Kaolinite-Starch based Nano-Composites and Applications

$30.00

Kaolinite-Starch based Nano-Composites and Applications

Preeti Gupta, S.S. Das, N.B. Singh

Starch and kaolinite are low cost and easily available materials used in different domains. At the same time, they form biodegradable nanocomposites (NCs), attractive and important substitutes for non-biodegradable materials which are the major source of environmental pollution. Kaolinite-starch based NCs are promising materials because they possess good mechanical and thermal properties and water resistance capacity etc. Properties are dependent on the filler particles orientation, nature of kaolinite and starch interaction, filler–matrix interface and filler dosages. The properties also depend on the anisotropy of the particles of fillers, their surfaces and the filler dispersion. These NCs have enormous applications specially in food packaging, films, paper, etc. It is used in environmental remediation. In this chapter an overview of methods of preparation, characterization and applications of kaolinite-starch based nanocomposites have been discussed.

Keywords
Kaolinite, Starch, Clay, Composite, Food Packaging, Film

Published online 6/2/2022, 26 pages

Citation: Preeti Gupta, S.S. Das, N.B. Singh, Kaolinite-Starch based Nano-Composites and Applications, Materials Research Foundations, Vol. 125, pp 210-235, 2022

DOI: https://doi.org/10.21741/9781644901915-9

Part of the book on Advanced Applications of Micro and Nano Clay

References
[1] G. Madhumitha, J. Fowsiya , S. Mohana Roopan1 , V.K. Thakur, Recent advances in starch-clay nanocomposites. Inter. J Polym. Anal. Charact. 23 (2018) 331-345. https://doi.org/10.1080/1023666X.2018.1447260
[2] M.M. Orta, J. Martin, J.L. Santosb, I. Apariciob, S.M. Carrascoc, E. Alonsob, Biopolymer-clay nanocomposites as novel and eco-friendly adsorbents for environmental remediation, Appl. Clay Sci. 198 (2020) 105838. https://doi.org/10.1016/j.clay.2020.105838
[3] C. Zhou, W. Qizhao, C. Hongfei, Recent advances in kaolinite-based material for photocatalysts, Chin. Chem. Let. 32 (2021) 2617-2628 https://doi.org/10.1016/j.cclet.2021.01.009
[4] M.E. Awada, A.L. Galindo, M. Setti, M.M. El-Rahmany, C.V. Iborr, Kaolinite in pharmaceutics and biomedicine, Inter. J. Pharma. 533 (2017) 34-48. https://doi.org/10.1016/j.ijpharm.2017.09.056
[5] H. Cheng, L. Chen, D. J. McClements, T. Yang, Z. Zhang, F. Ren, M. Miao, Y. Tian, Z. Jin, Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry, Trends Food Sci. Tech. 114 (2021)70-82. https://doi.org/10.1016/j.tifs.2021.05.017
[6] F. Zia, K. M. Zia, M. Zuber, S. Kamal, N. Aslam, Starch based polyurethanes: A critical review updating recent literature, Carbohydr. Polym. 134 (2015) 784 -798. https://doi.org/10.1016/j.carbpol.2015.08.034
[7] F. Guo, S. Aryana, Y. Han, Y. Jiao, A Review of the Synthesis and Applications of Polymer-Nanoclay Composites, Appl. Sci. 8 (2018) 1696. https://doi.org/10.3390/app8091696
[8] M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials, Mater. Sci. Eng. R Rep. 28 (2000) 1-63. https://doi.org/10.1016/S0927-796X(00)00012-7
[9] N. Yarahmadi, I. Jakubowicz, T. Hjertberg, Development of poly(vinyl chloride)/montmorillonite nanocomposites using chelating agents, Polym. Degrad. Stab. 95 (2010) 132-137. https://doi.org/10.1016/j.polymdegradstab.2009.11.043
[10] M. Asensio, M. Herrero, K. Núñez, R. Gallego, J. C. Merino, J.M. Pastor, In situ polymerization of isotactic polypropylene sepiolite nanocomposites and its copolymers by metallocene catalysis, Eur. Polym. J. 100 (2018) 278-289. https://doi.org/10.1016/j.eurpolymj.2018.01.034
[11] K.K. Yang, X.L. Wang, Y.Z. Wang, Progress in nanocomposite of biodegradable polymer, J. Ind. Eng. Chem. 13 (2007) 485-500.
[12] J.K. Pandey, A.P. Kumar, M. Misra, A. K. Mohanty, L. T. Drzal, R.P. Singh, Recent advances in biodegradable nanocomposites, J. Nanosci. Nanotechnol. 5 (2005) 497-526. https://doi.org/10.1166/jnn.2005.111
[13] A. Ujcic, M. Nevoralove, J. Dybal, A. Zhigunov, J. Kredatusova, S. Krejcikova, I. Fortelny, M. Slouf, Thermoplastic starch composites filled with isometric and elongated TiO2 -based nanoparticles, Front. Mater. 6 (2019) 1-13. https://doi.org/10.3389/fmats.2019.00284
[14] M.R. Amin, M.A. Chowdhury, M.A. Kowser, Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch, Heliyon 5 (2019) 1-12. https://doi.org/10.1016/j.heliyon.2019.e02009
[15] I. Spiridon, C. A. Teaca, R. Bodirlau, M. Bercea, Behavior of cellulose reinforced cross-linked starch composite films made with tartaric acid modified starch microparticles. J. Polym. Environ. 21 (2013) 431-440. https://doi.org/10.1007/s10924-012-0498-2
[16] A. Kwaśniewska, D. Chocyk, G. Gładyszewski, J. Borc , M. Świetlicki, B. Gładyszewska, The influence of kaolin clay on the mechanical properties and structure of thermoplastic starch films, Polymers 12 (2020) 73. https://doi.org/10.3390/polym12010073
[17] H. Banna, M.Z. Islam, Md. A.B.H. Susan, B. Imran, Effects of plasticizers and clays on the physical, chemical, mechanical, thermal, and morphological properties of potato starch-based nanocomposite films, ACS Omega 5 (2020) 17543−17552. https://doi.org/10.1021/acsomega.0c02012
[18] Md. Ashaduzzaman, D. Saha, M. M.Rashid, Mechanical and thermal properties of self-assembled kaolin-doped starch-based environment-friendly nanocomposite films, J. Compos. Sci. 4 (2020) 38. https://doi.org/10.3390/jcs4020038
[19] J.A. Mbey, S. Hoppe, F. Thomas, Cassava starch-kaolinite composite film. Effect of clay content and clay modification on film properties, Carbohy. Polym. 8 (2012) 213-222. https://doi.org/10.1016/j.carbpol.2011.11.091
[20] Q.X. Zhang, Z.Z. Yu, X.L. Xie , K. Naito , Y. Kagawa, Preparation and crystalline morphology of biodegradable starch/clay nanocomposites, Polym. 48 (2007) 7193-7200. https://doi.org/10.1016/j.polymer.2007.09.051
[21] S. Agarwal, Major factors affecting the characteristics of starch based biopolymer films, Europ. Polym. J. 160 (2021) 110788. https://doi.org/10.1016/j.eurpolymj.2021.110788
[22] N.B.Singh, Garima Nagpal, Sonal Agrawal and Rachna, Water purification by using Adsorbents: A Review, Journal of Environmental Technology & Innovation 11 (2018)187-240 https://doi.org/10.1016/j.eti.2018.05.006
[23] M. Shaban, M.E.M. Hassouna, F.M. Nasief, M.R. Abu Khadra, Adsorption properties of kaolinite-based nanocomposites for Fe and Mn pollutants from aqueous solutions and raw ground water: kinetics and equilibrium studies, Environ. Sci. Pollut. Res. 24 (2017) 22954-22966. https://doi.org/10.1007/s11356-017-9942-0
[24] N. Méité, L. K. Konan, M. T. Tognonvi, B. I. H. Goure, Doubi, M. Gomina, S. Oyetola, Properties of hydric and biodegradability of cassava starch-based bioplastics reinforced with thermally modified kaolin, Carbohy Polym. 254 (2021) 117322. https://doi.org/10.1016/j.carbpol.2020.117322
[25] S.Y. Yoon, Y. Deng, Clay-starch composites and their application in papermaking, J. Appl. Polym. Sci. 100 (2006) 1032-1038. https://doi.org/10.1002/app.23007
[26] J.W. Rhim, H.M. Park, C.S. Ha, Bio-nanocomposites for food packaging applications, Prog. Polym. Sci. 38 (2013) 1629-1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008
[27] F. Wua, M. Misraa, A.K. Mohanty, Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging, Prog. Polym. Sci. 117 (2021) 101395. https://doi.org/10.1016/j.progpolymsci.2021.101395
[28] K. Kaewtatip, V. Tanrattanakul, W. Phetrat, Preparation and characterization of Kaolin/starch foam, Appl. Clay Sci. 80-81 (2013) 413-416. https://doi.org/10.1016/j.clay.2013.07.011
[29] A. Kwaśniewska, M.Świetlicki, A. Prószyński, G.Gładyszewski, The quantitative nanomechanical mapping of starch/kaolin film surfaces by peak force AFM, Polym. 13 (2021) 244. https://doi.org/10.3390/polym13020244
[30] J. Ruamcharoen, R. Munlee, P. Ruamcharoen, Improvement of water vapor barrier and mechanical properties of sago starch-kaolinite nanocomposite, Polym. Compos. 41 (2019) 201-209. https://doi.org/10.1002/pc.25360
[31] S. Wang, C. Li, L. Copeland, Q. Niu, S. Wang, Starch retrogradation: A comprehensive review, Comp. Rev. Food Sci. Food Saf. 14 (2015) 568-585. https://doi.org/10.1111/1541-4337.12143
[32] P. Müller, E. Kapin, E. Fekete, Effects of preparation methods on the structure and mechanical properties of wet conditioned starch/montmorillonite nanocomposite films, Carbohyd. Polym. 113 (2014) 569-576. https://doi.org/10.1016/j.carbpol.2014.07.054
[33] G. Harikrishnan, T.U. Patro, D.V. Khakhar, Polyurethane foam−clay nanocomposites:  nanoclays as cell openers, Ind. Eng. Chem. Res. 45 (2006) 7126-7134. https://doi.org/10.1021/ie0600994
[34] M.K.S. Monteiro, V.R.L. Oliveira, F.K.G. Santos, E.L. Barros Neto, R.H.L. Leite, E.M.M. Aroucha, R.R. Silva, K.N.O. Silva, Incorporation of bentonite clay in cassava starch films for the reduction of water vapor permeability, Food Res. Int. 105 (2018) 637-644. https://doi.org/10.1016/j.foodres.2017.11.030
[35] S.P. Bangar, W.S. Whiteside, A.O. Ashogbon, M. Kumar, Recent advances in thermoplastic starches for food packaging: A review, Food Packag. Shelf Life 30 (2021) 100743. https://doi.org/10.1016/j.fpsl.2021.100743
[36] J. Shen, P. Fatehi, Y. Ni, Biopolymers for surface engineering of paper-based products, Cellulose 21 (2014) 3145-3160. https://doi.org/10.1007/s10570-014-0380-6
[37] K. Khwaldia, E. Arab-Tehrany, S. Desobry, Biopolymer coatings on paper packaging materials, Compr. Rev. Food Sci. Food Saf. 9 (2010) 82-91. https://doi.org/10.1111/j.1541-4337.2009.00095.x
[38] V. Rastogi, P. Samyn, Bio-based coatings for paper applications, Coatings 5 (2015) 887-930. https://doi.org/10.3390/coatings5040887
[39] C. Andersson, New ways to enhance the functionality of paperboard by surface treatment – a review, Packag. Technol. Sci. 21 (2008) 339-373. https://doi.org/10.1002/pts.823
[40] R. Bollström, R. Nyqvist, J. Preston, P. Salminen, M. Toivakka, Barrierproperties created by dispersion coating, Tappi J. 12 (2013) 45-51. https://doi.org/10.32964/TJ12.4.45
[41] F.A. Aouada, L.H.C. Mattoso, E. Longo, New strategies in the preparation of exfoliated thermoplastic starch-montmorillonite nanocomposites, Indus. Crops Products 34 (2011) 1502-1508. https://doi.org/10.1016/j.indcrop.2011.05.003
[42] K.M. Ardakani, A.H. Navarchian, F. Sadeghi, Optimization of mechanical properties of thermoplastic starch/clay nanocomposites, Carbohy. Polym. 79 (2010) 547-554. https://doi.org/10.1016/j.carbpol.2009.09.001
[43] C. Zeppa, F. Gouanve, E. Espuche, Effect of a plasticizer on the structure of biodegradable starch/clay nanocomposites: thermal, water-sorption, and oxygen-barrier properties, J. Appl. Polymer Sci. 112 (2009) 2044-2056. https://doi.org/10.1002/app.29588
[44] B. Chen, J.R.G. Evans, Thermoplastic starch-clay nanocomposites and their characteristics. Carbohydr. Polym. 61 (2005) 455-463. https://doi.org/10.1016/j.carbpol.2005.06.020
[45] D. Schlemmer, R. Angelica, M. J. A. Sales, Morphological and thermomechanical characterization of thermoplastic starch/montmorillonite nanocomposites, Comp. Struct. 92 (2010) 2066-2070. https://doi.org/10.1016/j.compstruct.2009.10.034
[46] H. Liu, D. Chaudhary, S. I. Yusa, M. O. Tade, Glycerol/starch/Na+-montmorillonite nanocomposites: A XRD, FTIR, DSC and 1H NMR study, Carbohyd. Polym. 83 (2011) 1591-1597. https://doi.org/10.1016/j.carbpol.2010.10.018
[47] C.M.O. Müller, J.B. Laurindo, F. Yamashita, Composites of thermoplastic starch and nanoclays produced by extrusion and thermopressing, Carbohy. Polym. 89 (2012) 504-510. https://doi.org/10.1016/j.carbpol.2012.03.035
[48] A.C. Souza, R. Benze, E.S. Ferrão, C. Ditchfield, A.C.V. Coelho, C.C. Tadini, Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature, LWT – Food Sci. Technol. 46 (2012) 110-117. https://doi.org/10.1016/j.lwt.2011.10.018
[49] P. Müller, E. Kapin, E. Fekete, Effects of preparation methods on the structure and mechanical properties of wet conditioned starch/montmorillonite nanocomposite films, Carbohyd. Polym. 113 (2014) 569-576. https://doi.org/10.1016/j.carbpol.2014.07.054
[50] H.M. Koivula, L. Jalkanen, E. Saukkonenb, S. S. Ovaska, J. Lahti, H. Christophliemk, K. S. Mikkonen, Machine-coated starch-based dispersion coatings prevent mineral oil migration from paperboard, Prog. Org. Coatings 99 (2016) 173-181. https://doi.org/10.1016/j.porgcoat.2016.05.017