Coulomb Drag Study of Non-Homogeneous Dielectric Medium: Hole-Hole Static Interactions in 2D-GaAs DQW

Coulomb Drag Study of Non-Homogeneous Dielectric Medium: Hole-Hole Static Interactions in 2D-GaAs DQW

Sharad Kumar Upadhyaya and L.K. Sainib

download PDF

Abstract. The induced (drag) resistivity (ρ_D) is calculated numerically in low temperature, large interlayer separation and weak interactive regime for 2D hole-hole (h-h) static interactions using the RPA method, with the geometry of non-homogeneous dielectric medium. Exchange-correlations (XC) and mutual interaction effects are considered in low/high density regime for analysing the drag resistivity. It is found that the drag resistivity is found inhanced on using the XC effects and increases on increasing the effective mass. In Fermi-Liquid regime, drag resistivity is directly proportional to r2/n3 at low temperature. Temperature (T), density (n), interlayer separation (d) and dielectric constant (ϵ2) dependency of drag resistivity is measured and compared to 2D e-e and e-h coupled-layer systems with and without the effect of non-homogeneous dielectric medium.

Keywords
Drag Resistivity, Weak Interaction, Low Temperature, Hole-Hole Interactions, LFC

Published online 3/25/2022, 6 pages
Copyright © 2022 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Sharad Kumar Upadhyaya and L.K. Sainib, Coulomb Drag Study of Non-Homogeneous Dielectric Medium: Hole-Hole Static Interactions in 2D-GaAs DQW, Materials Research Proceedings, Vol. 22, pp 1-6, 2022

DOI: https://doi.org/10.21741/9781644901878-1

The article was published as article 1 of the book Functional Materials and Applied Physics

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] A. P. Jauho and H. Smith, Coulomb Drag between Parallel Two-Dimensional Electron Systems, Phys. Rev. B 47, 4420 (1993). https://doi.org/10.1103/PhysRevB.47.4420
[2] A. Kamenev and Y. Oreg, Coulomb Drag in Normal Metals and Superconductors: Diagrammatic Approach, Phys. Rev. B 52, 7516 (1995). https://doi.org/10.1103/PhysRevB.52.7516
[3] S. K. Upadhyay and L. K. Saini, Study of Drag Resistivity in Dielectric Medium with the Correlations Effect, Appl. Phys. A 127, 276 (2021). https://doi.org/10.1007/s00339-021-04422-y
[4] S. K. Upadhyay and L. K. Saini, Coulomb Drag Study in Graphene/GaAs Bilayer System with the Effect of Local Field Correction and Dielectric Medium, Phys. E Low-Dimensional Syst. Nanostructures 127, 114484 (2021). https://doi.org/10.1016/j.physe.2020.114484
[5] S. K. Upadhyay and L. K. Saini, Drag Resistivity in Bilayer-Graphene/GaAs Coupled Layer System with the Effect of Local Field Corrections, Eur. Phys. J. Plus 136, 433 (2021). https://doi.org/10.1140/epjp/s13360-021-01377-0
[6] R. Pillarisetty, H. Noh, D. C. Tsui, E. P. De Poortere, E. Tutuc, and M. Shayegan, Frictional Drag between Two Dilute Two-Dimensional Hole Layers, Phys. Rev. Lett. 89, 16805 (2002). https://doi.org/10.1103/PhysRevLett.89.016805
[7] P. M. Solomon, P. J. Price, D. J. Frank, and D. C. La Tulipe, New Phenomena in Coupled Transport between 2D and 3D Electron-Gas Layers, Phys. Rev. Lett. 63, 2508 (1989). https://doi.org/10.1103/PhysRevLett.63.2508
[8] B. Scharf and A. Matos-Abiague, Coulomb Drag between Massless and Massive Fermions, Phys. Rev. B 86, 115425 (2012). https://doi.org/10.1103/PhysRevB.86.115425
[9] S. K. Upadhyay and L. K. Saini, Drag Resistivity in InAs/GaAs and InAs/GaSb Bilayer Due to Electron-Electron Interactions, AIP Conf. Proc. 2220, 140031 (2020). https://doi.org/10.1063/5.0002594
[10] L. K. Saini, S. K. Upadhyay, and B. P. Bahuguna, Investigations of Optical and Thermoelectric Response of GaBi Monolayer, AIP Conf. Proc. 2220, 20158 (2020). https://doi.org/10.1063/5.0002593
[11] S. K. Upadhyay and L. K. Saini, Coulomb Drag of Electron-Electron Interactions in GaAs Bilayer with a Non Homogeneous Dielectric Background, Adv. Mater. Lett. 11, 20071539 (2020). https://doi.org/10.5185/amlett.2020.071539
[12] S. K. Upadhyay and L. K. Saini, Coulomb Drag Study in Electron-Electron Bilayer System with a Dielectric Medium, Phys. E Low-Dimensional Syst. Nanostructures 124, 114350 (2020). https://doi.org/10.1016/j.physe.2020.114350
[13] S. K. Upadhyay and L. K. Saini, Study of Coulomb Drag with the Effect of Local Field Correction and Dielectric Medium, Phys. B Condens. Matter 614, 412982 (2021). https://doi.org/10.1016/j.physb.2021.412982
[14] R. A. Höpfel, J. Shah, P. A. Wolff, and A. C. Gossard, Negative Absolute Mobility of Minority Electrons in GaAs Quantum Wells, Phys. Rev. Lett. 56, 2736 (1986). https://doi.org/10.1103/PhysRevLett.56.2736
[15] R. A. Höpfel and J. Shah, Electron-Hole Drag in Semiconductors, Solid. State. Electron. 31, 643 (1988). https://doi.org/10.1016/B978-0-08-036237-3.50080-2
[16] P. M. Solomon and B. Laikhtman, Mutual Drag of 2D and 3D Electron Gases in Heterostructures, Superlattices Microstruct. 10, 89 (1991). https://doi.org/10.1016/0749-6036(91)90154-J
[17] T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N. Pfeiffer, and K. W. West, Mutual Friction between Parallel Two-Dimensional Electron Systems, Phys. Rev. Lett. 66, 1216 (1991). https://doi.org/10.1103/PhysRevLett.66.1216
[18] T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N. Pfeiffer, and K. W. West, Electron-Electron Scattering between Parallel Two-Dimensional Electron Gases, Surf. Sci. 263, 446 (1992). https://doi.org/10.1016/0039-6028(92)90386-K
[19] T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N. Pfeiffer, and K. W. West, Measuring Electron—Electron Scattering Rates through Mutual Friction, Phys. B Condens. Matter 197, 442 (1994). https://doi.org/10.1016/0921-4526(94)90243-7
[20] J. P. Eisenstein, New Transport Phenomena in Coupled Quantum Wells, Superlattices Microstruct. 12, 107 (1992). https://doi.org/10.1016/0749-6036(92)90231-S
[21] M. Kellogg, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Observation of Quantized Hall Drag in a Strongly Correlated Bilayer Electron System, Phys. Rev. Lett. 88, 126804 (2002). https://doi.org/10.1103/PhysRevLett.88.126804
[22] M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Evidence for 2kF Electron–Electron Scattering Processes in Coulomb Drag, Solid State Commun. 123, 515 (2002). https://doi.org/10.1016/S0038-1098(02)00426-X
[23] A. F. Croxall, K. Das Gupta, C. A. Nicoll, M. Thangaraj, H. E. Beere, I. Farrer, D. A. Ritchie, and M. Pepper, Anomalous Coulomb Drag in Electron-Hole Bilayers, Phys. Rev. Lett. 101, 246801 (2008). https://doi.org/10.1103/PhysRevLett.101.246801
[24] C. P. Morath, J. A. Seamons, J. L. Reno, and M. P. Lilly, Density Imbalance Effect on the Coulomb Drag Upturn in an Undoped Electron-Hole Bilayer, Phys. Rev. B 79, 41305 (2009). https://doi.org/10.1103/PhysRevB.79.041305
[25] J. A. Seamons, C. P. Morath, J. L. Reno, and M. P. Lilly, Coulomb Drag in the Exciton Regime in Electron-Hole Bilayers, Phys. Rev. Lett. 102, 26804 (2009). https://doi.org/10.1103/PhysRevLett.102.026804
[26] M. Mo\ifmmode \checks\else š\fiko, V. Cambel, and A. Mo\ifmmode \checks\else š\fiková, Electron-Electron Drag between Parallel Two-Dimensional Gases, Phys. Rev. B 46, 5012 (1992). https://doi.org/10.1103/PhysRevB.46.5012
[27] R. Pillarisetty, H. Noh, E. Tutuc, E. P. De Poortere, K. Lai, D. C. Tsui, and M. Shayegan, Coulomb Drag near the Metal-Insulator Transition in Two Dimensions, Phys. Rev. B 71, 115307 (2005). https://doi.org/10.1103/PhysRevB.71.115307
[28] H. C. Tso, P. Vasilopoulos, and F. M. Peeters, Coulomb Coupling between Spatially Separated Electron and Hole Layers: Generalized Random-Phase Approximation, Phys. Rev. Lett. 70, 2146 (1993). https://doi.org/10.1103/PhysRevLett.70.2146
[29] A.-P. Jauho and H. Smith, Coulomb Drag between Parallel Two-Dimensional Electron Systems, Phys. Rev. B 47, 4420 (1993). https://doi.org/10.1103/PhysRevB.47.4420
[30] H. C. Tso, P. Vasilopoulos, and P. M. Peeters, Coupled Electron-Hole Transport: Generalized Random-Phase Approximation and Density Functional Theory, Surf. Sci. 305, 400 (1994). https://doi.org/10.1016/0039-6028(94)90925-3
[31] R. Pillarisetty, H. Noh, E. Tutuc, E. P. De Poortere, D. C. Tsui, and M. Shayegan, Spin Polarization Dependence of the Coulomb Drag at Large ${r}_{s}$, Phys. Rev. Lett. 94, 16807 (2005). https://doi.org/10.1103/PhysRevLett.94.016807
[32] S. Kim, I. Jo, J. Nah, Z. Yao, S. K. Banerjee, and E. Tutuc, Coulomb Drag of Massless Fermions in Graphene, Phys. Rev. B 83, 161401 (2011). https://doi.org/10.1103/PhysRevB.83.161401
[33] T. Vazifehshenas and T. Salavati-fard, Inelastic Coulomb Scattering Rate within the Finite-Temperature Hubbard Approximation, Phys. Scr. 81, 25701 (2010). https://doi.org/10.1088/0031-8949/81/02/025701
[34] T. Salavati-fard and T. Vazifehshenas, Local Field Correction Effect on Inelastic Coulomb Scattering Lifetime of Two-Dimensional Quasiparticles at Low Temperatures, Phys. B Condens. Matter 406, 1883 (2011). https://doi.org/10.1016/j.physb.2011.02.047