K. Sergienko, L. Shatova, A. Kirsankin, I. Baymler, A. Shkirin, S. Gudkov, Biodegradable stent coatings on the basis of PLGA polymers of different molecular mass, sustaining a steady release of the thrombolityc enzyme streptokinase, Reactive Functional Polymers 150 (2020) 104550. https://doi.org/10.1016/j.reactfunctpolym.2020.104550
[47] B. Maleki, H. Alinezhad, H. Atharifar, R. Tayebee, A.V. Mofrad, One-pot synthesis of polyhydroquinolines catalyzed by ZnCl2 supported on nano Fe3O4@ SiO2, Organic Preparations Procedures International 51 (2019) 301-309. https://doi.org/10.1080/00304948.2019.1600132
[48] S.K. Metkar, K. Girigoswami, Diagnostic biosensors in medicine-a review, Biocatalysis agricultural biotechnology 17 (2019) 271-283. https://doi.org/10.1016/j.bcab.2018.11.029
[49] J. Liu, T. Lécuyer, J. Seguin, N. Mignet, D. Scherman, B. Viana, C. Richard, Imaging and therapeutic applications of persistent luminescence nanomaterials, Advanced drug delivery reviews 138 (2019) 193-210. https://doi.org/10.1016/j.addr.2018.10.015
[50] F. Sabir, M. Barani, M. Mukhtar, A. Rahdar, M. Cucchiarini, M.N. Zafar, T. Behl, S. Bungau, Nanodiagnosis and nanotreatment of cardiovascular diseases: An overview, Chemosensors 9 (2021) 67. https://doi.org/10.3390/chemosensors9040067
[51] S. Gurunathan, M.-H. Kang, M. Qasim, J.-H. Kim, Nanoparticle-mediated combination therapy: two-in-one approach for cancer, International journal of molecular sciences 19 (2018) 3264. https://doi.org/10.3390/ijms19103264
[52] J. Fan, J.-J. Yin, B. Ning, X. Wu, Y. Hu, M. Ferrari, G.J. Anderson, J. Wei, Y. Zhao, G. Nie, Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles, Biomaterials 32 (2011) 1611-1618. https://doi.org/10.1016/j.biomaterials.2010.11.004
[53] H. Nakanishi, T. Hamasaki, T. Kinjo, H. Yan, N. Nakamichi, S. Kabayama, K. Teruya, S. Shirahata, Low Concentration Platinum Nanoparticles Effectively Scavenge Reactive Oxygen Species in Rat Skeletal L6 Cells, Nano Biomedicine Engineering 5 (2013). https://doi.org/10.5101/nbe.v5i2.p76-85
[54] Y. Cao, Y. Ma, M. Zhang, H. Wang, X. Tu, H. Shen, J. Dai, H. Guo, Z. Zhang, Ultrasmall graphene oxide supported gold nanoparticles as adjuvants improve humoral and cellular immunity in mice, Advanced Functional Materials 24 (2014) 6963-6971. https://doi.org/10.1002/adfm.201401358
[55] Y. Huang, C. Liu, F. Pu, Z. Liu, J. Ren, X. Qu, A GO-Se nanocomposite as an antioxidant nanozyme for cytoprotection, Chemical Communications 53 (2017) 3082-3085. https://doi.org/10.1039/C7CC00045F
[56] J. Jacob, J.T. Haponiuk, S. Thomas, S. Gopi, Biopolymer based nanomaterials in drug delivery systems: A review, Materials Today Chemistry 9 (2018) 43-55. https://doi.org/10.1016/j.mtchem.2018.05.002
[57] H. Sun, L. Miao, J. Li, S. Fu, G. An, C. Si, Z. Dong, Q. Luo, S. Yu, J. Xu, Self-assembly of cricoid proteins induced by “soft nanoparticles”: an approach to design multienzyme-cooperative antioxidative systems, ACS nano 9 (2015) 5461-5469. https://doi.org/10.1021/acsnano.5b01311
[58] C. Ren, Y. Yao, R. Han, Q. Huang, H. Li, B. Wang, S. Li, M. Li, Y. Mao, X. Mao, Cerebral ischemia induces angiogenesis in the peri-infarct regions via Notch1 signaling activation, Experimental neurology 304 (2018) 30-40. https://doi.org/10.1016/j.expneurol.2018.02.013
[59] K.-T. Jin, Z.-B. Lu, J.-Y. Chen, Y.-Y. Liu, H.-R. Lan, H.-Y. Dong, F. Yang, Y.-Y. Zhao, X.-Y. Chen, Recent trends in nanocarrier-based targeted chemotherapy: selective delivery of anticancer drugs for effective lung, colon, cervical, and breast cancer treatment, Journal of Nanomaterials 2020 (2020). https://doi.org/10.1155/2020/9184284
[60] D.E. Bredesen, R.V. Rao, P. Mehlen, Cell death in the nervous system, Nature 443 (2006) 796-802. https://doi.org/10.1038/nature05293
[61] A.W. Hübler, O. Osuagwu, Digital quantum batteries: Energy and information storage in nanovacuum tube arrays, Complexity 15 (2010) 48-55. https://doi.org/10.1002/cplx.20306
[62] O. Betzer, M. Shilo, R. Opochinsky, E. Barnoy, M. Motiei, E. Okun, G. Yadid, R. Popovtzer, The effect of nanoparticle size on the ability to cross the blood-brain barrier: an in vivo study, Nanomedicine 12 (2017) 1533-1546. https://doi.org/10.2217/nnm-2017-0022
[63] J.-H. An, W.A. El-Said, C.-H. Yea, T.-H. Kim, J.-W. Choi, Surface-enhanced Raman scattering of dopamine on self-assembled gold nanoparticles, Journal of nanoscience nanotechnology 11 (2011) 4424-4429. https://doi.org/10.1166/jnn.2011.3688
[64] M. Bilal, H.M. Iqbal, Chemical, physical, and biological coordination: An interplay between materials and enzymes as potential platforms for immobilization, Coordination Chemistry Reviews 388 (2019) 1-23. https://doi.org/10.1016/j.ccr.2019.02.024
[65] X. Wang, W. Cao, L. Qin, T. Lin, W. Chen, S. Lin, J. Yao, X. Zhao, M. Zhou, C. Hang, Boosting the peroxidase-like activity of nanostructured nickel by inducing its 3+ oxidation state in LaNiO3 perovskite and its application for biomedical assays, Theranostics 7 (2017) 2277. https://doi.org/10.7150/thno.19257
[66] X. Hu, F. Li, F. Xia, X. Guo, N. Wang, L. Liang, B. Yang, K. Fan, X. Yan, D. Ling, Biodegradation-mediated enzymatic activity-tunable molybdenum oxide nanourchins for tumor-specific cascade catalytic therapy, Journal of the American Chemical Society 142 (2019) 1636-1644. https://doi.org/10.1021/jacs.9b13586
[67] Y.P. Kim, H.K. Shon, S.K. Shin, T.G.J.M.s.r. Lee, Probing nanoparticles and nanoparticle‐conjugated biomolecules using time‐of‐flight secondary ion mass spectrometry, 34 (2015) 237-247. https://doi.org/10.1002/mas.21437
[68] D.-Y. Wu, J.-F. Li, B. Ren, Z.-Q.J.C.S.R. Tian, Electrochemical surface-enhanced Raman spectroscopy of nanostructures, 37 (2008) 1025-1041. https://doi.org/10.1039/b707872m
[69] A. Yan, Z.J.N.V.i.P.S. Chen, Detection methods of nanoparticles in plant tissues, 99 (2018). https://doi.org/10.5772/intechopen.74101
[70] A. Amirjani, D.F.J.S. Haghshenas, A.B. Chemical, Ag nanostructures as the surface plasmon resonance (SPR)˗ based sensors: a mechanistic study with an emphasis on heavy metallic ions detection, 273 (2018) 1768-1779. https://doi.org/10.1016/j.snb.2018.07.089
[71] A. Gao, X.-l. Hu, M. Saeed, B.-f. Chen, Y.-p. Li, H.-j.J.A.P.S. Yu, Overview of recent advances in liposomal nanoparticle-based cancer immunotherapy, 40(9) (2019) 1129-1137. https://doi.org/10.1038/s41401-019-0281-1
[72] A.S.A. Lila, K. Nawata, T. Shimizu, T. Ishida, H.J.I.j.o.p. Kiwada, Use of polyglycerol (PG), instead of polyethylene glycol (PEG), prevents induction of the accelerated blood clearance phenomenon against long-circulating liposomes upon repeated administration, 456(1) (2013) 235-242. https://doi.org/10.1016/j.ijpharm.2013.07.059
[73] D. Chitkara, N.J.P.r. Kumar, BSA-PLGA-based core-shell nanoparticles as carrier system for water-soluble drugs, 30(9) (2013) 2396-2409. https://doi.org/10.1007/s11095-013-1084-6
[74] W. Deng, W. Chen, S. Clement, A. Guller, Z. Zhao, A. Engel, E.M.J.N.c. Goldys, Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation, 9(1) (2018) 1-11. https://doi.org/10.1038/s41467-018-05118-3
[75] S. Karandikar, A. Mirani, V. Waybhase, V.B. Patravale, S. Patankar, Nanovaccines for oral delivery-formulation strategies and challenges, Nanostructures for Oral Medicine, Elsevier2017, pp. 263-293. https://doi.org/10.1016/B978-0-323-47720-8.00011-0
[76] K. Subramani, W. Ahmed, Nanoparticulate drug delivery systems for oral cancer treatment, Emerging Nanotechnologies in Dentistry, Elsevier2012, pp. 333-345. https://doi.org/10.1016/B978-1-4557-7862-1.00019-5
[77] I. Cacciatore, M. Ciulla, E. Fornasari, L. Marinelli, A.J.E.o.o.d.d. Di Stefano, Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases, 13(8) (2016) 1121-1131. https://doi.org/10.1080/17425247.2016.1178237
[78] K. Wang, X. Zhu, E. Yu, P. Desai, H. Wang, C.-l. Zhang, Q. Zhuge, J. Yang, J.J.J.o.N. Hu, Therapeutic Nanomaterials for Neurological Diseases and Cancer Therapy, 2020 (2020). https://doi.org/10.1155/2020/2047379
[79] M. Qu, Q. Lin, S. He, L. Wang, Y. Fu, Z. Zhang, L.J.J.o.c.r. Zhang, A brain targeting functionalized liposomes of the dopamine derivative N-3, 4-bis (pivaloyloxy)-dopamine for treatment of Parkinson’s disease, 277 (2018) 173-182. https://doi.org/10.1016/j.jconrel.2018.03.019