Polysaccharide-Fibrous Clay Bionanocomposites and their Applications

$30.00

Polysaccharide-Fibrous Clay Bionanocomposites and their Applications

M. Ramesh, J. Maniraj, S. Ganesh Kumar

Bionanocomposites are multifunctional materials, which contain biological origin and particles, have nanometer-scale dimensions (1–100 nm) and can be employed in a vast range of applications in fields like tissue engineering, electronic appliances, biosensors, regenerative medicine, drug delivery systems and food packaging due to their remarkable advantage of exhibiting biocompatibility, antibacterial activity, and biodegradability. To develop naturally biodegradable materials like bionanocomposites, several biopolymers are employed in recent years. Polysaccharides are made up of sugar molecules linked together by glycosidic bonds. These polymeric carbohydrates, which are the most prevalent polymers in nature, are gaining interests as a feasible replacement for synthetic polymers in nanocomposite materials manufacturing. Polysaccharides are promising matrix for the production of green nanocomposites due to their biodegradable nature and biocompatible qualities, hierarchical structure, and high film-forming ability. This chapter discusses the processing, properties, characterisation, and applications of bio-based nanocomposites with various polysaccharides functionalized by various nanofillers.

Keywords
Polysaccharides, Fibrous Clay, Biocompatibility, Biomaterials, Nanocomposites

Published online 6/2/2022, 26 pages

Citation: M. Ramesh, J. Maniraj, S. Ganesh Kumar, Polysaccharide-Fibrous Clay Bionanocomposites and their Applications, Materials Research Foundations, Vol. 125, pp 1-26, 2022

DOI: https://doi.org/10.21741/9781644901915-1

Part of the book on Advanced Applications of Micro and Nano Clay

References
[1] E. Ruiz-Hitzky, M. Darder, F. M. Fernandes, B. Wicklein, A. C. S. Alcântara, P. Aranda, Fibrous clays based bionanocomposites, Prog. Polym. Sci. 38 (2013) 1392-1414. https://doi.org/10.1016/j.progpolymsci.2013.05.004
[2] A.C.S. Alcântara, M. Darder, P. Aranda, E. Ruiz-Hitzky, Polysaccharide-fibrous clay bionanocomposites, Appl. Clay Sci. 96 (2014) 2-8. https://doi.org/10.1016/j.clay.2014.02.018
[3] R.A. Vaia, E.P. Giannelis, Lattice model of polymer melt intercalation in organically-modified layered silicates, Macromolecul. 30 (1997) 7990-7999. https://doi.org/10.1021/ma9514333
[4] M.M. Hasani-Sadrabadi, S.H. Emami, R. Ghaffarian, H. Moaddel, Nanocomposite membranes made from sulfonated poly(ether ether ketone) and montmorillonite clay for fuel cell applications, Ener. Fuel. 22 (2008) 2539-2542. https://doi.org/10.1021/ef700660a
[5] R.A. Vaia, S. Vasudevan, W. Krawiec, L.G. Scanlon, E. P. Giannelis, New polymer electrolyte nanocomposites: Melt intercalation of poly(ethylene oxide) in mica‐type silicates, Adv. Mater. 7 (1995) 154-156. https://doi.org/10.1002/adma.19950070210
[6] L.B. de Paiva, A.R. Morales, F.R. Valenzuela Díaz, Organoclays: properties, preparation and applications, Appl. Clay Sci. 42 (2008) 8-24. https://doi.org/10.1016/j.clay.2008.02.006
[7] F. Bergaya, M. Jaber, J.F. Lambert, Organophilic clay minerals, in: Maurizio Galimberti (Ed.), Rubber-Clay Nanocomposites: Science, Technology, and Applications, Wiley, 2011, pp. 45-86. https://doi.org/10.1002/9781118092866.ch2
[8] E.P. Giannelis, Polymer layered silicate nanocomposites, Adv. Mater. 8 (1996) 29-35. https://doi.org/10.1002/adma.19960080104
[9] N. Nowak, W. Grzebieniarz, G. Khachatryan, K. Khachatryan, A. Konieczna-Molenda, M. Krzan, J. Grzyb, Synthesis of silver and gold nanoparticles in sodium alginate matrix enriched with graphene oxide and investigation of properties of the obtained thin films, Appl. Sci. 11(9) (2021) 3857. https://doi.org/10.3390/app11093857
[10] R.A. Vaia, E.P. Giannelis, Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment, Macromol. 30 (1997) 8000-8009. https://doi.org/10.1021/ma9603488
[11] E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, T. C. Chung, Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties, Chem. Mater. 13 (2001) 3516-3523. https://doi.org/10.1021/cm0110627
[12] F. Annabi-Bergaya, Layered clay minerals. Basic research and innovative composite applications, Micropor. Mesopor. Mater. 107 (2008) 141-148. https://doi.org/10.1016/j.micromeso.2007.05.064
[13] A. L. Laza, M. Jaber, H. Demais, H. Le Deit, L. Delmotte, L. Vidal, Green Nanocomposites : Synthesis and Characterization. 7 (2007) 3207-3213, doi: 10.1166/jnn.2007.698. https://doi.org/10.1166/jnn.2007.698
[14] A.S.K. Kumar, S. Kalidhasan, V. Rajesh, N. Rajesh, Application of cellulose-clay composite biosorbent toward the effective adsorption and removal of chromium from industrial wastewater, Ind. Eng. Chem. Res. 51 (2012) 58-69. https://doi.org/10.1021/ie201349h
[15] H.P.S.A. Khalil, E.W.N. Chong, F.A.T. Owolabi, M. Asniza, Y.Y. Tye, S. Rizal, M.R. Nurul Fazita, M.K. Mohamad Haafiz, Z. Nurmiati, M.T. Paridah, Enhancement of basic properties of polysaccharide-based composites with organic and inorganic fillers: A review, J. Appl. Polym. Sci. 136 (2019) 47251. https://doi.org/10.1002/app.47251
[16] F. Chivrac, E. Pollet, L. Avérous, Progress in nano-biocomposites based on polysaccharides and nanoclays, Mater. Sci. Eng. R Rep. 67 (2009) 1-17. https://doi.org/10.1016/j.mser.2009.09.002
[17] L.S. Zárate-Ramírez, A. Romero, C. Bengoechea, P. Partal, A. Guerrero, Thermo-mechanical and hydrophilic properties of polysaccharide/gluten-based bioplastics, Carbohyd. Polym. 112 (2014) 16-23. https://doi.org/10.1016/j.carbpol.2014.05.055
[18] L. Vertuccio, G. Gorrasi, A. Sorrentino, V. Vittoria, Nano clay reinforced PCL/starch blends obtained by high energy ball milling, Carbohyd. Polym. 75 (2009) 172-179. https://doi.org/10.1016/j.carbpol.2008.07.020
[19] S. Del Buffa, E. Grifoni, F. Ridi, P. Baglioni, The effect of charge on the release kinetics from polysaccharide-nanoclay composites, J. Nanopart. Res. 17 (2015) 146. https://doi.org/10.1007/s11051-015-2947-z
[20] A. Kocira, K. Kozłowicz, K. Panasiewicz, M. Staniak, E. Szpunar-Krok, P. Hortyńska, Polysaccharides as edible films and coatings: Characteristics and influence on fruit and vegetable quality-a review, Agronomy 11(5) (2021) 813. https://doi.org/10.3390/agronomy11050813
[21] J.R. Capadona, Van Den Berg, O., Capadona, L., Michael Schroeter, Stuart J. Rowan, Dustin J. Tyler, Christoph Weder, A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates, Nat. Nanotechnol. 2 (2007) 765-769. https://doi.org/10.1038/nnano.2007.379
[22] P.R. Souza, A.C. de Oliveira, B.H. Vilsinski, M.J. Kipper, A.F. Martins, Polysaccharide-based materials created by physical processes: From preparation to biomedical applications, Pharmaceu. 13 (2021) 621. https://doi.org/10.3390/pharmaceutics13050621
[23] N.H. Azeman, N. Arsad, A.A. Bakar, Polysaccharides as the sensing material for metal ion detection-based optical sensor applications, Sensors 20 (2020) 1-22. https://doi.org/10.3390/s20143924
[24] H. Park, X. Li, C. Jin, C. Park, W. Cho, C. Ha, Preparation and properties of biodegradable thermoplastic starch/clay hybrids, Macromol. Mater. Eng. 287 (2002) 553-558. https://doi.org/10.1002/1439-2054(20020801)287:8<553::AID-MAME553>3.0.CO;2-3
[25] T.M. Vieira, M. Moldão-Martins, V.D. Alves, Design of chitosan and alginate emulsion-based formulations for the production of monolayer crosslinked edible films and coatings, Foods 10 (2021) 1654. https://doi.org/10.3390/foods10071654
[26] M. Alizadeh-Sani, A. Khezerlou, A. Ehsani, Fabrication and characterization of the bionanocomposites film based on whey protein biopolymer loaded with TiO2 nanoparticles, cellulose nanofibers and rosemary essential oil, Ind. Crop. Prod. 124 (2018) 300-315. https://doi.org/10.1016/j.indcrop.2018.08.001
[27] S.F. Hosseini, M. Rezaei, M. Zandi, F. Farahmandghavi, Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties, Food Chem. 194 (2016) 1266-1274. https://doi.org/10.1016/j.foodchem.2015.09.004
[28] Nahla A. El-Wakil, Enas A. Hassan, Raga E., Abou-Zeid, Alain Dufresne, Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging, Carbohyd. Polym. 124 (2015) 337-346. https://doi.org/10.1016/j.carbpol.2015.01.076
[29] R.N. Tharanathan, Biodegradable films and composite coatings: past, present, and future, Trend. Food Sci. Technol. 14 (2003) 71-78. https://doi.org/10.1016/S0924-2244(02)00280-7
[30] N. Peelman, P. Ragaert, B. De Meulenaer, D. Adons, R. Peeters, L. Cardon, F. Van Impe, F. Devlieghere, Application of bioplastics for food packaging, Trend. Food Sci. Technol. 32 (2013) 128-141. https://doi.org/10.1016/j.tifs.2013.06.003
[31] A.C. Alcântara, M. Darder, P. Aranda, E. Ruiz-Hitzky, Polysaccharide-fibrous clay bionanocomposites, Appl. Clay Sci. 96 (2014) 2-8. https://doi.org/10.1016/j.clay.2014.02.018
[32] E. Ruiz-Hitzky, M. Darder, A.C. Alcântara, B. Wicklein, P. Aranda, Recent advances on fibrous clay-based nanocomposites, in: S. Kalia and Y. Haldorai (Eds.), Organic-inorganic hybrid nanomaterials, Springer, 2014, pp.39-86. https://doi.org/10.1007/12_2014_283
[33] A.C. Alcântara, M. Darder, P. Aranda, E. Ruiz‐Hitzky, Zein-fibrous clays biohybrid materials, Euro. J. Inorg. Chem. 32 (2012) 5216-5224. https://doi.org/10.1002/ejic.201200582
[34] A.C. Alcântara, M. Darder, P. Aranda, S. Tateyama, M.K. Okajima, T. Kaneko, M. Ogawa, E. Ruiz-Hitzky, Clay-bionanocomposites with sacran megamolecules for the selective uptake of neodymium. J. Mater. Chem. A 2 (2014) 1391-1399. https://doi.org/10.1039/C3TA14145D
[35] E. Ruiz-Hitzky, M. Darder, A.C. Alcântara, B. Wicklein, P. Aranda, Functional nanocomposites based on fibrous clays, in: Y. Lvov, B. Guo and R.F. Fakhrullin (Eds.), Functional Polymer Composites with Nanoclays, The Royal Society of Chemistry, 2016, pp. 1-53. https://doi.org/10.1039/9781782626725-00001
[36] R.R. Palem, K.M. Rao, G. Shimoga, R.G. Saratale, S.K. Shinde, G.S. Ghodake, S.H. Lee, Physicochemical characterization, drug release, and biocompatibility evaluation of carboxymethyl cellulose-based hydrogels reinforced with sepiolite nanoclay, Int. J. Biol. Macromol. 178 (2021) 464-476. https://doi.org/10.1016/j.ijbiomac.2021.02.195
[37] M.S. Ali, A.A. Al-Shukri, M.R. Maghami, C. Gomes, Nano and bio-composites and their applications: A review, IOP Conf. Ser.: Mater. Sci. Eng. 1067 (2021) 012093. https://doi.org/10.1088/1757-899X/1067/1/012093
[38] S.V. Singh, S. Kumar, A. Sharma, J. Singh, Bionanocomposites and their multifunctional applications, in: R.P. Singh and K.R.P. Singh (Eds.), Bionanomaterials fundamentals and biomedical applications, IOP Publishing Ltd., 2021, pp. 4-1 to 4-46. https://doi.org/10.1088/978-0-7503-3767-0ch4
[39] S. Lee, Y. Hong, B.S. Shim, Biodegradable PEDOT: PSS/clay composites for multifunctional green‐electronic materials, Adv. Sustain. Syst. 2021, p. 2100056. https://doi.org/10.1002/adsu.202100056
[40] E.P. Rebitski, A.C. Alcântara, M. Darder, R.L. Cansian, L. Gómez-Hortigüela, S.B. Pergher, Functional carboxymethylcellulose/zein bionanocomposite films based on neomycin supported on sepiolite or montmorillonite clays, ACS Omega 3(10) (2018) 13538-13550. https://doi.org/10.1021/acsomega.8b01026
[41] S. Leporatti, Polymer clay nano-composites, Polym. 11 (2019) 1445. https://doi.org/10.3390/polym11091445
[42] H. Deng, X. Wang, P. Liu, B. Ding, Y. Du, G. Li, X. Hu, J. Yang, Enhanced bacterial inhibition activity of layer-by-layer structured polysaccharide film-coated cellulose nanofibrous mats via addition of layered silicate, Carbohyd. Polym. 83 (2011) 239-245. https://doi.org/10.1016/j.carbpol.2010.07.042
[43] K.C.B.F. Oliveira, A.B. Meneguin, L.C. Bertolino, E.C. da Silva Filho, J.R.D.S. de Almeida, C. Eiras, Immobilization of biomolecules on natural clay minerals for medical applications, Int. J. Adv. Med. Biotechnol. 1 (2018) 31-40. https://doi.org/10.25061/2595-3931/IJAMB/2018.v1i1.8
[44] C. Branca, G. D’Angelo, C. Crupi, K. Khouzami, S. Rifici, G. Ruello, U. Wanderlingh, Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: A FTIR-ATR study on chitosan and chitosan/clay films, Polym. 99 (2016) 614-622. https://doi.org/10.1016/j.polymer.2016.07.086
[45] M. Abbasian, M. Pakzad, K. Nazari, Synthesis of cellulose-graft-polychloromethylstyrene-graft-polyacrylonitrile terpolymer/organoclay bionanocomposite by metal catalyzed living radical polymerization and solvent blending method, Polym. Plast. Technol. Eng. 56(8) (2017) 857-865. https://doi.org/10.1080/03602559.2016.1146905
[46] M. Del Mar Orta, J. Martín, J.L. Santos, I. Aparicio, S. Medina-Carrasco, E. Alonso, Biopolymer-clay nanocomposites as novel and ecofriendly adsorbents for environmental remediation, Appl. Clay Sci. 198 (2020) 105838. https://doi.org/10.1016/j.clay.2020.105838
[47] A.C. Alcântara, M. Darder, Building up functional bionanocomposites from the assembly of clays and biopolymers, The Chem. Record 18(7-8) (2018) 696-712. https://doi.org/10.1002/tcr.201700076
[48] A. Nabgui, T. El Assimi, A. El Meziane, G.A. Luinstra, M. Raihane, G. Gouhier, P. Thébault, K. Draoui, M. Lahcini, Synthesis and antibacterial behavior of bio-composite materials-based on Poly (ε-caprolactone)/Bentonite, Europ. Polym. J. (2021) 110602. https://doi.org/10.1016/j.eurpolymj.2021.110602
[49] R.K. Saini, A.K. Bajpai, E. Jain, Advances in bionanocomposites for biomedical applications, in: N.G. Shimbi (Ed.), Biodegradable and Biocompatible Polymer Composites, Elsevier Ltd., 2018, pp. 379-399. https://doi.org/10.1016/B978-0-08-100970-3.00013-4
[50] J.A. Almeida, , A.S. Oliveira, E. Rigoti, J.C. Neto, A.C. de Alcântara, S.B. Pergher, Design of solid foams for flame retardant based on bionanocomposites systems, Appl. Clay Sci. 180 (2019) 105173. https://doi.org/10.1016/j.clay.2019.105173
[51] E. Ruiz-Hitzky, P. Aranda, M. Darder, Bionanocomposites, in: Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, Hoboken, 2008. https://doi.org/10.1002/0471238961.bionruiz.a01
[52] J.W. Rhim, H.M. Park, C.S. Hac, Bio-nanocomposites for food packaging applications, Prog. Polym. Sci. 38 (2013) 1629-1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008
[53] E. Ruiz-Hitzky, P. Aranda, A. Alvarez, J. Santarén, A. Esteban-Cubillo, Developments in palygorskite-sepiolite research, in: E. Galán and A. Singer (Eds.), A new outlook on these nanomaterials, Elsevier B.V., Oxford, UK, 2011, pp. 393-452. https://doi.org/10.1016/B978-0-444-53607-5.00017-7
[54] A. Sorrentino, G. Gorrasi, V. Vittoria, Potential perspectives of bionanocomposites for food packaging applications, Trend. Food Sci. Technol. 18 (2007) 84-95. https://doi.org/10.1016/j.tifs.2006.09.004
[55] F. Guo, S. Aryana, Y. Han, Y. Jiao, A review of the synthesis and applications of polymer-nanoclay composites, Appl. Sci. 8 (2018) 1696. https://doi.org/10.3390/app8091696
[56] B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial fuel cells: methodology and technology, Environ. Sci. Technol. 40 (2006) 5181-5192. https://doi.org/10.1021/es0605016
[57] X. Wang, Y. Du, J. Luo, B. Lin, J.F. Kennedy, Chitosan/organic rectorite nanocomposite films: structure, characteristic and drug delivery behavior, Carbohyd. Polym. 69 (2007) 41- 49. https://doi.org/10.1016/j.carbpol.2006.08.025
[58] B.K. Singh, Organophosphorus-degrading bacteria: ecology and industrial applications, Nat. Rev. Microbiol. 7 (2009) 156-164. https://doi.org/10.1038/nrmicro2050
[59] M. Puri, D. Sharma, C. J. Barrow, Enzyme-assisted extraction of bioactives from plants, Trends Biotechnol. 30 (2012) 37-44. https://doi.org/10.1016/j.tibtech.2011.06.014
[60] F. Ali, H. Ullah, Z. Ali, F. Rahim, F. Khan, Z.U. Rehman, Polymer-clay nanocomposites, preparations and current applications: a review, Curr. Nanomater. 1 (2016) 83-95. https://doi.org/10.2174/2405461501666160625080118
[61] A. Bruggink, E.C. Roos, E. de Vroom, Penicillin acylase in the industrial production of beta-lactam antibiotics, Organ. Proc. Res. Dev. 2 (1998) 128-133. https://doi.org/10.1021/op9700643
[62] E.T. Johnson, Schmidt‐Dannert, Light-energy conversion in engineered microorganisms. Curr. Trend. Biotechnol. 26 (2008) 682-689. https://doi.org/10.1016/j.tibtech.2008.09.002
[63] S.V. Ranganathan, S.L. Narasimhan, K. Muthukumar, An overview of enzymatic production of biodiesel, Bioresour. Technol. 99 (2008) 3975-3981. https://doi.org/10.1016/j.biortech.2007.04.060
[64] E. Casero, M. Darder, F. Pariente, L.E. Anal, Peroxidase enzyme electrodes as nitric oxide biosensors, Analyt. Chim. Act. 403 (2000) 1-9. https://doi.org/10.1016/S0003-2670(99)00555-3
[65] D.R.S. Jeykumari, S.S. Narayanan, Functionalized carbon nanotube-bienzyme biocomposite for amperometric sensing, Carbon 47 (2009) 957-966. https://doi.org/10.1016/j.carbon.2008.11.050
[66] O.B. Ayyub, P. Kofinas, Enzyme induced stiffening of nanoparticle-hydrogel composites with structural color, Amer. Chem. Soc. Nano 9 (2015) 8004-8011. https://doi.org/10.1021/acsnano.5b01514
[67] M. Ikeda, T. Tanida, T. Yoshii, K. Kurotani, S. Onogi, K. Urayama, I. Hamachi, Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel-enzyme hybrids, Nat. Chem. 6 (2014) 511-518. https://doi.org/10.1038/nchem.1937
[68] S. Mailloux, E. Katz, Biocomputing, biosensing and bioactuation based on enzyme biocatalyzed reactions, Biocataly. 1 (2014) 13-32. https://doi.org/10.2478/boca-2014-0002
[69] A. Picot, C. Lacroix, Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt, Int. Dai. J. 14 (2004) 505-515. https://doi.org/10.1016/j.idairyj.2003.10.008
[70] S. Gunasekaran, S. Ko, L. Xiao, Use of whey proteins for encapsulation and controlled delivery applications, J. Food Eng. 83 (2007) 31-40. https://doi.org/10.1016/j.jfoodeng.2006.11.001
[71] A. Picot, C. Lacroix, Production of multiphase water‐insoluble microcapsules for cell microencapsulation using an emulsification/spray‐drying technology, J. Food Sci. 68 (2003) 2693-2700. https://doi.org/10.1111/j.1365-2621.2003.tb05790.x
[72] S. Christoph, F.M. Fernandes, Bionanocomposite Materials for Biocatalytic Applications, in Carole Aimé and Thibaud Coradin (eds.), Bionanocomposites: Integrating Biological Processes for Bioinspired Nanotechnologies, John Wiley & Sons, Inc. 2017, pp. 257-298. https://doi.org/10.1002/9781118942246.ch5.4