The Role of Advanced Polymers in Surgery & Medical Devices
Anupama Rajput, Anamika Debnath
Polymers find a variety of applications in our day-to-day life. A wide range of synthetic polymers which have become a part of our daily life. Synthetic resin has a variety of applications in our life. Synthetic polymers are uses in craft and biomedical and surgical operation. Medical devices include simple devices; test equipment and implants. Polymers of different types are used extensively in these devices, for weight, cost, and performance benefits. The chapter focuses on some advanced polymers like resin, copolymers and thermoplastics which are therefore used in different fields like medical or surgical in large scale on the basis of structure activity relationship. Advanced polymeric materials and biodegradable polymers and their application in surgical devices were also discussed.
Keywords
Medical Devices, Advanced Polymers, Thermo Plastics, Pacemakers
Published online 4/20/2022, 24 pages
Citation: Anupama Rajput, Anamika Debnath, The Role of Advanced Polymers in Surgery & Medical Devices, Materials Research Foundations, Vol. 123, pp 30-52, 2022
DOI: https://doi.org/10.21741/9781644901892-2
Part of the book on Applications of Polymers in Surgery
References
[1] E. Piskin, Biodegradable polymers as biomaterials, J. Biomater.Sci.Polym Ed. 6 (1995) 775–795. https://doi.org/10.1163/156856295X00175
[2] R. Barbucci, Integrated Biomaterials Science. New York: Kluwer Academic/Plenum Publishers, 2002. https://doi.org/10.1007/b112196
[3] R. Langer, J.P. acanti. Tissue engineering Science, New York, 1993. https://doi.org/10.1126/science.8493529
[4] J.P. Vacanti, R.Langer. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplanta¬tion. Lancet. 354(1999) 32–34. https://doi.org/10.1016/S0140-6736(99)90247-7
[5] T. Dvir, B.P.Timko, D.S.Kohane, R. Langer, Nanotechnological strategies for engineering complex tissues,Nat Nanotechnol. 6 (2011) 13–22. https://doi.org/10.1038/nnano.2010.246
[6] Implantable Biomaterials [market report on the Internet.https://www.bccresearch.com/market-research/advanced-materials/implantable-biomaterials-markets-report-avm118a.html. (Accessed February, 2018)
[7] D.S.Kohane, R.Langer, Polymeric Biomaterials in Tissue Engineering, Pediatr Res.63(5)(2008)487–491. https://doi.org/10.1203/01.pdr.0000305937.26105.e7
[8] M. Vert, Aliphatic Polyesters: Great Degradable Polymers That Cannot Do Everything. Biomacromolecules. 6 (2005) 538–546. https://doi.org/10.1021/bm0494702
[9] S.Ramakrishna, J.Mayer , E.Wintermantel , et al.Biomedical applications of polymer- composite materials: a Review, 61,(2001) 7789–1224. https://doi.org/10.1016/S0266-3538(00)00241-4
[10] A.Kolk ,J.Handschel ,W. Drescher et al. Current trends and future perspectives of bone substitute materials – From space holders to innovative biomaterials.J.Cranio-Maxillofacial Surg (2012) 40: 706–718. https://doi.org/10.1016/j.jcms.2012.01.002
[11] K. Rezwan, Q.Z. Chen, J.J.Blaker, et al. Biodegradable and bioactive porous polymer Inorganic composite scaffolds for bone tissue engineering. Biomaterials 27, (2006)3413–3431. https://doi.org/10.1016/j.biomaterials.2006.01.039
[12] L.S. Nair and C.T. Laurencin. Biodegradable polymers as biomaterials.ProgPolymSci.32, (2007) 762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017
[13] D. Lyon, J.Chevalier, L.Gremillard et al. Zirconia as abiomaterial. ComprBiomater 20,(2011)95–108. https://doi.org/10.1016/B978-0-08-055294-1.00017-9
[14] F.A. Borges F,E.D.A. Filho, M.C.R.Miranda MC, et al. Natural rubber latex coated with calcium phosphate for biomedical application. J BiomaterSciPolymEd 26,(2015) 1256–1268. https://doi.org/10.1080/09205063.2015.1086945
[15] R.D. Herculano, C.P.Silva,C. Ereno , et al. Natural rubber latex used as drug delivery system in guided bone regeneration (GBR). Mater Res 12(2009) 253–256. https://doi.org/10.1590/S1516-14392009000200023
[16] A.J.Festas, Medical devices biomaterials – A review, J Materials: Design and Applications, Vol. 234(1) 2020, 218–228. https://doi.org/10.1177/1464420719882458
[17] G.O. Hofmann,Biodegradable implant sinorthopaedic surgery – a review on the state-of-the art,Clin.Mater.10(1992)75–80. https://doi.org/10.1016/0267-6605(92)90088-B
[18] S. Kehoe,X.F.Zhang,D.Boyd,FD approved guidance conduits and wraps for peripheral nerve injury: a review of material sand efficacy, Injury 43(2012)553–572. https://doi.org/10.1016/j.injury.2010.12.030
[19] A.R. Nectow ,K. G. Marra, D.L. Kaplan, Biomaterials for the develop-ment of peripheral nerve guidance conduits,TissueEng.PartB:Rev18(2012) 40–50. https://doi.org/10.1089/ten.teb.2011.0240
[20] D. Arslantunali,T.Dursun,D.Yucel,N.Hasirci,V.Hasirci,Peripheral nerve conduits: technologyupdate,Med.Devices(Auckland)7(2014) 405–424. https://doi.org/10.2147/MDER.S59124
[21] A. Faroni,S.A.Mobasseri,P.J.Kingham,A.J.Reid, Peripheral nerve regeneration: experimental strategies and future perspectives ,Adv.DrugDeliv. Rev.82–83 (2015)160–167. https://doi.org/10.1016/j.addr.2014.11.010
[22] A. Bruder, PVC—The Material for Medical Products (translated), Swiss Plastics No. 4, (1999) and Swiss Chem No. 5, (1999)
[23] L.W.McKeen, The effect of temperature and other factors on plastics. Plastics Design Library, William Andrew Publishing; 2008. https://doi.org/10.1016/B978-081551568-5.50004-9
[24] S. Ebnesajjad, Fluoroplastics, volume 1—non melt processible fluoroplastics. William Andrew Publishing/Plastics Design Library; 2000
[25] H. A. Maddah, American Journal of Polymer Science, (2016). 6, 1.
[26] A.A. Vicario, Design and Applications in Comprehensive Composite Materials, 2000.
[27] J. K Fink, Reactive Polymers: Fundamentals and Applications,Third Edition. 2018.
[28] E. Panday, K.Srivastava. S, Gupta, Some biocompatible materials used in medical practices- a review, Int. J. Pharm. Sci. res.2016 DOI: 10.13040/IJPSR.0975-8232.7(7).2748-55
[29] M. Galletti, Organ Replacement by Man Made Devices, J. Cardio thoracic Vascular Anesthesia, 7 (1993) 624–628. https://doi.org/10.1016/1053-0770(93)90327-H
[30] D. Williams, An Introduction to Medical and Dental Materials, Concise Encyclopedia of Medical & Dental Materials, Ed., Pergamon Press and The MIT Press, 1990
[31] A.C. Albersson, I.K. Varma, Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications, Biomacromolecules, 4(2003) 1466–1486. https://doi.org/10.1021/bm034247a
[32] S. M.Li Tenon, , H.Garreau, C. Braud, M. Vert, Enzymatic Degradation of Stereocopolymers Derived from L-, DL- and Meso-Lactides, Polym. Degrad. Stab.67( 2000) 85–90. https://doi.org/10.1016/S0141-3910(99)00091-9
[33] S.Zhou, Deng, X. Li, W. Jia, L. Liu, Synthesis and Characterization of Biodegradable Low Molecular Weight Aliphatic Polyesters and Their Use in Protein Delivery Systems, J. Appl. Polym. Sci. 91(2004)1848–185. https://doi.org/10.1002/app.13385
[34] B.Pomes,E.Richaud,J-F.Nguyen,Materials for Biomedical EngineeringThermoset and hermoplastic Polymers, Polymethacrylates. (2019), 217-271. https://doi.org/10.1016/B978-0-12-816874-5.00007-4
[35] B. D. Ulery, L. S. Nair, C. T. Laurencin, Biomedical Applications of Biodegradable Polymers,J. Polym. Sci., Part B: Polym. Phys. 49(2011)832–864. https://doi.org/10.1002/polb.22259
[36] R. A. Gross, B. Kalra, Biodegradable polymers for nvironment, Science.297(2002)803–807. https://doi.org/10.1126/science.297.5582.803
[37] R. Chandra, R. Rustgi, Biodegradable polymers, Prog. Polym. Sci. 23 (1998)1273–1335. https://doi.org/10.1016/S0079-6700(97)00039-7
[38] L. S. Nair and C. T. Laurencin, Progress in polymer science, Prog. Polym. Sci. 32 (2007) 762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017
[39] A.L.R.Pires, A.C.K.Bierhalz,A.M Moraes, Biomaterials: types, applications, and market. Quim Nova.38 (2015)957–971. https://doi.org/10.5935/0100-4042.20150094
[40] J. C. Middleton, A. J. Tipton, Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21 (2000) 2335-2346. https://doi.org/10.1016/S0142-9612(00)00101-0
[41] Q. Chen, G.A. Thouas, Metallic implant biomaterials. Mater Sci.Eng R Reports 87(2015)1–57. https://doi.org/10.1016/j.mser.2014.10.001
[42] Benavente R. Polı´merosamorfos, semicristalinos, polı´meroscristaleslı´quidos y orientacio´ n, Instituto deCiencia y Tecnologia de Polı´meros, CSIC, Madrid, 1997.
[43] A. Fallis, Bio-materials and prototyping application in medicine. US: Springer, 2008.
[44] S. Mokhtar,S. Ben Abdessalem,F. Sakli, Optimization of textile parameters of plain woven vascularprostheses. J Text Inst. 101(2010) 1095–1105. https://doi.org/10.1080/00405000903363597
[45] T.R Kucklick, The medical device R & D handbook. Boca Raton: CRC Press, Taylor & Francis Group, 2013.
[46] M.F.Maitz, Applications of synthetic polymers in clinical medicine, Biosurf Biotribol 1(2015) 161–176. https://doi.org/10.1016/j.bsbt.2015.08.002
[47] S. Singh, S. Ramakrishna,R. Singh, Material issues inadditive manufacturing: a review. J Manuf Process, 25 (2017) 185–200. https://doi.org/10.1016/j.jmapro.2016.11.006
[48] A.I .Cassady, N.M.Hidzir, L.Grøndahl. Enhancing expanded poly(tetrafluoroethylene) (ePTFE) for biomaterialsapplications, J ApplPolymSci131 (2014). https://doi.org/10.1002/app.40533
[49] M. Arora, E.K.S.Chan, S.Gupta, Polymethylmethacrylate bone cements and additives: a review of the literature. World. J. Orthop. 4 (2013) 67–74. https://doi.org/10.5312/wjo.v4.i2.67
[50] D. Jenke, Evaluation of the chemical compatibility of plastic contact materials and pharmaceutical products; safety considerations related to extractable sandleachables, J.Pharm.Sci.96(2007)2566–2581. https://doi.org/10.1002/jps.20984
[51] R. Vaishya, M.Chauhan,A. Vaish. Bone cement, J ClinOrthop Trauma 4 (2013) 157–163. https://doi.org/10.1016/j.jcot.2013.11.005
[52] R.Ormsby, T. McNally, C. Mitchell, Effect of MWCNT addition on the thermal and rheological properties of polymethyl methacrylate bone cement. Carbon N Y 49 (2011) 2893–2904. https://doi.org/10.1016/j.carbon.2011.02.063
[53] C. Singh, C. Wong, X.Wang, Medical textiles as vascular implants and their success to mimic natural arteries. J.Funct.Biomater.6 (2015) 500–525. https://doi.org/10.3390/jfb6030500
[54] M.F. Maitz, Applications of synthetic polymers in clinical medicine, Biosurface and Biotribology 1 (2015) 161–176. https://doi.org/10.1016/j.bsbt.2015.08.002
[55]J.C.Dumville, P.Coulthard,H.V.Worthington,P.Riley,N.Patel, J. Darcey,M.Esposito,M.vanderElst,O.J.F.vanWaes,Tissue adhesives For closure of surgical incisions,CochraneDatabaseSyst. Rev. 11(2014) 1-135. https://doi.org/10.1002/14651858.CD004287.pub4
[56] L. Sanders, J.Nagatomi, Clinical applications of surgical adhesives and sealants, Crit.Rev.Biomed.Eng.42(2014)271–292. https://doi.org/10.1615/CritRevBiomedEng.2014011676
[57] A. Fu, K.Gwon, M.Kim,G.Tae, J.A.Kornfield, Visible-light-initiated thiol-acrylate photopolymerization of heparin-based hydrogels, Biomacromolecules.16(2015)497–506. https://doi.org/10.1021/bm501543a
[58] L.P. Bre, Y.Zheng, A.P.Pego, W.X.Wang, Taking tissue adhesives to the future:from traditional synthetic to new biomimetic approaches, Biomater. Sci.1(2013)239–253. https://doi.org/10.1039/C2BM00121G
[59] P. Ferreira, A.F.M.Silva, M.I.Pinto, M.H.Gil, Development of a biodegradable bioadhesive containing urethane groups, J.Mater.Sci. Mater. Med.19(2008)111–120. https://doi.org/10.1007/s10856-007-3117-3
[60] U. Klinge, J.K.Park, B.Klosterhalfen, Theidealmesh,Pathobiology 80 (2013)169–175. https://doi.org/10.1159/000348446
[61] U. Klinge, B.Klosterhalfen, Modified classification of surgical meshes for hernia repair based on the analyses of 1,000 explanted meshes, Hernia 16(2012)251–258. https://doi.org/10.1007/s10029-012-0913-6
[62] M.J. Kasser, Regulation of UHMWPE biomaterial sintotalhip arthroplasty,J.Biomed.Mater.Res.B:Appl.Biomater.101B(2013) 400–406. https://doi.org/10.1002/jbm.b.32809
[63] M. Slouf, H.Synkova, J.Baldrian, A.Marek, J.Kovarova, P.Schmidt, H. Dorschner, M.Stephan, U.Gohs, Structural changes of UHMWPE after e-beam irradiation and Thermal treatment, J.Biomed.Mater.Res. B: Appl.Biomater.85B(2008)240–251. https://doi.org/10.1002/jbm.b.30942
[64] I. Urriés,F.J.Medel,R.Ríos,E.Gómez-Barrena,J.A.Puértolas, Comparative cyclic stress– strain and fatigue resistance behavior of electron-beam-and gamma-irradiated ultra high molecular weight polyethylene, J.Biomed.Mater.Res70B(2004)152–160. https://doi.org/10.1002/jbm.b.30033
[65] F. Reno, M.Cannas, UHMWP E and vitamin E bioactivity: an emerging perspective, Biomaterials.27(2006)3039–3043. https://doi.org/10.1016/j.biomaterials.2006.01.016
[66] U.G. Longo, A.Lamberti, N.Maffulli, V.Denaro, T endon augmentation grafts:a systematic review,Br.Med.Bull.94(2010)165–188. https://doi.org/10.1093/bmb/ldp051
[67] J. Chen, J.Xu, A.Wang, M.Zheng, Scaffolds for tendon and ligament repair: review of the efficacy of commercial products, Expert.Rev.Med. Device 6(2009)61–73. https://doi.org/10.1586/17434440.6.1.61
[68] R.Y.Kannan,H.J.Salacinski,P.E.Butler,G.Hamilton,A.M.Seifalian, Current statusofprosthetic bypass grafts:areview,J.Biomed.Mater. Res. BAppl.Biomater.74B(2005)570–581. https://doi.org/10.1002/jbm.b.30247
[69] L. Berardinelli, Grafts and graft materials as vascular substitutes for haemodialysis access construction, Eur.J.Vasc.Endovasc.Surg.32 (2006) 203–211. https://doi.org/10.1016/j.ejvs.2006.01.001
[70] S.H. Daebritz, J. S. Sachweh, B. Hermanns, B.Fausten, A.Franke, J. Groetzner, B.Klosterhalfen, B.J. Messmer, Introduction of a flexible polymeric heart valve prosthesis with special design formitral position, Circulation108(2003)134–139. https://doi.org/10.1161/01.cir.0000087655.41288.dc
[71] B. Rahmani, S.Tzamtzis, H.Ghanbari, G.Burriesci, A.M.Seifalian, Manufacturing and hydrodynamic assessment of an ovelaortic valve made of a new nanocomposite polymer, J.Biomech.45(2012)1205–1211. https://doi.org/10.1016/j.jbiomech.2012.01.046
[72] G. Huang, S.H. Rahimtoola, Prosthetic heart valve, Circulation 123 (2011) 2602–2605. https://doi.org/10.1161/CIRCULATIONAHA.110.979518
[73] D. Bezuidenhout, D.F. Williams, P. Zilla, Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices, Biomaterials 36 (2015) 6–25. https://doi.org/10.1016/j.biomaterials.2014.09.013
[74] I. Niechajev, Facial reconstruction using porous high-density polyethylene (Medpor): long-term results, Aesth. Plast. Surg. 36 (2012) 917–927. https://doi.org/10.1007/s00266-012-9911-4
[75] A.S. Breitbart, V.J. Ablaza, Implant materials, in: C.H. Thorne (Ed.), Grabb and Smith‘s Plastic Surgery, Lippincott Williams & Wilkins, Philadelphia, PA, 2007, pp. 58–65
[76] K.P. Redbord, C.W. Hanke, Expanded polytetraflfluoroethylene implants for soft-tissue augmentation: 5-year follow-up and literature review, Dermatol. Surg. 34 (2008) 735–743. https://doi.org/10.1097/00042728-200806000-00001
[77] D.M. Harvitt, J.A. Bonanno, Re-evaluation of the oxygen diffusion model for predicting minimum contact lens Dk/t values needed to avoid corneal anoxia, Optom. Vis. Sci. 76 (1999) 712–719. https://doi.org/10.1097/00006324-199910000-00023
[78] P.C. Nicolson, J. Vogt, Soft contact lens polymers: an evolution, Biomaterials 22 (2001) 3273–3283. https://doi.org/10.1016/S0142-9612(01)00165-X
[79] S. Kirchhof, A.M. Goepferich, F.P. Brandl, Hydrogels in ophthalmic applications, Eur. J. Pharm. Biopharm. (2015)https://dx.doi.org/10.1016/ j.ejpb.2015.05.016
[80] R. Bellucci, An introduction to intraocular lenses: material, optics, haptics, design and aberration, in: J.L. Güell (Ed.), Cataract, Karger, Basel, 2013, pp. 38–55. https://doi.org/10.1159/000350902
[81] D. Bozukova, C. Pagnoulle, R. Jerome, C. Jerome, Polymers in modern ophthalmic implants – historical background and recent advances, Mater. Sci. Eng. R. Rep. 69 (2010) 63–83. https://doi.org/10.1016/j.mser.2010.05.002
[82] N. Kara, R.F. Espindola, B.A.F. Gomes, B. Ventura, D. Smadja, M. R. Santhiago, Effects of blue light-fifiltering intraocular lenses on the macula, contrast sensitivity, and color vision after a long-term followup, J. Cataract Refract. Surg. 37 (2011) 2115–2119. https://doi.org/10.1016/j.jcrs.2011.06.024
[83] W.J. Foster, Vitreous substitutes, Expert Rev. Ophthalmol 3 (2008) 211–218. https://doi.org/10.1586/17469899.3.2.211
[84] Q.Y. Gao, Y. Fu, Y.N. Hui, Vitreous substitutes: challenges and directions, Int. J. Ophthamol. 8 (2015) 437–440.
[85] A.R. Nectow, K.G. Marra, D.L. Kaplan, Biomaterials for the development of peripheral nerve guidance conduits, Tissue Eng. Part B: Rev 18 (2012) 40–50. https://doi.org/10.1089/ten.teb.2011.0240
[86] D. Arslantunali, T. Dursun, D. Yucel, N. Hasirci, V. Hasirci, Peripheral nerve conduits: technology update, Med. Devices (Auckland) 7 (2014) 405–424. https://doi.org/10.2147/MDER.S59124
[87] A. Faroni, S.A. Mobasseri, P.J. Kingham, A.J. Reid, Peripheral nerve regeneration: experimental strategies and future perspectives, Adv. Drug Deliv. Rev. 82–83 (2015) 160–167. https://doi.org/10.1016/j.addr.2014.11.010
[88] A. Hermann, M. Gerlach, J. Schwarz, A. Storch, Neurorestoration in Parkinson‘s disease by cell replacement and endogenous regeneration, Expert Opin. Biol. Ther. 4 (2004) 131–143. https://doi.org/10.1517/14712598.4.2.131
[89] U. Freudenberg, A. Hermann, P.B. Welzel, K. Stirl, S.C. Schwarz, M. Grimmer, A. Zieris, W. Panyanuwat, S. Zschoche, D. Meinhold, A. Storch, C. Werner, A star-PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases, Biomaterials 30 (2009) 5049–5060. https://doi.org/10.1016/j.biomaterials.2009.06.002
[90] K.S. Kang, S.I. Lee, J.M. Hong, J.W. Lee, H.Y. Cho, J.H. Son, S. H. Paek, D.W. Cho, Hybrid scaffold composed of hydrogel/3D-framework and its application as a dopamine delivery system, J. Control. Release 175 (2014) 10–16. https://doi.org/10.1016/j.jconrel.2013.12.002
[91] B. Newland, H. Newland, C. Werner, A. Rosser, W.X. Wang, Prospects for polymer therapeutics in Parkinson‘s disease and other neurodegenerative disorders, Prog. Polym. Sci. 44 (2015) 79–112. https://doi.org/10.1016/j.progpolymsci.2014.12.002