Evaluation of Bloch–Gruneisen Function to Determine the Electrical Resistivity for Pure Nano-MgB2 Superconductor

Evaluation of Bloch–Gruneisen Function to Determine the Electrical Resistivity for Pure Nano-MgB2 Superconductor

Intikhab A. Ansari, C.V. Rao

download PDF

Abstract. Here, the generalized Bloch–Gruneisen (BG) function is described with wide range of temperatures in addition with some other parameters. This function shows the easy and precise method to determine the resistivity as a function of temperature for pristine nano-MgB2 sample. The fitted outcomes are in resemblance with the experimental results up to 20–150 K temperature range. This generalized BG function is appropriate for diverse non-integers and integers values of n. Experimental result is full agreement with the fitted data for n = 4 integer value. Furthermore, the present method exposes the accuracy, easiness and preciseness of the results up to a high order of decimals for the determination of the resistivity as a function of temperature.

Keywords
Incomplete Gamma Function, Debye Temperature, Bose–Einstein Statistics

Published online 3/25/2022, 5 pages
Copyright © 2022 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Intikhab A. Ansari, C.V. Rao, Evaluation of Bloch–Gruneisen Function to Determine the Electrical Resistivity for Pure Nano-MgB2 Superconductor, Materials Research Proceedings, Vol. 22, pp 13-17, 2022

DOI: https://doi.org/10.21741/9781644901878-3

The article was published as article 3 of the book Functional Materials and Applied Physics

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] S. S. Kubakaddi, Electron-phonon interaction in a quantum wire in the Bloch-Gruneisen regime. Phys. Rev. B 75 (2007) 075309. https://doi.org/10.1103/PhysRevB.75.075309
[2] A. Bid, A. Bora, and A. Raychaudhuri, Temperature dependence of the resistance of metallic nanowires of diameter ≥ 15 nm: Applicability of Bloch-Gruneisen theorem, Phys. Rev. B 74 (2006) 035426. https://doi.org/10.1103/PhysRevB.74.035426
[3] I. A. Ansari et al., Enhancement of critical current density for nano (n)–ZnO doped MgB2 superconductor, Physica C 495 (2013) 208-212. https://doi.org/10.1016/j.physc.2013.10.001
[4] L. Mazov, High-field evidence for the Bloch-Gruneisen curve in the cuprates, Phys. Rev. B 70 (2004) 054501. https://doi.org/10.1103/PhysRevB.70.054501
[5] I. A. Ansari, The Analytical Solution of Incomplete Gamma Function to Determine the Electrical Resistivity at Normal State for MgB2 Superconductor, Journal of Physics: Conference Series 1172 (2019) 012028. https://doi.org/10.1088/1742-6596/1172/1/012028
[6] J. M. Ziman (Eds.), Electrons and Phonons, Clarendon, Oxford University Press (2001). https://doi.org/10.1093/acprof:oso/9780198507796.001.0001
[7] J. Bass, Jr. W. P. Pratt and P. A. Schroeder, The temperature-dependent electrical resistivities of the alkali metals, Rev. Modern Phys. 62 (1990) 645–744. https://doi.org/10.1103/RevModPhys.62.645
[8] D. Varshney and N. Kaurav, Interpretation of Temperature-Dependent Resistivity of La-Pb-MnO3: Role of Electron-Phonon Interaction, J. Low Temp. Phys. 141 (2005) 165–178. https://doi.org/10.1007/s10909-005-8226-0
[9] P. A. M. Dirac, On the Theory of Quantum Mechanics, Proceedings of the Royal Society, Series A 112 (762) (1926) 661-677. https://doi.org/10.1098/rspa.1926.0133
[10] S. N. Bose, “Plancks Gesetz und Licht quanten hypothese”, Zeitschrift fu ̈r Physik 26 (1924) 178-181. https://doi.org/10.1007/BF01327326
[11] David J. Griffiths, Introduction to Quantum Mechanics (2nd Ed.), Upper Saddle River, New Jersey, Pearson, Prentice Hall (2005)
[12] J-Q Shen, M-H Fang, Y. Zheng, H-T Wang, Y. Lu and Z-A Xu, 2003. Study of high temperature resistivity and thermal stability of superconductor MgB2, Physica C 386 (2003) 663-666. https://doi.org/10.1016/S0921-4534(02)02189-5
[13] A. Poddar et al., Studies of transport properties of MgB2 superconductor, Physica C 390 (2003) 191-196. https://doi.org/10.1016/S0921-4534(03)00961-4