Use of Nanomaterials-Based Enzymes in the Food Industry
Ijaz Hussain, Sadaf Ul Hassan, Zulfiqar Ali Khan, Matloob Ahmad, Tauqir A. Sherazi, Syed Ali Raza Naqvi
Natural enzymes perform pivotal role in all biological reactions in living things. But their practical operations are restricted due to difficulty in synthesis, reprocessing, cost, and easy denaturation. To combat these hurdles, blistering exertion is dedicated for improving these enzymes to other enzymes known “artificial enzymes.” The man-made enzymes, which possess enzyme mimicking properties, have fascinated researchers’ attentions. From last decade, nanozymes have attained tremendous progression. Nanomaterials-based enzyme elucidates expressive features like distinct preparative protocols, low cost, long duration for storage, and high stability towards environment than natural enzymes. This draft carries survey on 1) nanozymes literature, which is considerably explored by a diverse class of nanocomposites such as composites of halogens, carbon-based nanostructured materials etc.; 2) the recent progresses made in the fabrication of nanozymes for enzyme mimicking activity; 3) the mechanism of action, schemes to increase enzymatic activities, catalytic property and recent trends of using nanomaterials-based enzymes in the food industries.
Keywords
Nanozymes, Nanoparticles, Enzymes, Food Processing, Food Industry
Published online , 28 pages
Citation: Ijaz Hussain, Sadaf Ul Hassan, Zulfiqar Ali Khan, Matloob Ahmad, Tauqir A. Sherazi, Syed Ali Raza Naqvi, Use of Nanomaterials-Based Enzymes in the Food Industry, Materials Research Foundations, Vol. 126, pp 89-116, 2022
DOI: https://doi.org/10.21741/9781644901977-3
Part of the book on Nanomaterial-Supported Enzymes
References
[1] X. Wang, W. Guo, Y. Hu, J. Wu, H. Wei, Nanozymes: next wave of artificial enzymes, Springer, 2016. https://doi.org/10.1007/978-3-662-53068-9
[2] W. Song, B. Zhao, C. Wang, Y. Ozaki, X. Lu, Functional nanomaterials with unique enzyme-like characteristics for sensing applications, Journal of Materials Chemistry B. 7 (2019) 850-875. https://doi.org/10.1039/C8TB02878H
[3] F. Manea, F.B. Houillon, L. Pasquato, P. Scrimin, Nanozymes: Gold‐nanoparticle‐based transphosphorylation catalysts, Angewandte Chemie. 116 (2004) 6291-6295. https://doi.org/10.1002/ange.200460649
[4] V.A. Kumar, T. Uchida, T. Mizuki, Y. Nakajima, Y. Katsube, T. Hanajiri, T. Maekawa, Synthesis of nanoparticles composed of silver and silver chloride for a plasmonic photocatalyst using an extract from a weed Solidago altissima (goldenrod), Advances in Natural Sciences: Nanoscience and Nanotechnology. 7 (2016) 015002. https://doi.org/10.1088/2043-6262/7/1/015002
[5] S. Singh, Cerium oxide based nanozymes: Redox phenomenon at biointerfaces, Biointerphases. 11 (2016) 04B202. https://doi.org/10.1116/1.4966535
[6] I. Chekman, N. Horchakova, P. Simonov, Biologically active substances as nanostructures: A biochemical aspect, Clinical pharmacy. 21 (2017) 15-22. https://doi.org/10.24959/cphj.17.1422
[7] S. Li, Z. Zhou, Z. Tie, B. Wang, M. Ye, L. Du, R. Cui, W. Liu, C. Wan, Q. Liu, Data-informed discovery of hydrolytic nanozymes, bioRxiv. (2020). https://doi.org/10.1101/2020.12.08.416305
[8] S. Ali, A. Hendriks, R. van Dalen, T. Bruyning, N. Meeuwenoord, H.S. Overkleeft, D.V. Filippov, G.A. van der Marel, N.M. van Sorge, J.D. Codée, (Automated) Synthesis of Well‐defined Staphylococcus Aureus Wall Teichoic Acid Fragments, Chemistry (Weinheim an der Bergstrasse, Germany). 27 (2021) 10461. https://doi.org/10.1002/chem.202101242
[9] L. Pasquato, P. Pengo, P. Scrimin, Nanozymes: Functional nanoparticle-based catalysts, Supramolecular Chemistry. 17 (2005) 163-171. https://doi.org/10.1080/10610270412331328817
[10] A. Payal, S. Krishnamoorthy, A. Elumalai, J. Moses, C. Anandharamakrishnan, A Review on Recent Developments and Applications of Nanozymes in Food Safety and Quality Analysis, Food Analytical Methods. (2021) 1-22. https://doi.org/10.1007/s12161-021-01983-9
[11] J. Li, W. Liu, X. Wu, X. Gao, Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium, Biomaterials. 48 (2015) 37-44. https://doi.org/10.1016/j.biomaterials.2015.01.012
[12] I. Celardo, J.Z. Pedersen, E. Traversa, L. Ghibelli, Pharmacological potential of cerium oxide nanoparticles, Nanoscale. 3 (2011) 1411-1420. https://doi.org/10.1039/c0nr00875c
[13] M. Shamsipur, A. Safavi, Z. Mohammadpour, Indirect colorimetric detection of glutathione based on its radical restoration ability using carbon nanodots as nanozymes, Sensors and Actuators B: Chemical. 199 (2014) 463-469. https://doi.org/10.1016/j.snb.2014.04.006
[14] Z. Jin, N. Hildebrandt, Semiconductor quantum dots for in vitro diagnostics and cellular imaging, Trends in biotechnology. 30 (2012) 394-403. https://doi.org/10.1016/j.tibtech.2012.04.005
[15] F.P. Carvalho, Pesticides, environment, and food safety, Food and energy security. 6 (2017) 48-60. https://doi.org/10.1002/fes3.108
[16] J. Wei, L. Yang, M. Luo, Y. Wang, P. Li, Nanozyme-assisted technique for dual mode detection of organophosphorus pesticide, Ecotoxicology and environmental safety. 179 (2019) 17-23. https://doi.org/10.1016/j.ecoenv.2019.04.041
[17] H. Jia, D. Yang, X. Han, J. Cai, H. Liu, W. He, Peroxidase-like activity of the Co 3 O 4 nanoparticles used for biodetection and evaluation of antioxidant behavior, Nanoscale. 8 (2016) 5938-5945. https://doi.org/10.1039/C6NR00860G
[18] H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S.-Z. Qiao, Emerging two-dimensional nanomaterials for electrocatalysis, Chemical reviews. 118 (2018) 6337-6408. https://doi.org/10.1021/acs.chemrev.7b00689
[19] Y. He, W. Zhou, G. Qian, B. Chen, Methane storage in metal-organic frameworks, Chemical Society Reviews. 43 (2014) 5657-5678. https://doi.org/10.1039/C4CS00032C
[20] N.R. Nirala, R. Prakash, Quick colorimetric determination of choline in milk and serum based on the use of MoS 2 nanosheets as a highly active enzyme mimetic, Microchimica Acta. 185 (2018) 1-8. https://doi.org/10.1007/s00604-018-2753-2
[21] L. Huang, D.W. Sun, H. Pu, Q. Wei, Development of nanozymes for food quality and safety detection: Principles and recent applications, Comprehensive reviews in food science and food safety. 18 (2019) 1496-1513. https://doi.org/10.1111/1541-4337.12485
[22] G. Zhang, C. Zhu, Y. Huang, J. Yan, A. Chen, A lateral flow strip based aptasensor for detection of ochratoxin A in corn samples, Molecules. 23 (2018) 291. https://doi.org/10.3390/molecules23020291
[23] M. Hu, K. Korschelt, M. Viel, N. Wiesmann, M. Kappl, J.r. Brieger, K. Landfester, H. Therien-Aubin, W. Tremel, Nanozymes in nanofibrous mats with haloperoxidase-like activity to combat biofouling, ACS applied Materials & Interfaces. 10 (2018) 44722-44730. https://doi.org/10.1021/acsami.8b16307
[24] J. Huang, X.-L. Zhu, Y.-M. Wang, J.-H. Ge, J.-W. Liu, J.-H. Jiang, A multiplex paper-based nanobiocatalytic system for simultaneous determination of glucose and uric acid in whole blood, Analyst. 143 (2018) 4422-4428. https://doi.org/10.1039/C8AN00866C
[25] N. Stasyuk, G. Gayda, A. Zakalskiy, O. Zakalska, R. Serkiz, M. Gonchar, Amperometric biosensors based on oxidases and PtRu nanoparticles as artificial peroxidase, Food chemistry. 285 (2019) 213-220. https://doi.org/10.1016/j.foodchem.2019.01.117
[26] S. Wang, W. Deng, L. Yang, Y. Tan, Q. Xie, S. Yao, Copper-based metal-organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of Staphylococcus aureus, ACS applied materials & interfaces. 9 (2017) 24440-24445. https://doi.org/10.1021/acsami.7b07307
[27] Y. Li, X. You, X. Shi, Enhanced chemiluminescence determination of hydrogen peroxide in milk sample using metal-organic framework Fe-MIL-88NH 2 as peroxidase mimetic, Food Analytical Methods. 10 (2017) 626-633. https://doi.org/10.1007/s12161-016-0617-0
[28] A.H. Valekar, B.S. Batule, M.I. Kim, K.-H. Cho, D.-Y. Hong, U.-H. Lee, J.-S. Chang, H.G. Park, Y.K. Hwang, Novel amine-functionalized iron trimesates with enhanced peroxidase-like activity and their applications for the fluorescent assay of choline and acetylcholine, Biosensors and Bioelectronics. 100 (2018) 161-168. https://doi.org/10.1016/j.bios.2017.08.056
[29] T. Chen, X. Wu, J. Wang, G. Yang, WSe 2 few layers with enzyme mimic activity for high-sensitive and high-selective visual detection of glucose, Nanoscale. 9 (2017) 11806-11813. https://doi.org/10.1039/C7NR03179C
[30] H. Liu, Y.-N. Ding, B. Yang, Z. Liu, X. Zhang, Q. Liu, Iron doped CuSn (OH) 6 microspheres as a peroxidase-mimicking artificial enzyme for H2O2 colorimetric detection, ACS Sustainable Chemistry & Engineering. 6 (2018) 14383-14393. https://doi.org/10.1021/acssuschemeng.8b03082
[31] J. Rane, P. Adhikar, R. Bakal, Molecular imprinting: an emerging technology, Asian J Pharm Technol Innov. 3 (2015) 75-91.
[32] Z. Zhang, X. Zhang, B. Liu, J. Liu, Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity, Journal of the American Chemical Society. 139 (2017) 5412-5419. https://doi.org/10.1021/jacs.7b00601
[33] F. Lin, T. Yushen, L. Doudou, W. Haoan, C. Yan, G. Ning, Z. Yu, Catalytic gold-platinum alloy nanoparticles and a novel glucose oxidase mimic with enhanced activity and selectivity constructed by molecular imprinting, Analytical Methods. 11 (2019) 4586-4592. https://doi.org/10.1039/C9AY01308C
[34] W. Guo, F. Pi, H. Zhang, J. Sun, Y. Zhang, X. Sun, A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin, Biosensors and Bioelectronics. 98 (2017) 299-304. https://doi.org/10.1016/j.bios.2017.06.036
[35] L. Qu, Y. Liu, J.-B. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS nano. 4 (2010) 1321-1326. https://doi.org/10.1021/nn901850u
[36] R. Li, M. Zhen, M. Guan, D. Chen, G. Zhang, J. Ge, P. Gong, C. Wang, C. Shu, A novel glucose colorimetric sensor based on intrinsic peroxidase-like activity of C60-carboxyfullerenes, Biosensors and Bioelectronics. 47 (2013) 502-507. https://doi.org/10.1016/j.bios.2013.03.057
[37] C. Xu, X. Sun, X. Zhang, L. Ke, S. Chua, Photoluminescent properties of copper-doped zinc oxide nanowires, Nanotechnology. 15 (2004) 856. https://doi.org/10.1088/0957-4484/15/7/026
[38] S. Yao, C. Zhao, Y. Liu, H. Nie, G. Xi, X. Cao, Z. Li, B. Pang, J. Li, J. Wang, Colorimetric Immunoassay for the Detection of Staphylococcus aureus by Using Magnetic Carbon Dots and Sliver Nanoclusters as o-Phenylenediamine-Oxidase Mimetics, Food Analytical Methods. 13 (2020) 833-838. https://doi.org/10.1007/s12161-019-01683-5
[39] N. Fakhri, F. Salehnia, S.M. Beigi, S. Aghabalazadeh, M. Hosseini, M.R. Ganjali, Enhanced peroxidase-like activity of platinum nanoparticles decorated on nickel-and nitrogen-doped graphene nanotubes: colorimetric detection of glucose, Microchimica Acta. 186 (2019) 1-9. https://doi.org/10.1007/s00604-018-3127-5
[40] M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals, Interdisciplinary toxicology. 7 (2014) 60. https://doi.org/10.2478/intox-2014-0009
[41] J. Li, Q. Cheng, H. Huang, M. Li, S. Yan, Y. Li, Z. Chang, Sensitive chemical sensor array based on nanozymes for discrimination of metal ions and teas, Luminescence. 35 (2020) 321-327. https://doi.org/10.1002/bio.3730
[42] Y. Zhou, B. Liu, R. Yang, J. Liu, Filling in the gaps between nanozymes and enzymes: challenges and opportunities, Bioconjugate chemistry. 28 (2017) 2903-2909. https://doi.org/10.1021/acs.bioconjchem.7b00673
[43] E. Golub, H.B. Albada, W.-C. Liao, Y. Biniuri, I. Willner, Nucleoapzymes: hemin/G-quadruplex DNAzyme-aptamer binding site conjugates with superior enzyme-like catalytic functions, Journal of the American Chemical Society. 138 (2016) 164-172. https://doi.org/10.1021/jacs.5b09457
[44] G.Y. Tonga, Y. Jeong, B. Duncan, T. Mizuhara, R. Mout, R. Das, S.T. Kim, Y.-C. Yeh, B. Yan, S. Hou, Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts, Nature chemistry. 7 (2015) 597-603. https://doi.org/10.1038/nchem.2284
[45] R. Antiochia, I. Lavagnini, F. Magno, Amperometric mediated carbon nanotube paste biosensor for fructose determination, Analytical letters. 37 (2004) 1657-1669. https://doi.org/10.1081/AL-120037594
[46] Z. Zhao, X. Chen, B. Tay, J. Chen, Z. Han, K.A. Khor, A novel amperometric biosensor based on ZnO: Co nanoclusters for biosensing glucose, Biosensors and Bioelectronics. 23 (2007) 135-139. https://doi.org/10.1016/j.bios.2007.03.014
[47] Y. Cheng, Y. Liu, J. Huang, Y. Xian, W. Zhang, Z. Zhang, L. Jin, Rapid amperometric detection of coliforms based on MWNTs/Nafion composite film modified glass carbon electrode, Talanta. 75 (2008) 167-171. https://doi.org/10.1016/j.talanta.2008.01.044
[48] C. Ozdemir, F. Yeni, D. Odaci, S. Timur, Electrochemical glucose biosensing by pyranose oxidase immobilized in gold nanoparticle-polyaniline/AgCl/gelatin nanocomposite matrix, Food Chemistry. 119 (2010) 380-385. https://doi.org/10.1016/j.foodchem.2009.05.087
[49] S. chuan Li, J. hua Chen, H. Cao, D. sheng Yao, Amperometric biosensor for aflatoxin B1 based on aflatoxin-oxidase immobilized on multiwalled carbon nanotubes, Food Control. 22 (2011) 43-49. https://doi.org/10.1016/j.foodcont.2010.05.005
[50] O.R. Miranda, X. Li, L. Garcia-Gonzalez, Z.-J. Zhu, B. Yan, U.H. Bunz, V.M. Rotello, Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor, Journal of the American Chemical Society. 133 (2011) 9650-9653. https://doi.org/10.1021/ja2021729
[51] R. Devi, S. Yadav, C. Pundir, Amperometric determination of xanthine in fish meat by zinc oxide nanoparticle/chitosan/multiwalled carbon nanotube/polyaniline composite film bound xanthine oxidase, Analyst. 137 (2012) 754-759. https://doi.org/10.1039/C1AN15838D
[52] S. Pal, M.K. Sharma, B. Danielsson, M. Willander, R. Chatterjee, S. Bhand, A miniaturized nanobiosensor for choline analysis, Biosensors and Bioelectronics. 54 (2014) 558-564. https://doi.org/10.1016/j.bios.2013.11.057
[53] H. Mahmoudi-Moghaddam, S. Tajik, H. Beitollahi, Highly sensitive electrochemical sensor based on La3+-doped Co3O4 nanocubes for determination of sudan I content in food samples, Food chemistry. 286 (2019) 191-196. https://doi.org/10.1016/j.foodchem.2019.01.143
[54] W. Wang, S. Gunasekaran, Nanozymes-based biosensors for food quality and safety, TrAC Trends in Analytical Chemistry. 126 (2020) 115841. https://doi.org/10.1016/j.trac.2020.115841
[55] S. Palanisamy, T. Kokulnathan, S.-M. Chen, V. Velusamy, S.K. Ramaraj, Voltammetric determination of Sudan I in food samples based on platinum nanoparticles decorated on graphene-β-cyclodextrin modified electrode, Journal of Electroanalytical Chemistry. 794 (2017) 64-70. https://doi.org/10.1016/j.jelechem.2017.03.041
[56] M.S.-P. Lopez, E. Redondo-Gómez, B. López-Ruiz, Electrochemical enzyme biosensors based on calcium phosphate materials for tyramine detection in food samples, Talanta. 175 (2017) 209-216. https://doi.org/10.1016/j.talanta.2017.07.033
[57] J. Wang, H. Wang, J. He, L. Li, M. Shen, X. Tan, H. Min, L. Zheng, Wireless sensor network for real-time perishable food supply chain management, Computers and Electronics in Agriculture. 110 (2015) 196-207. https://doi.org/10.1016/j.compag.2014.11.009
[58] L. Ma, Y. He, Y. Wang, Y. Wang, R. Li, Z. Huang, Y. Jiang, J. Gao, Nanocomposites of Pt nanoparticles anchored on UiO66-NH2 as carriers to construct acetylcholinesterase biosensors for organophosphorus pesticide detection, Electrochimica Acta. 318 (2019) 525-533. https://doi.org/10.1016/j.electacta.2019.06.110
[59] M. Revenga-Parra, A.M. Villa-Manso, M. Briones, E. Mateo-Martí, E. Martínez-Periñán, E. Lorenzo, F. Pariente, Bioelectrocatalytic platforms based on chemically modified nanodiamonds by diazonium salt chemistry, Electrochimica Acta. 357 (2020) 136876. https://doi.org/10.1016/j.electacta.2020.136876
[60] F.T. T Cavalcante, I. R de A Falcão, J.E. da S Souza, T. G Rocha, I. G de Sousa, A.L. G Cavalcante, A.L. de Oliveira, M.C. M de Sousa, J. dos Santos, Designing of nanomaterials-based enzymatic biosensors: Synthesis, properties, and applications, Electrochem. 2 (2021) 149-184. https://doi.org/10.3390/electrochem2010012
[61] L. Huang, K. Chen, W. Zhang, W. Zhu, X. Liu, J. Wang, R. Wang, N. Hu, Y. Suo, J. Wang, ssDNA-tailorable oxidase-mimicking activity of spinel MnCo2O4 for sensitive biomolecular detection in food sample, Sensors and Actuators B: Chemical. 269 (2018) 79-87. https://doi.org/10.1016/j.snb.2018.04.150
[62] A.g. Molinero-Fernández, M. Moreno-Guzmán, M.A.n. López, A. Escarpa, Biosensing strategy for simultaneous and accurate quantitative analysis of mycotoxins in food samples using unmodified graphene micromotors, Analytical chemistry. 89 (2017) 10850-10857. https://doi.org/10.1021/acs.analchem.7b02440
[63] W.-J. Shen, Y. Zhuo, Y.-Q. Chai, R. Yuan, Cu-based metal-organic frameworks as a catalyst to construct a ratiometric electrochemical aptasensor for sensitive lipopolysaccharide detection, Analytical chemistry. 87 (2015) 11345-11352. https://doi.org/10.1021/acs.analchem.5b02694
[64] H. Yang, J. Zha, P. Zhang, Y. Qin, T. Chen, F. Ye, Fabrication of CeVO4 as nanozyme for facile colorimetric discrimination of hydroquinone from resorcinol and catechol, Sensors and Actuators B: Chemical. 247 (2017) 469-478. https://doi.org/10.1016/j.snb.2017.03.042
[65] P. Weerathunge, R. Ramanathan, V.A. Torok, K. Hodgson, Y. Xu, R. Goodacre, B.K. Behera, V. Bansal, Ultrasensitive colorimetric detection of murine norovirus using NanoZyme aptasensor, Analytical chemistry. 91 (2019) 3270-3276. https://doi.org/10.1021/acs.analchem.8b03300
[66] C. Han, Q. Li, H. Ji, W. Xing, L. Zhang, L. Zhang, Aptamers: The Powerful Molecular Tools for Virus Detection, Chemistry-An Asian Journal. 16 (2021) 1298-1306. https://doi.org/10.1002/asia.202100242