Applications of Polymers in Ophthalmology
Akhilesh Kumar Tewari, Shashi Kiran Misra, Kamla Pathak
Ophthalmology focuses on health issues related to eye, vision, anatomy and concerned ailments. Hitherto, a variety of materials such as ceramic, metal, glass and polymers have been extensively explored that modify optic adherence, residing time, targeted release with minimum downsides. Modern ophthalmic implants including contact lens, ocular endotamponades, viscoelastic replacements etc. are developed by polymers owing to their inherent virtues such as biocompatible with eye tissues, ease of manufacturing, flexible in operation, cost effective etc. The chapter emphasizes on biodegradable (chitosan, poly-lactic acid) and non- biodegradable (PVA, silicones) polymeric ocular preparations such as artificial cornea, orbital ball, glaucoma drainage device etc.
Keywords
Ophthalmology, Polymers, Contact Lens, Glaucoma Drainage, Artificial Cornea
Published online 4/20/2022, 32 pages
Citation: Akhilesh Kumar Tewari, Shashi Kiran Misra, Kamla Pathak, Applications of Polymers in Ophthalmology, Materials Research Foundations, Vol. 123, pp 123-154, 2022
DOI: https://doi.org/10.21741/9781644901892-5
Part of the book on Applications of Polymers in Surgery
References
[1] J.A. Calles, J. Bermúdez, E. Vallés, D. Allemandi, S. Palma, Polymers in Ophthalmology, in: F. Puoci (Eds.), Advanced Polymers in Medicine, Springer International Publishing, Switzerland, 2015, pp. 147-176. https://doi.org/10.1007/978-3-319-12478-0_6
[2] S. Donati, S.M. Caprani, G. Airaghi, R. Vinciguerra, L. Bartalena, F. Testa, C. Mariotti, G. Porta, F. Simonelli, C. Azzolini, Vitreous substitutes: the present and the future. Biomed Res Int. 2014 (2014) 1-12. https://doi.org/10.1155/2014/351804
[3] Fizia-Orlicz, M. Misiuk-Hojło, The use of polymers for intraocular lenses in cataract surgery (Soczewki wewnątrzgałkowe w chirurgii zaćmy – wykorzystanie polimerów). Polim Med. 45 (2015) 95-102. https://doi.org/10.17219/pim/61978
[4] W. He, R. Benson, 8 – Polymeric Biomaterials, in: M. Kutz (Eds.), Plastics Design Library, Applied Plastics Engineering Handbook (Second Edition), William Andrew Publishing, New York, 2017, pp. 145-164. https://doi.org/10.1016/B978-0-323-39040-8.00008-0
[5] E. Drevon-Gaillot, Ocular medical devices: histologic technique and histopathologic evaluation of the biocompatibility and performance. Toxicol Pathol. 47 (2019) 418-425. https://doi.org/10.1177/0192623318813533
[6] M.F. Maitz, Applications of synthetic polymers in clinical medicine. Biosurface Biotribology. 1 (2015) 161-176. https://doi.org/10.1016/j.bsbt.2015.08.002
[7] P. Özyol, E. Özyol, F. Karel, Biocompatibility of intraocular lenses. Turk J Ophthalmol. 47 (2017) 221-225. https://doi.org/10.4274/tjo.10437
[8] A.A Badawi, H.M El-Laithy, R.K.El Qidra, H. El Mofty, M. El dally, Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res.8 (2008)1040-9. https://doi.org/10.1007/s12272-001-1266-6
[9] E. Gavini, P.Chetoni, M.Cossu, M.G. Alvarez, M.F. Saettone, P.Giunchedi, PLGA microspheres for the ocular delivery of a peptidedrug, vancomycin using emulsification/spray-drying as the preparationpreparation method: in vitro/in vivo studies. Eur J Pharm Biopharm. 57(2003) 207-12. https://doi.org/10.1016/j.ejpb.2003.10.018
[10] R. Pignatello, C. Bucolo, G. Spedalieri, A. Maltese, G. Puglisi, Flurbiprofen- loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials. 23(2002) 3247-55. https://doi.org/10.1016/S0142-9612(02)00080-7
[11] Z. Liu, J. Li, S. Nie, H. Liu, P.Ding, W.Pan, Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm 2006; 315: 12-7. https://doi.org/10.1016/j.ijpharm.2006.01.029
[12] R. Herrero-Vanrell, A. Fernandez-Carballido, G. Frutos, R.Cadórniga, Enhancement of the mydriatic response to tropicamide by bioadhesive polymers. J Ocul Pharmacol Ther.16 (2000) 419-28. https://doi.org/10.1089/jop.2000.16.419
[13] D.Aggarwal, D. Pal, A.K. Mitra, I.P.Kaur, Study of the extent of ocular absorption of acetazolamide from a developed niosomal formulation, by microdialysis sampling of aqueous humor. Int J Pharm 338 (2007) 21-6. https://doi.org/10.1016/j.ijpharm.2007.01.019
[14] A. Hui, A. Boone, L. Jones, Uptake and release of ciprofloxacin-HCl from conventional and silicone hydrogel contact lens materials. Eye Contact Lens. 34(2008) 266-71. https://doi.org/10.1097/ICL.0b013e3181812ba2
[15] L. Budai, M. Hajdu, M. Budai, P. Grof, S. Beni, B. Noszal, Gels and liposomes in optimized ocular drug delivery: Studies on ciprofloxacin formulations. Int J Pharm 343 (2007) 34-40. https://doi.org/10.1016/j.ijpharm.2007.04.013
[16] C. Giannavola, C. Bucolo, A. Maltese, D. Paolino, M.A.Vandelli, G. Puglisi, Influence of preparation conditions on acyclovirloaded poly-d,l-lactic acid nanospheres and effect of PEG coating on ocular drug bioavailability. Pharm Res 20 (2003) 584-90.
[17] H. Qi, W. Chen, C. Huang, L. Li, C. Chen, W. Li, Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin. Int J Pharm. 337(2007) 178-87. https://doi.org/10.1016/j.ijpharm.2006.12.038
[18] U.B. Kompella, S.S. Raghavan, E.RS. Escobar, LHRH agonist and transferring functionalization enhance nanoparticle delivery in a novel bovine ex vivo eye model. Mol Vis 12 (2006) 1185-98.
[19] W. Liu, M. Griffith, F. Li, Alginate microsphere-collagen composite hydrogel for ocular drug delivery and implantation. J Mater Sci Mater Med. 19(2008) 3365-71. https://doi.org/10.1007/s10856-008-3486-2
[20] Z. Liu, J. Li, S. Nie, H. Liu, P. Ding, W. Pan, Study of an alginate/ HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm. 315(2006) 12-7. https://doi.org/10.1016/j.ijpharm.2006.01.029
[21] A.H. El-Kamel, In vitro and in vivo evaluation of Pluronic F127- based ocular delivery system for timolol maleate. Int J Pharm 241(2002) 47-55. https://doi.org/10.1016/S0378-5173(02)00234-X
[22] O. Felt-Baeyens, S. Eperon, P. Mora, D. Limal, S. Sagodira, P. Breton, Biodegradable scleral implants as new triamcinolone acetonide delivery systems. Int J Pharm 322(2006) 6-12. https://doi.org/10.1016/j.ijpharm.2006.05.053
[23] G. Di Colo, Y. Zambito, S. Burgalassi, A. Serafini, M.F.Saettone, Effect of chitosan on in vitro release and ocular delivery of ofloxacin from erodible inserts based on poly(ethylene oxide). Int JPharm 248(2002) 115-22. https://doi.org/10.1016/S0378-5173(02)00421-0
[24] F. Findik, A case study on the selection of materials for eye lenses. Int Sch Res Notices. 2011 (2011) 1-4. https://doi.org/10.5402/2011/160671
[25] M. Rubinstein, Applications of contact lens devices in the management of corneal disease. Eye. 17 (2003) 872-876. https://doi.org/10.1038/sj.eye.6700560
[26] L. Lim, E.W.L. Lim, Therapeutic contact lenses in the treatment of corneal and ocular surface diseases-a review. Asia Pac J Ophthalmol (Phila). 9 (2020) 524-532. https://doi.org/10.1097/APO.0000000000000331
[27] Linkon, Contact lenses and care, Material properties for contact lenses, https://www.likon.com.ua/patients/for-professionals/material-properties-for-contact-lenses/, 2021 (accessed 27 August 2021).
[28] T.B. Harvey, W.B. Meyers, L.M. Bowman, Contact Lens Materials: Their Properties and Chemistries, in: C.G. Gebelein, R.L. Dunn (Eds.), Progress in Biomedical Polymers. Springer, Boston, MA., 1990, pp. 1-2. https://doi.org/10.1007/978-1-4899-0768-4_1
[29] C.S.A. Musgrave, F. Fang, Contact lens materials: a materials science perspective. Materials (Basel). 12 (2019) 1-35. https://doi.org/10.3390/ma12020261
[30] P.C. Nicolson, J. Vogt, Soft contact lens polymers: an evolution. Biomaterials. 22 (2001) 3273-3283. https://doi.org/10.1016/S0142-9612(01)00165-X
[31] A.S. Bruce, N.A. Brennan, R.G. Lindsay, Diagnosis and mangement of ocular changes during contact lens wear, Part II. Clin. Signs Ophthalmol.17(1995) 2-11.
[32] J.L. Alió, J.I. Belda, A. Artola, M. García-Lledó, A. Osman, Contact lens fitting to correct irregular astigmatism after corneal refractive surgery. J Cataract Refract Surg. 28(2002) 1750-7. https://doi.org/10.1016/S0886-3350(02)01489-X
[33] O. Wichterle, D. Lím, Hydrophilic Gels for Biological Use. Nature. 185(1960)117. https://doi.org/10.1038/185117a0
[34] P. Keogh, J.F. Kunzler, G.C.C. Niu, Hydrophilic Contact Lens Made from Polysiloxanes Which Are Thermally Bonded to Polymerizable Groups and Which Contain Hydrophilic Sidechains. 4260725. U.S. Patent. 1981 Apr 7.
[35] M. Kita, Y. Ogura, Y. Honda, S.H. Hyon, W. Cha, Evaluation of polyvinyl alcohol hydrogel as a soft contact lens material. Graefes Arch Clin Exp Ophthalmol. 228(1990)533-7. https://doi.org/10.1007/BF00918486
[36] American Academy of Ophthalmology, Eye Anatomy: Parts of the Eye and How We See. https://www.aao.org/eye-health/anatomy/parts-of-eye, 2021 (accessed 10 August 2021).
[37] D.W. Del Monte, T. Kim, Anatomy and physiology of the cornea. J Cataract Refract Surg. 37 (2011) 588-598. https://doi.org/10.1016/j.jcrs.2010.12.037
[38] H.J. Kaplan, Anatomy and function of the eye. Chem Immunol Allergy. 92 (2007) 4-10. https://doi.org/10.1159/000099236
[39] World Health Organization, Blindness and vision impairment. https://www.who.int/en/news-room/fact-sheets/detail/blindness-and-visual-impairment, 2021 (accessed 12 August 2021).
[40] National Eye Institute, Corneal Conditions. https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/corneal-conditions#1, 2021 (accessed 12 August 2021).
[41] National Eye Institute, Corneal Transplants. https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/corneal-conditions/corneal-transplants, 2021 (accessed 12 August 2021).
[42] F.C. Lam, C. Liu, The future of keratoprostheses (artificial corneae). Br J Ophthalmol. 95 (2011) 304-305. https://doi.org/10.1136/bjo.2010.188359
[43] Cornea Research Foundation of America, Artificial Cornea. https://www.cornea.org/Learning-Center/Cornea-Transplants/Artificial-Cornea.aspx, 2021 (accessed 12 August 2021).
[44]University of Iowa Health Care, Keratoprosthesis. https://eyerounds.org/tutorials/Cornea-Transplant-Intro/6-kprosth.htm, 2021 (accessed 13 August 2021).
[45] J.J. Barnham, M.J. Roper-Hall, Keratoprosthesis: a long-term review. Br J Ophthalmol. 67 (1983) 468-474. https://doi.org/10.1136/bjo.67.7.468
[46] M. Bhattacharya, A. Sadeghi, S. Sarkhel, M. Hagström, S. Bahrpeyma, E. Toropainen, S. Auriola, A. Urtti, Release of functional dexamethasone by intracellular enzymes: a modular peptide-based strategy for ocular drug delivery. J Control Release. 327 (2020) 584-594. https://doi.org/10.1016/j.jconrel.2020.09.005
[47] B. Salvador-Culla, P.E. Kolovou, Keratoprosthesis: a review of recent advances in the field. J Funct Biomater. 7 (2016) 1-13. https://doi.org/10.3390/jfb7020013
[48] T.V. Chirila, C.R. Hicks, P.D. Dalton, S. Vijayasekaran, X. Lou, Y. Hong, A.B. Clayton, B.W. Ziegelaar, J.H. Fitton, S. Platten, G.J. Crawford, I.J. Constable, Artificial cornea. Prog Polym Sci. 23 (1998) 447-473. https://doi.org/10.1016/S0079-6700(97)00036-1
[49] Y. Hwang, G. Kim. Evaluation of stability and biocompatibility of PHEMA-PMMA keratoprosthesis by penetrating keratoplasty in rabbits. Lab Anim Res. 32 (2016) 181-186. https://doi.org/10.5625/lar.2016.32.4.181
[50] C.H. Dohlman, M. Harissi-Dagher, B.F. Khan, K. Sippel, J.V. Aquavella, J.M. Graney, Introduction to the use of the Boston keratoprosthesis. Expert Rev Ophthalmol. 1 (2006) 41-48. https://doi.org/10.1586/17469899.1.1.41
[51] A.S. Bardan, N.A. Raqqad, M. Zarei-Ghanavati, C. Liu, The role of keratoprostheses. Eye (Lond). 32 (2018) 7-8. https://doi.org/10.1038/eye.2017.287
[52] M. Zarei-Ghanavati, V. Avadhanam, A.V. Perez, C. Liu, The osteo-odonto-keratoprosthesis. Curr Opin Ophthalmol. 28 (2017) 397-402. https://doi.org/10.1097/ICU.0000000000000388
[53] G.S. Sarode, S.C. Sarode, J.S. Makhasana, Osteo-odonto-keratoplasty: a review. J Clinic Experiment Ophthalmol. 2 (2011) 1-5. https://doi.org/10.4172/2155-9570.1000188
[54] N. Jirásková, P. Rozsival, M. Burova, M. Kalfertova, AlphaCor artificial cornea: clinical outcome. Eye (Lond). 25 (2011) 1138-1146. https://doi.org/10.1038/eye.2011.122
[55] Y. Huang, J. Yu, L. Liu, G. Du, J. Song, H. Guo, Moscow eye microsurgery complex in Russia keratoprosthesis in Beijing. Ophthalmology. 118 (2011) 41-46. https://doi.org/10.1016/j.ophtha.2010.05.019
[56] R. Pineda, Y. Shiuey, The keraklear artificial cornea: a novel keratoprosthesis. Techniques in Ophthalmology. 7 (2009) 101-104. https://doi.org/10.1097/ITO.0b013e3181bee614
[57] G. Duncker, J. Storsberg, W. Müller-Lierheim, The fully synthetic, bio-coated MIRO® CORNEA UR keratoprosthesis: development, preclinical testing, and first clinical results. Spektrum Augenheilkd. 28 (2014) 250-260. https://doi.org/10.1007/s00717-014-0243-4
[58] O. Ilhan-Sarac, E.K. Akpek, Current concepts and techniques in keratoprosthesis. Curr Opin Ophthalmol. 16 (2005) 246-250. https://doi.org/10.1097/01.icu.0000172829.33770.d3
[59] B. Wright, C.J. Connon, Corneal Regenerative Medicine, first ed., Humana Press, Totowa, NJ, 2013. https://doi.org/10.1007/978-1-62703-432-6
[60] R. Singh, N. Gupta, M. Vanathi, R. Tandon, Corneal transplantation in the modern era. Indian J Med Res. 150 (2019) 7-22. https://doi.org/10.4103/ijmr.IJMR_141_19
[61]M. Griffith, E.I. Alarcon, I. Brunette, Regenerative approaches for the cornea. J Intern Med. 280(2016) 276-86. https://doi.org/10.1111/joim.12502
[62] L. Hartmann, K. Watanabe, L.L. Zheng, C.Y. Kim, S.E. Beck, P. Huie, J. Noolandi, J.R. Cochran, C.N. Ta, C.W. Frank, Toward the development of an artificial cornea: improved stability of interpenetrating polymer networks. J Biomed Mater Res B Appl Biomater. 98 (2011) 8-17. https://doi.org/10.1002/jbm.b.31806
[63] S.R. Sandeman, R.G. Faragher, M.C. Allen, C. Liu, A.W. Lloyd, Novel materials to enhance keratoprosthesis integration. Br J Ophthalmol. 84 (2000) 640-644. https://doi.org/10.1136/bjo.84.6.640
[64] L.J. Luo, J.Y. Lai, S.F. Chou, Y.J. Hsueh, D.H. Ma, Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering. Acta Biomater. 65 (2018) 123-136. https://doi.org/10.1016/j.actbio.2017.11.018
[65] J. Chen, W. Zhang, P. Kelk, L.J. Backman, P. Danielson, Substance P and patterned silk biomaterial stimulate periodontal ligament stem cells to form corneal stroma in a bioengineered threedimensional model. Stem Cell Res Ther.260 (2017). https://doi.org/10.1186/s13287-017-0715-y
[66] Q. Tang, C. Luo, B. Lu, Q. Fu, H. Yin, Z. Qin, Thermosensitive chitosan-based hydrogels releasing stromal cell derived factor-1 alpha recruit MSC for corneal epithelium regeneration. Acta Biomater. 61(2017) 101-113. https://doi.org/10.1016/j.actbio.2017.08.001
[67] N. Vázquez, C.A. Rodríguez-Barrientos, S.D. Aznar-Cervantes, M. J. Chacón, L. Cenis A.C. Riestra, Silk fibroin films for corneal endothelial regeneration: transplant in a rabbit descemet membrane endothelial keratoplasty. Invest Ophthalmol Visual Sci. 58 (2017) 3357-3365. https://doi.org/10.1167/iovs.17-21797
[68] J.R. Jangamreddy, M.K.C. Haagdorens, M. Islam, P. Lewis, A. Samanta, P. Fagerholm, Short peptide analogs as alternatives to collagen in pro-regenerative corneal implants. Acta Biomater. 69 (2018) 120-130. https://doi.org/10.1016/j.actbio.2018.01.011
[69] S. Salehi, M. Czugala, P. Stafiej, M. Fathi, T. Bahners, J. S. Gutmann, Poly (glycerol sebacate)-poly (+-caprolactone) blend nanofibrous scaffold as intrinsic bio-and immunocompatible systemfor corneal repair. Acta Biomater. 50 (2017) 370-380. https://doi.org/10.1016/j.actbio.2017.01.013
[70] M. Rizwan, G. S. L. Peh, H.P. Ang, N.C. Lwin, K. Adnan, J.S. Mehta, Sequentially-crosslinked bioactive hydrogels as nanopatterned substrates with customizable stiffness and degradation for corneal tissue engineering applications. Biomaterials 120 (2017) 139-154. https://doi.org/10.1016/j.biomaterials.2016.12.026
[71] American Academy of Ophthalmology, What is Glaucoma? https://www.aao.org/eye-health/diseases/what-is-glaucoma, 2021 (accessed 27 August 2021).
[72] P. Agrawal, P. Bhardwaj, Glaucoma drainage implants. Int J Ophthalmol. 13 (2020) 1318-1328. https://doi.org/10.18240/ijo.2020.08.20
[73] K.S. Lim, B.D.S. Allan, A.W. Lloyd et al. Glaucoma drainage devices; past, present, and future. British Journal of Ophthalmology. 82 (1998) 1083-1089. https://doi.org/10.1136/bjo.82.9.1083
[74] R.S. Ayyala, L.E. Harman, B. Michelini-Norris, et al. Comparison of different biomaterials for glaucoma drainage devices. Arch Ophthalmol. 117 (1999) 233-236. https://doi.org/10.1001/archopht.117.2.233
[75] S. Moon, S. Im, J. An, C.J. Park, H.G. Kim, S.W. Park, H.I. Kim, J.H. Lee, Selectively bonded polymeric glaucoma drainage device for reliable regulation of intraocular pressure. Biomed Microdevices. 14 (2012) 325-335. https://doi.org/10.1007/s10544-011-9609-4
[76]C.J. Park, D.S. Yang, J.J. Cha, J.H. Lee, Polymeric check valve with an elevated pedestal for precise cracking pressure in a glaucoma drainage device. Biomed Microdevices. 18 (2016) 20. https://doi.org/10.1007/s10544-016-0048-0
[77] N. Sahiner, D.J. Kravitz, R. Qadir, D.A. Blake, S. Haque, V.T. John, C.E. Margo, R.S. Ayyala, Creation of a drug-coated glaucoma drainage device using polymer technology: in vitro and in vivo studies. Arch Ophthalmol. 127 (2009) 448-453. https://doi.org/10.1001/archophthalmol.2009.19
[78] C. Wischke, A.T. Neffe, B.D. Hanh, C.F. Kreiner, K. Sternberg, O. Stachs, R.F. Guthoff, A. Lendlein, A multifunctional bilayered microstent as glaucoma drainage device. J Control Release. 172 (2013) 1002-1010. https://doi.org/10.1016/j.jconrel.2013.10.021
[79] M. Löbler, K. Sternberg, O. Stachs, R. Allemann, N. Grabow, A. Roock, C.F. Kreiner, D. Streufert, A.T. Neffe, B.D. Hanh, A. Lendlein, K.P. Schmitz, R. Guthoff, Polymers and drugs suitable for the development of a drug delivery drainage system in glaucoma surgery. J Biomed Mater Res B Appl Biomater. 97 (2011) 388-395. https://doi.org/10.1002/jbm.b.31826
[80] T. Sharaawy, S. Bhartiya, Surgical management of glaucoma: evolving paradigms. Indian J Ophthalmol. 59(2011) 123-30. https://doi.org/10.4103/0301-4738.73692
[81] Cleveland Clinic, Tear System. https://my.clevelandclinic.org/health/diseases/17540-tear-system, 2021 (accessed 17 August 2021).
[82] F. Paulsen, The human nasolacrimal ducts. Adv Anat Embryol Cell Biol. 170 (2003) 1-106. https://doi.org/10.1007/978-3-642-55643-2_1
[83]American Academy of Ophthalmology, Blocked Tear Duct Causes. https://www.aao.org/eye-health/diseases/blocked-tear-duct-cause, 2021 (accessed 18 August 2021).
[84]American Academy of Ophthalmology, What Is a Blocked Tear Duct? https://www.aao.org/eye-health/diseases/what-is-blocked-tear-duct, 2021 (accessed 18 August 2021).
[85] Mayo Clinic, Blocked tear duct, Symptoms and causes. https://www.mayoclinic.org /diseases-conditions/blocked-tear-duct/symptoms-causes/syc-20351369, 2021 (accessed 18 August 2021).
[86] WebMD, Blocked Tear Duct? What to Expect From Treatment. https://www.webmd.com/eye-health/blocked-tear-ducts, 2021 (accessed 19 August 2021).
[87] UW Health, Blocked Tear Duct and Siicone Intubation. https://patient.uwhealth.org/healthfacts/7514, 2021 (accessed 19 August 2021).
[88]Dobbs Ferry Pharmacy, Blocked Tear Ducts: Intubation. https://www.dobbsferrypharmacy.com/PatientPortal/MyPractice.aspx?UAID=C02C9140-EE45-4012-81AE-26B3E0C445ED&ID=HW5hw208973, 2021 (accessed 19 August 2021).
[89]American Academy of Ophthalmology, EyeWiki, Dacryocystorhinostomy. https://eyewiki.aao.org/Dacryocystorhinostomy, 2021 (accessed 19 August 2021).
[90] Mayo Clinic, Blocked tear duct, Diagnosis and treatment. https://www.mayoclinic.org/diseases-conditions/blocked-tear-duct/diagnosis-treatment/drc-20351375, 2021 (accessed 19 August 2021).
[91] J.W. Henderson, Management of strictures of the lacrimal canaliculi with polyethylene tubes. Arch Ophthalmol.44 (1950) 198-203. https://doi.org/10.1001/archopht.1950.00910020203002
[92] E.R. Veirs, Malleable rods for immediate repair of the traumatically severed lacrimal canaliculus. Trans Am Acad Ophthalmol Otolaryngol. 66 (1962) 263-264.
[93] M.H. Quickert, R.M. Dryden, Probes for intubation in lacrimal drainage. Trans Am Acad Ophthalmol Otolaryngol. 74 (1970) 431-433.
[94] C.G. Keith, Intubation of the lacrimal passages. Am J Ophthalmol. 65 (1968) 70-74. https://doi.org/10.1016/0002-9394(68)91031-3
[95] J.S. Crawford, Intubation of obstructions in the lacrimal system. Can J Ophthalmol. 12 (1977) 289-292.
[96] B. Fayet, J.A. Bernard, Y. Pouliquen, Repair of recent canalicular wounds using a monocanalicular stent (Réparation des plaies canaliculaires récentes avec une sonde mono-canaliculaire à fixation méatique). Bull Soc Ophtalmol Fr. 89 (1989) 819-825.
[97] J.M. Ruban, B. Guigon, V. Boyrivent, Analysis of the efficacy of the large mono-canalicular intubation stent in the treatment of lacrimation caused by congenital obstruction of the lacrimal ducts in infants. J Fr Ophtalmol. 18 (1995) 377-383.
[98] M.R. Pe, J.D. Langford, J.V. Linberg, T.L. Schwartz, N. Sondhi, Ritleng intubation system for treatment of congenital nasolacrimal duct obstruction. Arch Ophthalmol. 116 (1998) 387-391. https://doi.org/10.1001/archopht.116.3.387
[99] Eye Rounds.org, Nasolacrimal Stents: An Introductory Guide. https://webeye.ophth.uiowa.edu/eyeforum/tutorials/Stents/index.htm, 2021 (accessed 19 August 2021).
[100] M. Singh, S. Kamal, V. Sowmya, Lacrimal stents and intubation systems: an insight. DJO. 26 (2015) 14-19. https://doi.org/10.7869/djo.128
[101] A.M. Ricca, A.K. Kim, H.S. Chahal, E.M. Shriver, Nasolacrimal Stents: An Introductory Guide. EyeRounds.org. posted January 29, 2018; Available from: https://EyeRounds.org/tutorials/Stents/
[102] Kenhub, Bones of the orbit. https://www.kenhub.com/en/library/anatomy/bones-of-the-orbit, 2021(accessed 21 August 2021).
[103] C. René, Update on orbital anatomy. Eye. 20 (2006) 1119-1129. https://doi.org/10.1038/sj.eye.6702376
[104] Temple Health, Orbital Fractures. https://www.templehealth.org/services/conditions/orbital-fractures, 2021 (accessed 21 August 2021).
[105] Harvard Health Publishing, Harvard Medical School, Eye Socket Fracture (Fracture Of The Orbit). https://www.health.harvard.edu/a_to_z/eye-socket-fracture-fracture-of-the-orbit-a-to-z, 2021 (accessed 21 August 2021).
[106] R.D. Glassman, P.N. Manson, C.A. Vanderkolk, N.T. Iliff, M.J. Yaremchuk, P. Petty, C.R. Defresne, B.L. Markowitz, Rigid fixation of internal orbital fractures. Plast Reconstr Surg. 86 (1990) 1103-1109. https://doi.org/10.1097/00006534-199012000-00009
[107] K. Hwang, Y. Kita, Alloplastic template fixation of blow-out fracture. J Craniofac Surg. 13 (2002) 510-512. https://doi.org/10.1097/00001665-200207000-00006
[108] K. Chowdhury, G.E. Krause, Selection of materials for orbital floor reconstruction. Arch Otolaryngol Head Neck Surg. 124 (1998) 1398-1401. https://doi.org/10.1001/archotol.124.12.1398
[109] B. Çeliköz, H. Duman, N. Selmanpakoğlu, Reconstruction of the orbital floor with lyophilized tensor fascia lata. J Oral Maxillofac Surg. 55 (1997) 240-244. https://doi.org/10.1016/S0278-2391(97)90533-4
[110]J.M. Neigel, P.O. Ruzicka, Use of demineralized bone implants in orbital and craniofacial reconstruction and a review of the literature. Ophthalmic Plast Reconstr Surg. 12 (1996) 108-120. https://doi.org/10.1097/00002341-199606000-00005
[111]P.D. Waite, J.T. Clanton, Orbital floor reconstruction with lyophilized dura. J Oral Maxillofac Surg. 46 (1988) 727-730. https://doi.org/10.1016/0278-2391(88)90180-2
[112]M.F. Guerra, J.S. Pérez, F.J. Rodriguez-Campo, L.N. Gías, Reconstruction of orbital fractures with dehydrated human dura mater. J Oral Maxillofac Surg. 58 (2000) 1361-1366. https://doi.org/10.1053/joms.2000.18266
[113]J.R. Bevivino, P.N. Nguyen, L.J. Yen, Reconstruction of traumatic orbital floor defects using irradiated cartilage homografts. Ann Plast Surg. 33 (1994) 32-37. https://doi.org/10.1097/00000637-199407000-00007
[114]J.M. Chen, M. Zingg, K. Laedrach, J. Raveh, Early surgical intervention for orbital floor fractures: A clinical evaluation of lyophilized dura and cartilage reconstruction. J Oral Maxillofac Surg. 50 (1992) 935-941. https://doi.org/10.1016/0278-2391(92)90049-6
[115]S. Morax, T. Hurbli, R. Smida, Bovine heterologous bone graft in orbital surgery (Greffe osseuse hétérologue d’origine bovine dans la chirurgie orbitaire). Ann Chir Plast Esthet. 38 (1993) 445-450.
[116]R.H. Haug, E. Nuveen, T. Bredbenner, An evaluation of the support provided by common internal orbital reconstruction materials. J Oral Maxillofac Surg. 57 (1999) 564-570. https://doi.org/10.1016/S0278-2391(99)90076-9
[117]J.A. Fialkov, C. Holy, C.R. Forrest, J.H. Phillips, O.M. Antonyshyn, Postoperative infections in craniofacial reconstructive procedures. J Craniofac Surg. 12 (2001) 362-368. https://doi.org/10.1097/00001665-200107000-00009
[118]B.L. Schmidt, C. Lee, D.M. Young, J. O’Brien, Intraorbital squamous epithelial cyst: an unusual complication of silastic implantation. J Craniofac Surg. 9 (1998) 452-455. https://doi.org/10.1097/00001665-199809000-00012
[119]A. Laxenaire, J. Lévy, P. Blanchard, J.C. Lerondeau, F. Tesnier, P. Scheffer, Complications of silastic implants used in orbital repair (Complications des implants de silastic utilisés en réparation orbitaire). Rev Stomatol Chir Maxillofac. 98 (1997) 96-99.
[120]W.R. Dougherty, T. Wellisz, The natural history of alloplastic implants in orbital floor reconstruction: An animal model. J Craniofac Surg. 5 (1994) 26-33. https://doi.org/10.1097/00001665-199402000-00007
[121]M.J. Yaremchuk, Facial reconstruction using porous polyethylene implants. Plast Reconstr Surg. 111 (2003) 1818-1827. https://doi.org/10.1097/01.PRS.0000056866.80665.7A
[122]P.M. Villarreal, F. Monje, A.J. Morillo, L.M. Junquera, C. Gonzalez, J.J. Barbon, Porous polyethylene implants in orbital floor reconstruction. Plast Reconstr Surg. 109 (2002) 877-887. https://doi.org/10.1097/00006534-200203000-00007
[123]I. Kinnunen, K. Aitasalo, M. Pollonen, M. Varpula, Reconstruction of orbital floor fractures using bioactive glass. J Craniomaxillofac Surg. 28 (2000) 229-234. https://doi.org/10.1054/jcms.2000.0140
[124]K. Aitasalo, I. Kinnunen, J. Palmgren, M. Varpula, Repair of orbital floor fractures with bioactive glass implants. J Oral Maxillofac Surg. 59 (2001) 1390-1396. https://doi.org/10.1053/joms.2001.27524
[125]J.L. Parkin, M.H. Stevens, J.C. Stringham, Absorbable gelatin film verses silicone rubber sheeting in orbital fracture treatment. Laryngoscope. 97 (1987) 1-3. https://doi.org/10.1288/00005537-198701000-00001
[126]R.W. Mermer, R.E. Orban, Jr Repair of orbital floor fractures with absorbable gelatin film. J Craniomaxillofac Trauma. 1 (1995) 30-34.
[127]W.P. Piotrowski, U. Mayer-Zuchi, The use of polyglactin 910-polydioxanon in the treatment of defects of the orbital roof. J Oral Maxillofac Surg. 57 (1999) 1301-1306 https://doi.org/10.1016/S0278-2391(99)90865-0
[128]P.V. Hatton, J. Walsh, I.M. Brook, The response of cultured bone cells to resorbable polyglycolic acid and silicone membranes for use in orbital floor fracture repair. Clin Mater. 17 (1994) 71-80. https://doi.org/10.1016/0267-6605(94)90014-0
[129]D.J. Mackenzie, B. Arora, J. Hansen, Orbital floor repair with titanium mesh screen. J Carniomaxillofac Trauma. 5 (1999) 9-18.
[130]H.S. Park, Y.K. Kim, C.H. Yoon, Various applications of titanium mesh screen implant to orbital wall fractures. J Craniofac Surg. 12 (2001) 555-560. https://doi.org/10.1097/00001665-200111000-00010
[131]A.J. Gear, A. Lokeh, J.H. Aldridge, M.R. Migliori, C.I. Benjamin, W. Schubert, Safety of titanium mesh for orbital reconstruction. Ann Plast Surg. 48 (2002) 1-9. https://doi.org/10.1097/00000637-200201000-00001