Halloysite-Chitosan based Nano-Composites and Applications
G. Santhosh, B. Sowmya
Chitosan is the most abundant and excellent natural polymer (PMR). The wider usage of chitosan is because of its antimicrobial, non-toxic, biocompatible and biodegradable nature. Chitosan is extracted from crustaceans and squids. Chitosan has been extensively studied in the field of wastewater treatment and biomedical applications. Halloysite nanotube (HNT) is a sort of aluminosilicate nano-clay, famous for their high aspect ratio and hallow configuration, HNT as a nano-filler for polymer matrix can be profitably utilized. HNT with the molecular formula, H4Al2O9Si2·2H2O have unique tubular structure make them suitable as nano-containers with the intention to store and adsorb with abundant –OH groups. The use of HNT can provide high mechanical strength, high thermal stability and bio-acceptability. With the incorporation of nanosized halloysites nanotubes into chitosan matrix generally leads to desired property enhancement along with the changes in the microstructure. Amongst the most likely available natural materials, the chitosan and halloysite are attractive ones because of their nontoxic and eco-friendly nature. The halloysite was extensively studied as a carrier material in many drug delivery systems, catalytic support, scaffold for tissue engineering and as a nanofiller for food packaging application. In this chapter, the application of chitosan and HNT in the real world are postulated in order to give insights for future studies.
Keywords
Halloysite Nanotubes, Chitosan, Nanocomposite Film
Published online 6/2/2022, 22 pages
Citation: G. Santhosh, B. Sowmya, Halloysite-Chitosan based Nano-Composites and Applications, Materials Research Foundations, Vol. 125, pp 27-48, 2022
DOI: https://doi.org/10.21741/9781644901915-2
Part of the book on Advanced Applications of Micro and Nano Clay
References
[1] Sapalidis, F.K. Katsaros, G.E. Romanos, N.K. Kakizis, and N.K. Kanellopoulos, “PVA /Montmorillonite Nanocomposites: Development and Properties”, Bio-Eng. Compos., 38 (2007) 398-404. https://doi.org/10.1016/j.compositesb.2006.04.005
[2] M. Makaremi, P. Pasbakhsh, G. Cavallaro, G. Lazzara, Y. K. Aw, S. M. Lee and S. Milioto, “Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications”, ACS Appl. Mater. Interfaces, 9 (2017) 17476-17488. https://doi.org/10.1021/acsami.7b04297
[3] Y. Lvov, A. Aerov and R. Fakhrullin, “Clay Nanotube Encapsulation for Functional Biocomposites”, Adv Colloid Interface Sci, 207 (2014)189-198. https://doi.org/10.1016/j.cis.2013.10.006
[4] Y. Lvov and E. Abdullayev, “Functional polymer-clay nanotube composites with sustained release of chemical agents” Prog Polym Sci, 38 (2013) 1690-1719. https://doi.org/10.1016/j.progpolymsci.2013.05.009
[5] Y. Stetsyshyn, J. Zemla, О. Zolobko, K. Fornal, A. Budkowski, A. Kostruba, V. Donchak, K. Harhay, K. Awsiuk, J. Rysz, A. Bernasik and S. Voronov, “Temperature and pH dual-responsive coatings of oligoperoxide-graft-poly(N-isopropylacrylamide): Wettability, morphology, and protein adsorption” J. Colloid Interface Sci., 387 (2012) 95-105. https://doi.org/10.1016/j.jcis.2012.08.007
[6] R.F. Fakhrullin and Y. M. Lvov, “Halloysite clay nanotubes for tissue engineering”, Nanomed., 11 (2016) 2243-2246. https://doi.org/10.2217/nnm-2016-0250
[7] M. Liu, C. Wu, Y. Jiao, S. Xiong and C. Zhou, “Chitosan-halloysite nanotubes nanocomposite scaffolds for tissue engineering”, J. Mater. Chem. B, 1 (2013) 2078-2089. https://doi.org/10.1039/c3tb20084a
[8] H. Wei, K. Rodriguez, S. Renneckar and P. J. Vikesland, “Environmental science and engineering applications of nanocellulose-based nanocomposites”, Env. Sci Nano, 1 (2014) 302-316. https://doi.org/10.1039/C4EN00059E
[9] V. K. Thakur and M. R. Kessler, “Self-healing polymer nanocomposite materials: A review” Polymer, 69 (2015) 369-383. https://doi.org/10.1016/j.polymer.2015.04.086
[10] M. Du, B. Guo, Y. Lei, M. Liu and D. Jia, “Carboxylated butadiene-styrene rubber/halloysite nanotube nanocomposites: Interfacial interaction and performance”, Polymer, 49 (2008) 4871-4876. https://doi.org/10.1016/j.polymer.2008.08.042
[11] E. Ruiz-Hitzky, P. Aranda, M. Darder and G. Rytwo, “Hybrid materials based on clays for environmental and biomedical applications”, J Mater Chem, 20 (2010) 9306-9321. https://doi.org/10.1039/c0jm00432d
[12] G. Ozkoc and S. Kemaloglu, “Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticized PLA”, J. Appl. Polym. Sci., 114 (2009) 2481-2487. https://doi.org/10.1002/app.30772
[13] G. Gorrasi, R. Pantani, M. Murariu and P. Dubois, “PLA/Halloysite Nanocomposite Films: Water Vapor Barrier Properties and Specific Key Characteristics”, Macromol. Mater. Eng., 299 (2014) 104-115. https://doi.org/10.1002/mame.201200424
[14] I. Blanco and F. A. Bottino, “Thermal study on phenyl, hepta isobutyl‐polyhedral oligomeric silsesquioxane/polystyrene nanocomposites”, Polym. Compos., 34 (2013) 225-232. https://doi.org/10.1002/pc.22400
[15] V. Bertolino, G. Cavallaro, G. Lazzara, M. Merli, S. Milioto, F. Parisi and L. Sciascia, “Effect of the biopolymer charge and the nanoclay morphology on nanocomposite materials”, Ind. Eng. Chem. Res., 55 (2016) 7373-7380. https://doi.org/10.1021/acs.iecr.6b01816
[16] G. Cavallaro, D. I. Donato, G. Lazzara and S. Milioto, “Films of halloysite nanotubes sandwiched between two layers of biopolymer: from the morphology to the dielectric, thermal, transparency, and wettability properties”, J Phys Chem C, 115 (2011) 20491-20498. https://doi.org/10.1021/jp207261r
[17] B. Finnigan, D. Martin, P. Halley, R. Truss and K. Campbell, “Morphology and properties of thermoplastic polyurethane composites incorporating hydrophobic layered silicates”, J. Appl. Polym. Sci., 97 (2005) 300-309. https://doi.org/10.1002/app.21718
[18] B. Liang, H. Zhao, Q. Zhang, Y. Fan, Y. Yue, P. Yin and L. Guo, “Ca2+ Enhanced Nacre-Inspired Montmorillonite-Alginate Film with Superior Mechanical, Transparent, Fire Retardancy, and Shape Memory Properties”, ACS Appl. Mater. Interfaces, 8 (2016) 28816-28823. https://doi.org/10.1021/acsami.6b08203
[19] G. Huang, J. Yang, J. Gao and X. Wang, “Thin Films of Intumescent Flame Retardant-Polyacrylamide and Exfoliated Graphene Oxide Fabricated via Layer-by-Layer Assembly for Improving Flame Retardant Properties of Cotton Fabric”, Ind. Eng. Chem. Res., 51 (2012) 12355-12366. https://doi.org/10.1021/ie301911t
[20] J. Zasadzinski, R. Viswanathan, L. Madsen, J. Garnaes and D. Schwartz, “Langmuir-Blodgett films”, Science, 263 (1994) 1726-1733. https://doi.org/10.1126/science.8134836
[21] L. Netzer, R. Iscovici and J. Sagiv, “Adsorbed Monolayers versus Langmuir-Blodgett Monolayers-Why and How? I: From Monolayer to Multilayer, by Adsorption”,Thin Solid Films, 99 (1983) 235-241. https://doi.org/10.1016/0040-6090(83)90386-3
[22] G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites”, Science, 277 (1997) 1232-1237. https://doi.org/10.1126/science.277.5330.1232
[23] N.A. Kotov, “Layer-by-layer self-assembly: the contribution of hydrophobic interactions”, Nanostructured Mater., 12 (1999) 789-796. https://doi.org/10.1016/S0965-9773(99)00237-8
[24] Y. Shimazaki, M. Mitsuishi, S. Ito and M. Yamamoto, “Preparation of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction”, Langmuir, 13 (1997) 1385-1387. https://doi.org/10.1021/la9609579
[25] X. Zhang, H. Chen and H. Zhang, “Layer-by-layer assembly: from conventional to unconventional methods”, Chem Commun, (2007) 1395-1405. https://doi.org/10.1039/B615590A
[26] E. Joussein, S. Petit, G.J. Churchman, B. Theng, D. Righi and B. Delvaux, “Halloysite clay minerals-a review”, Clay Miner., 40 (2005) 383-426. https://doi.org/10.1180/0009855054040180
[27] P. Pasbakhsh, G.J. Churchman and J.L. Keeling, “Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers”, Appl. Clay Sci., 74 (2013) 47-57. https://doi.org/10.1016/j.clay.2012.06.014
[28] V. Bertolino, G. Cavallaro, G. Lazzara, S. Milioto and F. Parisi, “Biopolymer-targeted adsorption onto halloysite nanotubes in aqueous media”, Langmuir, 33 (2017) 3317-3323. https://doi.org/10.1021/acs.langmuir.7b00600
[29] R.T. De Silva, P. Pasbakhsh, K.L. Goh and L. Mishnaevsky, “Halloysite nanotubes sandwiched between chitosan layers: Novel bionanocomposites with multilayer structures”, Polymer, 55 (2014) 6418-6425. https://doi.org/10.1016/j.polymer.2014.09.057
[30] T. Wu, Y. Li and D.S. Lee, “Chitosan-based composite hydrogels for biomedical applications”, Macromol. Res., 25 (2017) 480-488. https://doi.org/10.1007/s13233-017-5066-0
[31] E.A. Naumenko, I.D. Guryanov, R. Yendluri, Y.M. Lvov and R.F. Fakhrullin, “Clay nanotube-biopolymer composite scaffolds for tissue engineering”, Nanoscale, 8 (2016) 7257-7271. https://doi.org/10.1039/C6NR00641H
[32] (a) A. Ali and S. Ahmed, “A review on chitosan and its nanocomposites in drug delivery”, Int. J. Biol. Macromol., 109 (2018) 273-286. (b) R. LogithKumar A. KeshavNarayan S. Dhivya A. Chawla S. Saravanan N. Selvamurugan, “A Review of Chitosan and its Derivatives in Bone Tissue Engineering”, Carbohydrate Polymers, 151 (2016) 172-188. https://doi.org/10.1016/j.carbpol.2016.05.049
[33] J. Zheng, R.W. Siegel, and C.G. Toney, “Polymer crystalline structure and morphology changes in nylon-6/ZnO nanocomposites,” J. Polym. Sci. Part B Polym. Phys., 41 (2003) 1033-1050. https://doi.org/10.1002/polb.10452
[34] F. Uddin, “Clays, nanoclays, and montmorillonite minerals,” Metall. Mater. Trans. A, 39 (2008) 2804-2814. https://doi.org/10.1007/s11661-008-9603-5
[35] S. Pavlidou and C.D. Papaspyrides, “A review on polymer-layered silicate nanocomposites,” Prog. Polym. Sci., 33 (2008) 1119-1198. https://doi.org/10.1016/j.progpolymsci.2008.07.008
[36] L. Torre, M. Chieruzzi, and J.M. Kenny, “Compatibilization and development of layered silicate nanocomposites based of unsaturated polyester resin and customized intercalation agent,” J. Appl. Polym. Sci., 115 (2010) 3659-3666. https://doi.org/10.1002/app.31461
[37] M. Alexandre and P. Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials,” Mater. Sci. Eng. R Rep., 28 (2000) 1-63. https://doi.org/10.1016/S0927-796X(00)00012-7
[38] K.N. Shilpa, K.S. Nithin, S. Sachhidananda, and B.S. Madhukar, and Siddaramaiah, “Visibly transparent PVA/sodium doped dysprosia (Na2Dy2O4) nanocomposite films, with high refractive index: An optical study,” J. Alloys Compd., 694 (2017) 884-891. https://doi.org/10.1016/j.jallcom.2016.10.004
[39] G. Stoclet, “Elaboration of poly (lactic acid)/halloysite nanocomposites by means of water assisted extrusion: structure, mechanical properties and fire performance,” RSC Adv., 4 (2014) 57553-57563. https://doi.org/10.1039/C4RA06845A
[40] P. Kiliaris, C.D. Papaspyrides, Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy, Progress in Polymer Science, 35 (2010) 902-958. https://doi.org/10.1016/j.progpolymsci.2010.03.001
[41] W.O. Yah, A. Takahara, and Y.M. Lvov, “Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle,” J. Am. Chem. Soc., 134 (2012) 1853-1859. https://doi.org/10.1021/ja210258y
[42] P. Yuan, D. Tan, and F.A. Bergaya, “Properties and applications of halloysite nanotubes: recent research advances and future prospects,” Appl. Clay Sci., 112 (2015) 75-93. https://doi.org/10.1016/j.clay.2015.05.001
[43] A. Dey and S.K. De, “Large dielectric constant in zirconia polypyrrole hybrid nanocomposites,” J. Nanosci. Nanotechnol., 7 (2007) 2010-2015. https://doi.org/10.1166/jnn.2007.759
[44] L.M. Clayton, M. Cinke, M. Meyyappan, and J. P. Harmon, “Dielectric properties of PMMA/soot nanocomposites,” J. Nanosci. Nanotechnol., 7 (2007) 2494-2499. https://doi.org/10.1166/jnn.2007.428
[45] N. Raman, S. Sudharsan, K. Pothiraj, Synthesis and structural reactivity of inorganic-organic hybrid nanocomposites – A review, Journal of Saudi Chemical Society. 16 (2012) 339-352. https://doi.org/10.1016/j.jscs.2011.01.012
[46] H. Li, “Polypropylene fibers fabricated via a needleless melt-electrospinning device for marine oil-spill cleanup,” J. Appl. Polym. Sci., 131 (2014). https://doi.org/10.1002/app.40080
[47] G. Griffini, M. Levi, and S. Turri, “Thin-film luminescent solar concentrators: A device study towards rational design,” Renew. Energy, 78 (2015) 288-294. https://doi.org/10.1016/j.renene.2015.01.009
[48] M. Biswal, S. Mohanty, S.K. Nayak, and P.S. Kumar, “Effect of functionalized nanosilica on the mechanical, dynamic-mechanical and morphological performance of polycarbonate/nanosilica nanocomposites,” Polym. Eng. Sci., 53 (2013) 1287-1296. https://doi.org/10.1002/pen.23388
[49] S. Pillai, K.R. Catchpole, T. Trupke, and M.A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys., 101 (2007) 093105. https://doi.org/10.1063/1.2734885
[50] K. Znajdek, “Zinc oxide nanoparticles for improvement of thin film photovoltaic structures’ efficiency through down shifting conversion,” Opto-Electron. Rev., 25 (2017) 99-102. https://doi.org/10.1016/j.opelre.2017.05.005
[51] M. Eslamian, “Excitation by acoustic vibration as an effective tool for improving the characteristics of the solution-processed coatings and thin films,” Prog. Org. Coat., 113 (2017) 60-73. https://doi.org/10.1016/j.porgcoat.2017.08.008
[52] G. Santhosh, G.P. Nayaka, J. Aranha, and Siddaramaiah, “Investigation on electrical and dielectric behaviour of halloysite nanotube incorporated polycarbonate nanocomposite films,” Trans. Indian Inst. Met., 70 (2017) 549-555. https://doi.org/10.1007/s12666-016-1033-2
[53] Y.C. Cao, “Preparation of thermally stable well-dispersed water-soluble CdTe quantum dots in montmorillonite clay host media,” J. Colloid Interface Sci., 368 (2012) 139-143. https://doi.org/10.1016/j.jcis.2011.11.044
[54] J. Gaume, C. Taviot-Gueho, S. Cros, A. Rivaton, S. Therias, and J.L. Gardette, “Optimization of PVA clay nanocomposite for ultra-barrier multilayer encapsulation of organic solar cells,” Sol. Energy Mater. Sol. Cells, 99 (2012) 240-249. https://doi.org/10.1016/j.solmat.2011.12.005
[55] S. Cros, “Definition of encapsulation barrier requirements: A method applied to organic solar cells,” Sol. Energy Mater. Sol. Cells, 95 (2011) S65-S69. https://doi.org/10.1016/j.solmat.2011.01.035
[56] E. Picard, A. Vermogen, J.F. Gérard, and E. Espuche, “Barrier properties of nylon 6-montmorillonite nanocomposite membranes prepared by melt blending: Influence of the clay content and dispersion state: Consequences on modeling,” J. Membr. Sci., 292 (2007) 133-144. https://doi.org/10.1016/j.memsci.2007.01.030
[57] H. Kim, Y. Miura, and C.W. Macosko, “Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity,” Chem. Mater., 22 (2010) 3441-3450. https://doi.org/10.1021/cm100477v
[58] L. Cui, J.T. Yeh, K. Wang, F.C. Tsai, and Q. Fu, “Relation of free volume and barrier properties in the miscible blends of poly(vinyl alcohol) and nylon 6-clay nanocomposites film,” J. Membr. Sci., 327 (2009) 226-233. https://doi.org/10.1016/j.memsci.2008.11.027
[59] H. Jing “Preparation and characterization of polycarbonate nanocomposites based on surface-modified halloysite nanotubes,” Polym. J., 46 (2014) 307. https://doi.org/10.1038/pj.2013.100
[60] H. Kim and C.W. Macosko, “Processing-property relationships of polycarbonate/ graphene composites,” Polymer, 50 (2009) 3797-3809. https://doi.org/10.1016/j.polymer.2009.05.038
[61] C.Y. Lee and J.K. Kil, “Hydrophilic property by contact angle change of ion implanted polycarbonate,” Rev. Sci. Instrum., 79 (2008) 02C508. https://doi.org/10.1063/1.2804906
[62] H.S. Kas, Chitosan: Properties, preparation and application to microparticulate systems. J. Microencapsul. 14 (1997) 689-711. https://doi.org/10.3109/02652049709006820
[63] A.K. Singla, M. Chawla, Chitosan: Some pharmaceutical and biological aspects-An update. J. Pharm. Pharmacol. 53 (2001) 1047-1067. https://doi.org/10.1211/0022357011776441
[64] Y. Kato, H. Onishi, Y. Machida, Application of chitin and chitosan derivatives in the pharmaceutical field. Curr. Pharm.Biotechnol. 4 (2003) 303-309. https://doi.org/10.2174/1389201033489748
[65] J. Varshosaz, “The promise of chitosan microspheres in drug delivery systems”. Drug Deliv. 4 (2007) 263-273. https://doi.org/10.1517/17425247.4.3.263
[66] G. Galed, B. Miralles, I. Ines Panos, A. Santiago, A. Heras, “N-Deacetylation and depolymerization reactions of chitin/chitosan: Influence of the source of chitin”. Carbohydr. Polym. 62 (2005) 316-320. https://doi.org/10.1016/j.carbpol.2005.03.019
[67] M. Huang, E. Khor, L.Y. Lim, “Uptake and cytotoxicity of chitosan molecules and nanoparticles: Effects of molecular weight and degree of deacetylation”. Pharm. Res. 21 (2004) 344-353. https://doi.org/10.1023/B:PHAM.0000016249.52831.a5
[68] R. Chien, M. Yen, J. Mau, “Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells”. Carbohydr. Polym. 138 (2016) 259-264. https://doi.org/10.1016/j.carbpol.2015.11.061
[69] Z. Aiping, C. Tian, Y. Lanhua, W. Hao, L. Ping, “Synthesis and characterization of N-succinyl-chitosan and its self-assembly of nanospheres”. Carbohydr. Polym. 66 (2006) 274-279. https://doi.org/10.1016/j.carbpol.2006.03.014
[70] C. Yan, J. Gu, D. Hou, H. Jing, J. Wang, Y. Guo, H. Katsumi, T. Sakane, A. Yamamoto, “Synthesis of tat tagged and folate modified N-succinyl-chitosan self-assembly nanoparticles as a novel gene vector”. Int. J. Biol. Macromol. 72 (2015) 751-756. https://doi.org/10.1016/j.ijbiomac.2014.09.031
[71] R.C. Goy, D.D. Britto, B.G. Assis Oiii, “A review of the antimicrobial activity of chitosan”. Polímeros. 19 (2009) 241-247. https://doi.org/10.1590/S0104-14282009000300013
[72] I. Younes, S. Sellimi, M. Rinaudo, K. Jellouli, M. Nasri, “Influence of acetylation degree and molecular weight of homogeneous chitosan on antibacterial and antifungal activities”. Int. J. Food Microbiol. 185 (2014) 57-63. https://doi.org/10.1016/j.ijfoodmicro.2014.04.029
[73] M. Kong, X.G. Chen, K. Xing, H.J. Park, “Antimicrobial properties of chitosan and mode of action: A state of the art review”. Int. J. Food Microbiol. 144 (2010) 51-63. https://doi.org/10.1016/j.ijfoodmicro.2010.09.012
[74] D.H. Ngo, S.K. Kim, “Antioxidant effects of chitin, chitosan, and their derivatives”. Adv. Food Nutr. Res. 73 (2014) 15-31. https://doi.org/10.1016/B978-0-12-800268-1.00002-0
[75] P.J. Park, J.Y. Je, S.K. Kim, “Free radical scavenging activity of chitooligosaccharides by electron spin resonance spectrometry”. J. Agric. Food Chem. 51 (2003) 4624-4627. https://doi.org/10.1021/jf034039+
[76] N. Islam, V. Ferro, “Recent advances in chitosan-based nanoparticulate pulmonary drug delivery”. Nanoscale 8 (2016) 14341-14358. https://doi.org/10.1039/C6NR03256G
[77] J. Cai, Q. Dang, C. Liu, B. Fan, J. Yan, Y. Xu, J. Li, “Preparation and characterization of N-benzoyl-O-acetyl-chitosan”. Int. J. Biol. Macromol. 77 (2015) 52-58. https://doi.org/10.1016/j.ijbiomac.2015.03.007
[78] Y. Kurita, A. Isogai, “N-Alkylations of chitosan promoted with sodium hydrogen carbonate under aqueous conditions”. Int. J. Biol. Macromol. 50 (2012) 741-746. https://doi.org/10.1016/j.ijbiomac.2011.12.004
[79] G. Ma, D. Yang, Y. Zhou, M. Xiao, J.F. Kennedy, J. Nie, “Preparation and characterization of water-soluble N-alkylated chitosan”. Carbohydr. Polym. 74 (2008) 121-126. https://doi.org/10.1016/j.carbpol.2008.01.028
[80] T.C. Yang, C.C. Chou, C.F. Li, “Antibacterial activity of N-alkylated disaccharide chitosan derivatives”. Int. J. Food Microbiol. 97 (2005) 237-245. https://doi.org/10.1016/S0168-1605(03)00083-7
[81] S.J. Burr, P.A. Williams, I. Ratclie, “Synthesis of cationic alkylated chitosans and an investigation of their rheological properties and interaction with anionic surfactant”. Carbohydr. Polym. 201 (2018) 615-623. https://doi.org/10.1016/j.carbpol.2018.08.105
[82] C. Onésippe, S. Lagerge, “Studies of the association of chitosan and alkylated chitosan with oppositely charged sodium dodecyl sulfate”. Colloids Surf. A. 330 (2008) 201-206. https://doi.org/10.1016/j.colsurfa.2008.07.054
[83] E. Mohammadi, H. Daraei, R. Ghanbari, S. Dehestani Athar, Y. Zandsalimi, A. Ziaee, A. Maleki, K. Yetilmezsoy, “Synthesis of carboxylated chitosan modified with ferromagnetic nanoparticles for adsorptive removal of fluoride, nitrate, and phosphate anions from aqueous solutions”. J. Mol. Liq. 273 (2019) 116-124. https://doi.org/10.1016/j.molliq.2018.10.019
[84] M. Kurniasih, T. Cahyati, R.S. Dewi, “Carboxymethyl chitosan as an antifungal agent on gauze”. Int. J. Biol. Macromol. 119 (2018) 166-171. https://doi.org/10.1016/j.ijbiomac.2018.07.038
[85] A. Zhang, Y. Zhang, G. Pan, J. Xu, H. Yan, Y. Liu, “In situ formation of copper nanoparticles in carboxylated chitosan layer: Preparation and characterization of surface modified TFC membrane with protein fouling resistance and long-lasting antibacterial properties”. Sep. Purif. Technol. 176 (2017) 164-172. https://doi.org/10.1016/j.seppur.2016.12.006
[86] K. Chen, B. Guo, J. Luo, “Quaternized carboxymethyl chitosan/organic montmorillonite nanocomposite as a novel cosmetic ingredient against skin aging”. Carbohydr. Polym. 173 (2017) 100-106. https://doi.org/10.1016/j.carbpol.2017.05.088
[87] X. Huang, C. Xu, Y. Li, H. Cheng, X. Wang, R. Sun, “Quaternized chitosan-stabilized copper sulfide nanoparticles for cancer therapy”. Mater. Sci. Eng. C. 96 (2019) 129-137. https://doi.org/10.1016/j.msec.2018.10.062
[88] S.C. Jang, W.C. Tsen, F.S. Chuang, C. Gong, “Simultaneously enhanced hydroxide conductivity and mechanical properties of quaternized chitosan/functionalized carbon nanotubes composite anion exchange membranes”. Int. J. Hydrogen Energy, 44 (2019) 18134-18144. https://doi.org/10.1016/j.ijhydene.2019.05.102
[89] M. Rahimi, R. Ahmadi, H. Samadi Kafil, V. Shafiei-Irannejad, “A novel bioactive quaternized chitosan and its silver-containing nanocomposites as a potent antimicrobial wound dressing: Structural and biological properties”. Mater. Sci. Eng. C., 101 (2019) 360-369. https://doi.org/10.1016/j.msec.2019.03.092
[90] T.D.A. Senra, S.P. Campana-Filho, J. Desbrières, “Surfactant-polysaccharide complexes based on quaternized chitosan”. Characterization and application to emulsion stability. Eur. Polym. J., 104 (2018) 128-135. https://doi.org/10.1016/j.eurpolymj.2018.05.002
[91] P. Ramasamy, N. Subhapradha, T. Thinesh, J. Selvin, K.M. Selvan, V. Shanmugam, A. Shanmugam, “Characterization of bioactive chitosan and sulfated chitosan from Doryteuthis singhalensis”. Int. J. Biol. Macromol. 99 (2017) 682-691. https://doi.org/10.1016/j.ijbiomac.2017.03.041
[92] Y. Yang, R. Xing, S. Liu, Y. Qin, K. Li, H. Yu, P. Li, “Immunostimulatory e_ects of sulfated chitosans on RAW 264.7 mouse macrophages via the activation of PI3K/Akt signaling pathway”. Int. J. Biol. Macromol. 108 (2018) 1310-1321. https://doi.org/10.1016/j.ijbiomac.2017.11.042
[93] B.S. Atiyeh, M. Costagliola, S.N. Hayek, S.A. Dibo, Effect of silver on burn wound infection control and healing: review of the literature, Burns. 33 (2007) 139-148. https://doi.org/10.1016/j.burns.2006.06.010
[94] N. Akhavan-Kharazian, H. Izadi-Vasafi, Preparation and characterization of chitosan/gelatin/nanocrystalline cellulose/calcium peroxide films for potential wound dressing applications, Int. J. Biol. Macromol. 133 (2019) 881-891. https://doi.org/10.1016/j.ijbiomac.2019.04.159
[95] A. Ashori, R. Bahrami, Modification of physico-mechanical properties of chitosan-tapioca starch blend films using nano graphene, Polym.-Plast. Technol. Eng. 53 (2014) 312-318. https://doi.org/10.1080/03602559.2013.866246
[96] L. Lisuzzo, G. Cavallaro, S. Milioto, G. Lazzara, Layered composite based on halloysite and natural polymers: a carrier for pH controlled release of drugs, New J. Chem. 43 (2019) 10887-10893. https://doi.org/10.1039/C9NJ02565K
[97] F.C. Chiu, Halloysite nanotube-and organoclay-filled biodegradable poly (butylene succinate-co-adipate)/maleated polyethylene blend-based nanocomposites with enhanced rigidity, Compos. Pt. B-Eng. 110 (2017) 193-203. https://doi.org/10.1016/j.compositesb.2016.10.091
[98] V. Bertolino, G. Cavallaro, G. Lazzara, S. Milioto, F. Parisi, Biopolymer targeted adsorption onto halloysite nanotubes in aqueous media, Langmuir. 33 (2017) 3317-3323. https://doi.org/10.1021/acs.langmuir.7b00600
[99] Y. Lvov, R. Price, B. Gaber and I. Ichinose, “Thin film nanofabrication via layer-by-layer adsorption of tubule halloysite, spherical silica, proteins and polycations”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 198 (2002) 375-382. https://doi.org/10.1016/S0927-7757(01)00970-0
[100] S. Levis and P. Deasy, “Use of coated microtubular halloysite for the sustained release of diltiazem hydrochloride and propranolol hydrochloride”. International Journal of Pharmaceutics, 253 (2003) 145-157. https://doi.org/10.1016/S0378-5173(02)00702-0
[101] X. Sun, Y. Zhang, H. Shen and N. Jia, “Direct electrochemistry and electrocatalysis of horseradish peroxidase based on halloysite nanotubes/chitosan nanocomposite film”. Electrochimica Acta, 56 (2010) 700-705. https://doi.org/10.1016/j.electacta.2010.09.095
[102] M. Liu, Y. Shen, P. Ao, L. Dai, Z. Liu and C. Zhou, “The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes”. RSC Advances, 4 (2014) 23540-23553. https://doi.org/10.1039/C4RA02189D
[103] W.O. Yah, A. Takahara and Y.M. Lvov, “Selective modification of halloysite lumen with octadecylphosphonic acid: New inorganic tubular micelle”. Journal of the American Chemical Society, 134 (2012) 1853-1859. https://doi.org/10.1021/ja210258y
[104] G. Chen, T. Ushida and T. Tateishi, “Scaffold design for tissue engineering”, Macromol. Biosci., 2 (2002) 67-77. https://doi.org/10.1002/1616-5195(20020201)2:2<67::AID-MABI67>3.0.CO;2-F
[105] S. J. Hollister, “Porous scaffold design for tissue engineering”, Nat. Mater., 4 (2005) 518-524. https://doi.org/10.1038/nmat1421
[106] D. W. Hutmacher, “Scaffolds in tissue engineering bone and cartilage”, Biomaterials, 21 (2000) 2529-2543. https://doi.org/10.1016/S0142-9612(00)00121-6
[107] M. Rinaudo, “Chitin and chitosan: Properties and applications”, Prog. Polym. Sci., 31 (2006) 603-632. https://doi.org/10.1016/j.progpolymsci.2006.06.001
[108] K. Rezwan, Q. Z. Chen, J.J. Blaker and A.R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering”, Biomaterials, 27 (2006) 3413-3431. https://doi.org/10.1016/j.biomaterials.2006.01.039
[109] W.W. Thein-Han and R. D. K. Misra, “Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering”, Acta Biomater., 5 (2009) 1182-1197. https://doi.org/10.1016/j.actbio.2008.11.025
[110] D. Depan, P. K. C. Venkata Surya, B. Girase and R. D. K. Misra, “Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering”, Acta Biomater., 7 (2011) 2163-2175. https://doi.org/10.1016/j.actbio.2011.01.029
[111] J. Li, H. Sun, D. Sun, Y. Yao, F. Yao and K. Yao, “Biomimetic multicomponent polysaccharide/nano-hydroxyapatite composites for bone tissue engineering”, Carbohydr. Polym., 85 (2011) 885-894. https://doi.org/10.1016/j.carbpol.2011.04.015
[112] L. J. Sweetman, S. E. Moulton and G. G. Wallace, “Characterisation of porous freeze dried conducting carbon nanotube-chitosan scaffolds”, J. Mater. Chem., 18 (2008) 5417-5422. https://doi.org/10.1039/b809406n
[113] X. Sun, Y. Zhang, H. Shen and N. Jia, “Direct electrochemistry and electrocatalysis of horseradish peroxidase based on halloysite nanotubes/chitosan nanocomposite film”, Electrochim. Acta, 56 (2010) 700-705. https://doi.org/10.1016/j.electacta.2010.09.095