Resol–Vegetable Fibers Composites

$30.00

Resol–Vegetable Fibers Composites

Wei Ni, Lingying Shi

In this chapter, we provide a detailed review on the reinforcement effect of a broad range of vegetable fibers (VFs) in thermosetting phenolic resin (resol type) based composites. The different varieties of VFs, surface modification techniques, processing conditions and their effects on the overall performances (i.e., the strengths and weaknesses), are assessed to advance future studies and applications of natural fiber-reinforced plastic composites.

Keywords
Vegetable Fibers, Natural Fibers, Resol, Phenolic Resins, Thermosets, Composites, Reinforcement

Published online 4/10/2022, 45 pages

Citation: Wei Ni, Lingying Shi, Resol–Vegetable Fibers Composites, Materials Research Foundations, Vol. 122, pp 154-198, 2022

DOI: https://doi.org/10.21741/9781644901854-7

Part of the book on Sustainable Natural Fiber Composites

References
[1] Mohanty, A.K., Vivekanandhan, S., Pin, J.-M., Misra, M.: Composites from renewable and sustainable resources: Challenges and innovations. Science 362(6414), 536-542 (2018). https//doi.org/10.1126/science.aat9072
[2] Dittenber, D.B., GangaRao, H.V.S.: Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing 43(8), 1419-1429 (2012). https://doi.org/10.1016/j.compositesa.2011.11.019
[3] Milanese, A.C., Cioffi, M.O.H., Voorwald, H.J.C.: Thermal and mechanical behaviour of sisal/phenolic composites. Composites Part B: Engineering 43(7), 2843-2850 (2012). https://doi.org/10.1016/j.compositesb.2012.04.048
[4] La Mantia, F.P., Morreale, M.: Green composites: A brief review. Composites Part A: Applied Science and Manufacturing 42(6), 579-588 (2011). https://doi.org/10.1016/j.compositesa.2011.01.017
[5] Koronis, G., Silva, A., Fontul, M.: Green composites: A review of adequate materials for automotive applications. Composites Part B: Engineering 44(1), 120-127 (2013). https://doi.org/10.1016/j.compositesb.2012.07.004
[6] Zuccarello, B., Marannano, G., Mancino, A.: Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers. Compos. Struct. 194, 575-583 (2018). https://doi.org/10.1016/j.compstruct.2018.04.007
[7] Correia, V.C., Santos, S.F., Tonoli, G.H.D., Savastano, H.: 7 – Characterization of vegetable fibers and their application in cementitious composites. In: Harries, K.A., Sharma, B. (eds.) Nonconventional and Vernacular Construction Materials (Second Edition). pp. 141-167. Woodhead Publishing, (2020)
[8] Benaimeche, O., Seghir, N.T., Sadowski, Ł., Mellas, M.: The Utilization of Vegetable Fibers in Cementitious Materials. In: Hashmi, S., Choudhury, I.A. (eds.) Encyclopedia of Renewable and Sustainable Materials. pp. 649-662. Elsevier, Oxford (2020)
[9] Jawaid, M., Sapuan, S.M., Alothman, O.Y.: Green Biocomposites: Manufacturing and Properties, 1st ed. Green Energy and Technology. Springer, Cham, Switzerland (2017)
[10] Sanjay, M.R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., Pradeep, S.: Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Cleaner Prod. 172, 566-581 (2018). https://doi.org/10.1016/j.jclepro.2017.10.101
[11] Zárate, C.N., Aranguren, M.I., Reboredo, M.M.: Resol–vegetable fibers composites. J. Appl. Polym. Sci. 77(8), 1832-1840 (2000). https//doi.org/10.1002/1097-4628(20000822)77:8<1832::aid-app21>3.0.co;2-u
[12] Campilho, R.D.S.G.: Introduction to Natural Fiber Composites, in Natural Fiber Composites (1st ed.), Campilho, R.D.S.G. (Ed.), 1st Ed. ed. Natural Fiber Composites (1st ed.). CRC Press, (2015, pp 1-34)
[13] Ashik, K., Sharma, R.: A Review on Mechanical Properties of Natural Fiber Reinforced Hybrid Polymer Composites. Journal of Minerals and Materials Characterization and Engineering 3, 420-426 (2015). https//doi.org/10.4236/jmmce.2015.35044
[14] Sanjay, M.R., Arpitha, G.R., Naik, L.L., Gopalakrishna, K., Yogesha, B.: Applications of Natural Fibers and Its Composites: An Overview. Natural Resources 7(3), 108-114 (2016).
[15] Bourmaud, A., Beaugrand, J., Shah, D.U., Placet, V., Baley, C.: Towards the design of high-performance plant fibre composites. Prog. Mater Sci. 97, 347-408 (2018). https://doi.org/10.1016/j.pmatsci.2018.05.005
[16] Peças, P., Carvalho, H., Salman, H., Leite, M.: Natural Fibre Composites and Their Applications: A Review. Journal of Composites Science 2(4), 66 (2018).
[17] da Costa Melo, R.Q., Barbosa de Lima, A.G.: Vegetable Fiber-Reinforced Polymer Composites: Fundamentals, Mechanical Properties and Applications. Diffusion Foundations 14, 1-20 (2018). https//doi.org/10.4028/www.scientific.net/DF.14.1
[18] Kerni, L., Singh, S., Patnaik, A., Kumar, N.: A review on natural fiber reinforced composites. Materials Today: Proceedings 28, 1616-1621 (2020). https://doi.org/10.1016/j.matpr.2020.04.851
[19] Zimniewska, M., Wladyka-Przybylak, M.: Natural Fibers for Composite Applications. In: Rana, S., Fangueiro, R. (eds.) Fibrous and Textile Materials for Composite Applications. pp. 171-204. Springer Singapore, Singapore (2016)
[20] da Silva, C.G., de Oliveira, F., Frollini, E.: Sugarcane Bagasse Fibers Treated and Untreated: Performance as Reinforcement in Phenolic-Type Matrices Based on Lignosulfonates. Waste and Biomass Valorization 10(11), 3515-3524 (2019). https//doi.org/10.1007/s12649-018-0365-z
[21] Natural Fiber Composites (NFC) Market Size, Share & Trends Analysis Report By Raw Material, By Matrix, By Technology, By Application, And Segment Forecasts, 2018 – 2024. https://www.grandviewresearch.com/industry-analysis/natural-fiber-composites-market. 12/02/2020
[22] Thakur, V.K., Thakur, M.K.: Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr. Polym. 109, 102-117 (2014). https://doi.org/10.1016/j.carbpol.2014.03.039
[23] CompositesWorld. Natural fiber composites: What’s holding them back?, https://www.compositesworld.com/articles/natural-fiber-composites-whats-holding-them-back (2019).
[24] M.R, S., Siengchin, S., Parameswaranpillai, J., Jawaid, M., Pruncu, C.I., Khan, A.: A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydr. Polym. 207, 108-121 (2019). https://doi.org/10.1016/j.carbpol.2018.11.083
[25] Wikipedia: Phenol formaldehyde resin. https://en.wikipedia.org/wiki/Phenol_formaldehyde_resin#Biodegradation.
[26. Frollini, E., Silva, C.G., Ramires, E.C.: 2 – Phenolic resins as a matrix material in advanced fiber-reinforced polymer (FRP) composites. In: Bai, J. (ed.) Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications. pp. 7-43. Woodhead Publishing, (2013)
[27] Encyclopædia_Britannica: Phenol formaldehyde. https://www.britannica.com/topic/industrial-polymers-468698/Phenol-formaldehyde.
[28] Haupt, R.A., Sellers, T., Jr.: Characterizations of Phenol-Formaldehyde Resol Resins. Ind. Eng. Chem. Res. 33(3), 693-697 (1994). https//doi.org/10.1021/ie00027a030
[29] Mohd, A., Naheed, S., Mohammad, J., Mohammad, N., Mohammed, P., Othman, Y.A.: A Review on Phenolic Resin and its Composites. Current Analytical Chemistry 14(3), 185-197 (2018). https://dx.doi.org/10.2174/1573411013666171003154410
[30] Pilato, L.: Phenolic resins: 100Years and still going strong. React. Funct. Polym. 73(2), 270-277 (2013). https://doi.org/10.1016/j.reactfunctpolym.2012.07.008
[31] Guedes, J., Florentino, W.M., Mulinari, D.R.: Chapter 4 – Thermoplastics Polymers Reinforced with Natural Fibers. In: Thomas, S., Shanks, R., Chandrasekharakurup, S. (eds.) Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems. pp. 55-73. William Andrew Publishing, Boston (2016)
[32] Shah, D.U., Schubel, P.J., Clifford, M.J., Licence, P.: Mechanical Property Characterization of Aligned Plant Yarn Reinforced Thermoset Matrix Composites Manufactured via Vacuum Infusion. Polymer-Plastics Technology and Engineering 53(3), 239-253 (2014). https//doi.org/10.1080/03602559.2013.843710
[33] Asim, M., Jawaid, M., Abdan, K., Ishak, M.R.: Effect of pineapple leaf fibre and kenaf fibre treatment on mechanical performance of phenolic hybrid composites. Fibers and Polymers 18(5), 940-947 (2017). https//doi.org/10.1007/s12221-017-1236-0
[34] Marliana, M.M., Hassan, A., Yuziah, M.Y.N., Khalil, H.P.S.A., Inuwa, I.M., Syakir, M.I., Haafiz, M.K.M.: Flame retardancy, Thermal and mechanical properties of Kenaf fiber reinforced Unsaturated polyester/Phenolic composite. Fibers and Polymers 17(6), 902-909 (2016). https//doi.org/10.1007/s12221-016-5888-y
[35] Thakur, V.K., Singha, A.S.: Evaluation of GREWIA OPTIVA Fibers as Reinforcement in Polymer Biocomposites. Polymer-Plastics Technology and Engineering 49(11), 1101-1107 (2010). https//doi.org/10.1080/03602559.2010.496390
[36] Yu, Y.-L., Huang, X.-A., Yu, W.-J.: High performance of bamboo-based fiber composites from long bamboo fiber bundles and phenolic resins. J. Appl. Polym. Sci. 131(12), 40371 (2014). https//doi.org/10.1002/app.40371
[37] Tang, Q., Fang, L., Guo, W.: Effects of Bamboo Fiber Length and Loading on Mechanical, Thermal and Pulverization Properties of Phenolic Foam Composites. Journal of Bioresources and Bioproducts 4(1), 51-59 (2019). https://doi.org/10.21967/jbb.v4i1.184
[38] Das, M., Chakraborty, D.: Effects of alkalization and fiber loading on the mechanical properties and morphology of bamboo fiber composites. II. Resol matrix. J. Appl. Polym. Sci. 112(1), 447-453 (2009). https//doi.org/10.1002/app.29383
[39] Asim, M., Jawaid, M., Nasir, M., Saba, N.: Effect of Fiber Loadings and Treatment on Dynamic Mechanical, Thermal and Flammability Properties of Pineapple Leaf Fiber and Kenaf Phenolic Composites. Journal of Renewable Materials 6(4), 383-393 (2018).
[40] Mu, Q., Wei, C., Feng, S.: Studies on mechanical properties of sisal fiber/phenol formaldehyde resin in-situ composites. Polym. Compos. 30(2), 131-137 (2009). https://doi.org/10.1002/pc.20529
[41] da Silva, C.G., Frollini, E.: Unburned Sugarcane Bagasse: Bio-based Phenolic thermoset Composites as an Alternative for the Management of this Agrowaste. J. Polym. Environ. 28(12), 3201-3210 (2020). https//doi.org/10.1007/s10924-020-01848-y
[42] Miao, C., Hamad, W.Y.: Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5), 2221-2262 (2013). https//doi.org/10.1007/s10570-013-0007-3
[43] Joseph, B., K, S.V., Sabu, C., Kalarikkal, N., Thomas, S.: Cellulose nanocomposites: Fabrication and biomedical applications. Journal of Bioresources and Bioproducts 5(4), 223-237 (2020). https://doi.org/10.1016/j.jobab.2020.10.001
[44] Faruk, O., Sain, M.: Preface. In: Faruk, O., Sain, M. (eds.) Biofiber Reinforcements in Composite Materials. pp. xxvii-xxviii. Woodhead Publishing, (2015)
[45] Ighalo, J.O., Adeyanju, C.A., Ogunniyi, S., Adeniyi, A.G., Abdulkareem, S.A.: An empirical review of the recent advances in treatment of natural fibers for reinforced plastic composites. Compos. Interfaces, 28(9), 925-960 (2021). https//doi.org/10.1080/09276440.2020.1826274
[46] Bledzki, A.K., Reihmane, S., Gassan, J.: Properties and modification methods for vegetable fibers for natural fiber composites. J. Appl. Polym. Sci. 59(8), 1329-1336 (1996). https//doi.org/10.1002/(sici)1097-4628(19960222)59:8<1329::aid-app17>3.0.co;2-0
[47] Gusse, A.C., Miller, P.D., Volk, T.J.: White-Rot Fungi Demonstrate First Biodegradation of Phenolic Resin. Environ. Sci. Technol. 40(13), 4196-4199 (2006). https//doi.org/10.1021/es060408h
[48] Paiva, J.M.F., Frollini, E.: Sugarcane bagasse reinforced phenolic and lignophenolic composites. J. Appl. Polym. Sci. 83(4), 880-888 (2002). https://doi.org/10.1002/app.10085
[49] Sreekala, M.S., Thomas, S., Neelakantan, N.R.: Utilization of short oil palm empty fruit bunch fiber (OPEFB) as a reinforcement in phenol-formaldehyde resins: Studies on mechanical properties. J. Polym. Eng. 16(4), 265-294 (1997).
[50] Rashid, B., Leman, Z., Jawaid, M., Ghazali, M.J., Ishak, M.R.: The mechanical performance of sugar palm fibres (ijuk) reinforced phenolic composites. International Journal of Precision Engineering and Manufacturing 17(8), 1001-1008 (2016). https//doi.org/10.1007/s12541-016-0122-9
[51] Rashid, B., Leman, Z., Jawaid, M., Ghazali, M.J., Ishak, M.R., Abdelgnei, M.A.: Dry sliding wear behavior of untreated and treated sugar palm fiber filled phenolic composites using factorial technique. Wear 380-381, 26-35 (2017). https://doi.org/10.1016/j.wear.2017.03.011
[52] Kashizadeh, R., Esfandeh, M., Rezadoust, A.M., Sahraeian, R.: Physico-mechanical and thermal properties of date palm fiber/phenolic resin composites. Polym. Compos. 40(9), 3657-3665 (2019). https://doi.org/10.1002/pc.25228
[53] Rashid, B., Leman, Z., Jawaid, M., Ghazali, M.J., Ishak, M.R.: Influence of Treatments on the Mechanical and Thermal Properties of Sugar Palm Fibre Reinforced Phenolic Composites. Bioresources 12(1), 1447-1462 (2017).
[54] Rashid, B., Leman, Z., Jawaid, M., Ghazali, M.J., Ishak, M.R.: Dynamic Mechanical Analysis of Treated and Untreated Sugar Palm Fibre-based Phenolic Composites. Bioresources 12(2), 3448-3462 (2017). https//doi.org/10.15376/biores.12.2.3448-3462
[55] Asim, M., Jawaid, M., Khan, A., Asiri, A.M., Malik, M.A.: Effects of Date Palm fibres loading on mechanical, and thermal properties of Date Palm reinforced phenolic composites. Journal of Materials Research and Technology 9(3), 3614-3621 (2020). https://doi.org/10.1016/j.jmrt.2020.01.099
[56] Kamble, Z., Behera, B.K.: Mechanical properties and water absorption characteristics of composites reinforced with cotton fibres recovered from textile waste. Journal of Engineered Fibers and Fabrics 15, doi: 10.1177/1558925020901530 (2020). https//doi.org/10.1177/1558925020901530
[57] Megiatto, J.D., Silva, C.G., Ramires, E.C., Frollini, E.: Thermoset matrix reinforced with sisal fibers: Effect of the cure cycle on the properties of the biobased composite. Polym. Test. 28(8), 793-800 (2009). https://doi.org/10.1016/j.polymertesting.2009.07.001
[58] Barreto, A.C.H., Rosa, D.S., Fechine, P.B.A., Mazzetto, S.E.: Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Composites Part A: Applied Science and Manufacturing 42(5), 492-500 (2011). https://doi.org/10.1016/j.compositesa.2011.01.008
[59] Milanese, A.C., Cioffi, M.O.H., Voorwald, H.J.C.: Flexural behavior of Sisal/Castor oil-Based Polyurethane and Sisal/Phenolic Composites. Materials Research 15, 191-197 (2012).
[60] Wang, S., Wei, C., Liu, H., Gong, Y., Yang, D., Yang, P., Liu, T.: Studies on Mechanical Properties and Morphology of Sisal Pulp Reinforced Phenolic Composites. Adv. Polym. Tech. 35(4), 353-360 (2016). https://doi.org/10.1002/adv.21557
[61] Zhong, L., Fu, S., Li, F., Zhan, H.: Chlorine dioxide treatment of sisal fibre: surface lignin and its influences on fibre surface characteristics and interfacial behaviour of sisal fibre/phenolic resin composites. Bioresources 5(4), 2431-2446 (2010).
[62] Zárate, C.N., Aranguren, M.I., Reboredo, M.M.: Influence of fiber volume fraction and aspect ratio in resol–sisal composites. J. Appl. Polym. Sci. 89(10), 2714-2722 (2003). https//doi.org/10.1002/app.12404
[63] Razera, I.A.T., Frollini, E.: Composites based on jute fibers and phenolic matrices: Properties of fibers and composites. J. Appl. Polym. Sci. 91(2), 1077-1085 (2004). https://doi.org/10.1002/app.13224
[64] Yang, Z., Xian, G., Li, H.: Effects of alternating temperatures and humidity on the moisture absorption and mechanical properties of ramie fiber reinforced phenolic plates. Polym. Compos. 36(9), 1590-1596 (2015). https://doi.org/10.1002/pc.23067
[65] Asim, M., Jawaid, M., Abdan, K., Ishak, M.R.: Dimensional stability of pineapple leaf fibre reinforced phenolic composites. AIP Conference Proceedings 1901(1), 030016 (2017). https//doi.org/10.1063/1.5010481
[66] De, D., Adhikari, B., De, D.: Grass fiber reinforced phenol formaldehyde resin composite: preparation, characterization and evaluation of properties of composite. Polym. Adv. Technol. 18(1), 72-81 (2007). https//doi.org/10.1002/pat.854
[67] Singha, A.S., Thakur, V.K.: Synthesis, Characterization and Study of Pine Needles Reinforced Polymer Matrix Based Composites. J. Reinf. Plast. Compos. 29(5), 700-709 (2010). https//doi.org/10.1177/0731684408100354
[68] Singha, A.S., Thakur, V.K.: Synthesis and Characterization of Pine Needles Reinforced RF Matrix Based Biocomposites. E-Journal of Chemistry 5, 395827 (2008). https//doi.org/10.1155/2008/395827
[69] Joseph, S., Sreekala, M.S., Oommen, Z., Koshy, P., Thomas, S.: A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos. Sci. Technol. 62(14), 1857-1868 (2002). https://doi.org/10.1016/S0266-3538(02)00098-2
[70] Shah, D.U.: Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. J. Mater. Sci. 48(18), 6083-6107 (2013). https//doi.org/10.1007/s10853-013-7458-7
[71] Silva, C.G., Benaducci, D., Frollini, E.: Lyocell and cotton fibers as reinforcements for a thermoset polymer. BioResources 7(1), 78-98 (2012).
[72] Rojo, E., Alonso, M.V., Oliet, M., Del Saz-Orozco, B., Rodriguez, F.: Effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites. Composites Part B: Engineering 68, 185-192 (2015). https://doi.org/10.1016/j.compositesb.2014.08.047
[73] Maya, M.G., George, S.C., Jose, T., Sreekala, M.S., Thomas, S.: Mechanical Properties of Short Sisal Fibre Reinforced Phenol Formaldehyde Eco-Friendly Composites. Polymers from Renewable Resources 8(1), 27-42 (2017). https//doi.org/10.1177/204124791700800103
[74] Nunna, S., Chandra, P.R., Shrivastava, S., Jalan, A.: A review on mechanical behavior of natural fiber based hybrid composites. J. Reinf. Plast. Compos. 31(11), 759-769 (2012). https//doi.org/10.1177/0731684412444325
[75] Cherian, B.M., Leão, A.L., de Morais Chaves, M.R., de Souza, S.F., Sain, M., Narine, S.S.: Environmental ageing studies of chemically modified micro and nanofibril phenol formaldehyde composites. Industrial Crops and Products 49, 471-483 (2013). https://doi.org/10.1016/j.indcrop.2013.04.033
[76] Thakur, V.K., Singha, A.S., Kaur, I., Nagarajarao, R.P., Yang, L.: Studies on Analysis and Characterization of Phenolic Composites Fabricated from Lignocellulosic Fibres. Polym. Polym. Compos. 19(6), 505-512 (2011). https//doi.org/10.1177/096739111101900609
[77] Ramires, E.C., Frollini, E.: Tannin–phenolic resins: Synthesis, characterization, and application as matrix in biobased composites reinforced with sisal fibers. Composites Part B: Engineering 43(7), 2851-2860 (2012). https://doi.org/10.1016/j.compositesb.2012.04.049
[78] Neelamana, I.K., Thomas, S., Parameswaranpillai, J.: Characteristics of banana fibers and banana fiber reinforced phenol formaldehyde composites-macroscale to nanoscale. J. Appl. Polym. Sci. 130(2), 1239-1246 (2013). https://doi.org/10.1002/app.39220
[79] Nakagaito, A.N., Yano, H.: The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl. Phys. A 78(4), 547-552 (2004). https//doi.org/10.1007/s00339-003-2453-5
[80] Nishino, T., Takano, K., Nakamae, K.: Elastic modulus of the crystalline regions of cellulose polymorphs. J. Polym. Sci., Part B: Polym. Phys. 33(11), 1647-1651 (1995). https://doi.org/10.1002/polb.1995.090331110
[81] Nakagaito, A.N., Yano, H.: Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15(2), 323-331 (2008). https//doi.org/10.1007/s10570-007-9168-2
[82] Nakagaito, A.N., Yano, H.: The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15(4), 555-559 (2008). https//doi.org/10.1007/s10570-008-9212-x
[83] Nakagaito, A.N., Yano, H.: Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl. Phys. A 80(1), 155-159 (2005). https//doi.org/10.1007/s00339-003-2225-2
[84] Nakagaito, A.N., Iwamoto, S., Yano, H.: Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl. Phys. A 80(1), 93-97 (2005). https//doi.org/10.1007/s00339-004-2932-3
[85] Rojo, E., Alonso, M.V., Domínguez, J.C., Saz-Orozco, B.D., Oliet, M., Rodriguez, F.: Alkali treatment of viscose cellulosic fibers from eucalyptus wood: Structural, morphological, and thermal analysis. J. Appl. Polym. Sci. 130(3), 2198-2204 (2013). https://doi.org/10.1002/app.39399
[86] Thakur, V.K., Singha, A.S., Kaur, I., Nagarajarao, R.P., Liping, Y.: Silane Functionalization of Saccaharum cilliare Fibers: Thermal, Morphological, and Physicochemical Study. Int. J. Polym. Anal. Charact. 15(7), 397-414 (2010). https//doi.org/10.1080/1023666X.2010.510106
[87] Ma, Y.F., Geng, X., Zhang, X.: Effect of Novel DOPO-g-Coupling Agent Treated Wood Fibers on Properties of Composite Phenolic Foams. Bioresources 13(3), 6187-6200 (2018).
[88] Ma, Y., Geng, X., Zhang, X., Wang, C., Chu, F.: Synthesis of DOPO-g-GPTS modified wood fiber and its effects on the properties of composite phenolic foams. J. Appl. Polym. Sci. 136(2), 46917 (2019). https//doi.org/10.1002/app.46917
[89] Trindade, W.G., Hoareau, W., Razera, I.A.T., Ruggiero, R., Frollini, E., Castellan, A.: Phenolic Thermoset Matrix Reinforced with Sugar Cane Bagasse Fibers: Attempt to Develop a New Fiber Surface Chemical Modification Involving Formation of Quinones Followed by Reaction with Furfuryl Alcohol. Macromolecular Materials and Engineering 289(8), 728-736 (2004). https//doi.org/10.1002/mame.200300320
[90] Thakur, V.K., Singha, A.S., Thakur, M.K.: Graft Copolymerization of Methyl Acrylate onto Cellulosic Biofibers: Synthesis, Characterization and Applications. J. Polym. Environ. 20(1), 164-174 (2012). https//doi.org/10.1007/s10924-011-0372-7
[91] Chauhan, S.R., Patnaik, A., Kaith, B.S., Satapathy, A., Dwivedy, M.: Analysis of Mechanical Behavior of Phenol Formaldehyde Matrix Composites Using Flax-g-Poly (MMA) as Reinforcing Materials. J. Reinf. Plast. Compos. 28(16), 1933-1944 (2009). https//doi.org/10.1177/0731684407089131
[92] Kalia, S., Kaith, B.S., Sharma, S., Bhardwaj, B.: Mechanical properties of flax-g-poly(methyl acrylate) reinforced phenolic composites. Fibers and Polymers 9(4), 416-422 (2008). https//doi.org/10.1007/s12221-008-0067-4
[93] Megiatto Jr., J.D., Oliveira, F.B., Rosa, D.S., Gardrat, C., Castellan, A., Frollini, E.: Renewable Resources as Reinforcement of Polymeric Matrices: Composites Based on Phenolic Thermosets and Chemically Modified Sisal Fibers. Macromolecular Bioscience 7(9‐10), 1121-1131 (2007). https//doi.org/10.1002/mabi.200700083
[94] Kaith, B.S., Kalia, S.: Grafting of Flax Fiber (Linum usitatissimum) with Vinyl Monomers for Enhancement of Properties of Flax-Phenolic Composites. Polym. J. 39(12), 1319-1327 (2007). https//doi.org/10.1295/polymj.PJ2007073
[95] Megiatto Jr., J.D., Silva, C.G., Rosa, D.S., Frollini, E.: Sisal chemically modified with lignins: Correlation between fibers and phenolic composites properties. Polym. Degrad. Stab. 93(6), 1109-1121 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.03.011
[96] Tita, S., Medeiros, R., Tarpani, J., Frollini, E., Tita, V.: Chemical modification of sugarcane bagasse and sisal fibers using hydroxymethylated lignin: Influence on impact strength and water absorption of phenolic composites. J. Compos. Mater. 52(20), 2743-2753 (2018). https//doi.org/10.1177/0021998317753886
[97] Li, C., Wan, J., Pan, Y.-T., Zhao, P.-C., Fan, H., Wang, D.-Y.: Sustainable, Biobased Silicone with Layered Double Hydroxide Hybrid and Their Application in Natural-Fiber Reinforced Phenolic Composites with Enhanced Performance. ACS Sustainable Chem. Eng. 4(6), 3113-3121 (2016). https//doi.org/10.1021/acssuschemeng.6b00134
[98] Megiatto, J.D., Ramires, E.C., Frollini, E.: Phenolic matrices and sisal fibers modified with hydroxy terminated polybutadiene rubber: Impact strength, water absorption, and morphological aspects of thermosets and composites. Industrial Crops and Products 31(1), 178-184 (2010). https://doi.org/10.1016/j.indcrop.2009.10.001
[99] Sreekala, M.S., Kumaran, M.G., Thomas, S.: Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. J. Appl. Polym. Sci. 66(5), 821-835 (1997). https//doi.org/10.1002/(sici)1097-4628(19971031)66:5<821::aid-app2>3.0.co;2-x
[100] Joseph, S., Sreekala, M.S., Thomas, S.: Effect of chemical modifications on the thermal stability and degradation of banana fiber and banana fiber-reinforced phenol formaldehyde composites. J. Appl. Polym. Sci. 110(4), 2305-2314 (2008). https://doi.org/10.1002/app.27648
[101] Lü, J., Zhong, J.-B., Wei, C.: Studies on the Properties of Sisal Fibre/Phenol Formaldehyde Resin In-situ Composites. Research Journal of Textile and Apparel 10(3), 51-58 (2006). https//doi.org/10.1108/RJTA-10-03-2006-B007
[101] Pereira, P.H.F., Rosa, M.d.F., Cioffi, M.O.H., Benini, K.C.C.d.C., Milanese, A.C., Voorwald, H.J.C., Mulinari, D.R.: Vegetal fibers in polymeric composites: a review. Polímeros 25, 9-22 (2015).
[103] Ma, Y., Wang, C., Chu, F.: The structure and properties of eucalyptus fiber/phenolic foam composites under N-β(aminoethyl)-γ-aminopropyl trimethoxy silane pretreatments. Polish Journal of Chemical Technology 19(4), 116-121 (2017). https://doi.org/10.1515/pjct-2017-0077
[104] Kumar, N.M., Reddy, G.V., Naidu, S.V., Rani, T.S., Subha, M.C.S.: Mechanical Properties of Coir/Glass Fiber Phenolic Resin Based Composites. J. Reinf. Plast. Compos. 28(21), 2605-2613 (2009). doi:doi: 10.1177/0731684408093092
[105] Ma, Y.F., Wang, C.P., Chu, F.X.: Effects of Fiber Surface Treatments on the Properties of Wood Fiber-Phenolic Foam Composites. Bioresources 12(3), 4722-4736 (2017). https//doi.org/10.15376/biores.12.3.4722-4736
[106] Rojo, E., Alonso, M.V., Del Saz-Orozco, B., Oliet, M., Rodriguez, F.: Optimization of the silane treatment of cellulosic fibers from eucalyptus wood using response surface methodology. J. Appl. Polym. Sci. 132(26), 42157 (2015). https//doi.org/10.1002/app.42157
[107] Surya Rajan, B., Saibalaji, M.A., Rasool Mohideen, S.: Tribological performance evaluation of epoxy modified phenolic FC reinforced with chemically modified Prosopis juliflora bark fiber. Mater. Res. Express 6(7), 075313 (2019). https//doi.org/10.1088/2053-1591/ab07e6
[108] Rojo, E., Oliet, M., Alonso, M.V., Saz-Orozco, B.D., Rodriguez, F.: Mechanical and interfacial properties of phenolic composites reinforced with treated cellulose fibers. Polymer Engineering & Science 54(10), 2228-2238 (2014). https://doi.org/10.1002/pen.23772
[109] Varada, A.R., Devi, R.R.: Flexural Properties of Ridge Gourd/ Phenolic Composites and Glass/Ridge Gourd/Phenolic Hybrid Composites. J. Compos. Mater. 42(6), 593-601 (2008). https//doi.org/10.1177/0021998307086197
[110] Rajulu, A.V., Devi, R.R.: Compressive Properties of Ridge Gourd/Phenolic Composites and Ridge Gourd/Phenolic/Glass Hybrid Composites. J. Reinf. Plast. Compos. 26(16), 1657-1664 (2007). https//doi.org/10.1177/0731684407081358
[111] Rajulu, A.V., Devi, R.R.: Tensile Properties of Ridge Gourd/Phenolic Composites and Glass/Ridge Gourd/Phenolic Hybrid Composites. J. Reinf. Plast. Compos. 26(6), 629-638 (2007). https//doi.org/10.1177/0731684407075567
[112] Peng, X., Zhong, L., Ren, J., Sun, R.: Laccase and alkali treatments of cellulose fibre: Surface lignin and its influences on fibre surface properties and interfacial behaviour of sisal fibre/phenolic resin composites. Composites Part A: Applied Science and Manufacturing 41(12), 1848-1856 (2010). https://doi.org/10.1016/j.compositesa.2010.09.004
[113] Wu, M., Sun, Z., Zhao, X.: Effects of Different Modification Methods on the Properties of Sisal Fibers. Journal of Natural Fibers 17(7), 1048-1057 (2020). https//doi.org/10.1080/15440478.2018.1554517
[114] Razera, I.A.T., Silva, C.G.d., Almeida, É.V.R.d., Frollini, E.: Treatments of jute fibers aiming at improvement of fiber-phenolic matrix adhesion. Polímeros 24, 417-421 (2014).
[115] Joseph, S., Thomas, S.: Electrical properties of banana fiber-reinforced phenol formaldehyde composites. J. Appl. Polym. Sci. 109(1), 256-263 (2008). https://doi.org/10.1002/app.27452
[116] de Oliveira, F., da Silva, C.G., Ramos, L.A., Frollini, E.: Phenolic and lignosulfonate-based matrices reinforced with untreated and lignosulfonate-treated sisal fibers. Industrial Crops and Products 96, 30-41 (2017). https://doi.org/10.1016/j.indcrop.2016.11.027
[117] da Silva, C.G., Oliveira, F., Ramires, E.C., Castellan, A., Frollini, E.: Composites from a forest biorefinery byproduct and agrofibers: Lignosulfonate-phenolic type matrices reinforced with sisal fibers. Tappi J. 11(9), 41-49 (2012). https//doi.org/10.32964/tj11.9.41
[118] Tita, S.P.S., Paiva, J.M.F.d., Frollini, E.: Resistência ao Impacto e Outras Propriedades de Compósitos Lignocelulósicos: Matrizes Termofixas Fenólicas Reforçadas com Fibras de Bagaço de Cana-de-açúcar. Polímeros 12(4), 228-239 (2002). https//doi.org/10.1590/s0104-14282002000400005
[119] Ramires, E.C., Megiatto Jr., J.D., Gardrat, C., Castellan, A., Frollini, E.: Valorization of an industrial organosolv–sugarcane bagasse lignin: Characterization and use as a matrix in biobased composites reinforced with sisal fibers. Biotechnol. Bioeng. 107(4), 612-621 (2010). https//doi.org/10.1002/bit.22847
[120] Hildebrandt, J., Budzinski, M., Nitzsche, R., Weber, A., Krombholz, A., Thrän, D., Bezama, A.: Assessing the technical and environmental performance of wood-based fiber laminates with lignin based phenolic resin systems. Resources, Conservation and Recycling 141, 455-464 (2019). https://doi.org/10.1016/j.resconrec.2018.10.029
[121] Mahendran, A.R., Wuzella, G., Aust, N., Müller, U., Kandelbauer, A.: Processing and Characterization of Natural Fibre Reinforced Composites Using Lignin Phenolic Binder. Polym. Polym. Compos. 21(4), 199-206 (2013). https//doi.org/10.1177/096739111302100401
[122] Oliveira, F.B., Gardrat, C., Enjalbal, C., Frollini, E., Castellan, A.: Phenol–furfural resins to elaborate composites reinforced with sisal fibers—Molecular analysis of resin and properties of composites. J. Appl. Polym. Sci. 109(4), 2291-2303 (2008). https://doi.org/10.1002/app.28312
[123] Ramires, E.C., Megiatto, J.D., Gardrat, C., Castellan, A., Frollini, E.: Biobased composites from glyoxal–phenolic resins and sisal fibers. Bioresour. Technol. 101(6), 1998-2006 (2010). https://doi.org/10.1016/j.biortech.2009.10.005
[124] Barbosa, V., Ramires, E.C., Razera, I.A.T., Frollini, E.: Biobased composites from tannin–phenolic polymers reinforced with coir fibers. Industrial Crops and Products 32(3), 305-312 (2010). https://doi.org/10.1016/j.indcrop.2010.05.007
[125] Bisanda, E.T.N.: The manufacture of roofing panels from sisal fibre reinforced composites. J. Mater. Process. Technol. 38(1), 369-379 (1993). https://doi.org/10.1016/0924-0136(93)90209-O
[126] Saha, P., Manna, S., Sen, R., Roy, D., Adhikari, B.: Durability of lignocellulosic fibers treated with vegetable oil–phenolic resin. Carbohydr. Polym. 87(2), 1628-1636 (2012). https://doi.org/10.1016/j.carbpol.2011.09.070
[127] Li, X., Cai, Z., Winandy, J.E., Basta, A.H.: Selected properties of particleboard panels manufactured from rice straws of different geometries. Bioresour. Technol. 101(12), 4662-4666 (2010). https://doi.org/10.1016/j.biortech.2010.01.053
[128] Asim, M., Jawaid, M., Paridah, M.T., Saba, N., Nasir, M., Shahroze, R.M.: Dynamic and thermo-mechanical properties of hybridized kenaf/PALF reinforced phenolic composites. Polym. Compos. 40(10), 3814-3822 (2019). https//doi.org/10.1002/pc.25240
[129] Wikipedia: Young’s modulus. https://en.wikipedia.org/wiki/Young’s_modulus.
[130] Wikipedia: Ultimate tensile strength. https://en.wikipedia.org/wiki/Ultimate_tensile_strength.
[131] Yeh, M.-K., Tai, N.-H., Lin, Y.-J.: Mechanical properties of phenolic-based nanocomposites reinforced by multi-walled carbon nanotubes and carbon fibers. Composites Part A: Applied Science and Manufacturing 39(4), 677-684 (2008). https://doi.org/10.1016/j.compositesa.2007.07.010
[132] Indira, K.N., Jyotishkumar, P., Thomas, S.: Thermal stability and degradation of banana fibre/PF composites fabricated by RTM. Fibers and Polymers 13(10), 1319-1325 (2012). https//doi.org/10.1007/s12221-012-1319-x
[133] Joseph, S., Sreekala, M.S., Koshy, P., Thomas, S.: Mechanical properties and water sorption behavior of phenol–formaldehyde hybrid composites reinforced with banana fiber and glass fiber. J. Appl. Polym. Sci. 109(3), 1439-1446 (2008). https://doi.org/10.1002/app.27425
[134] Sreekala, M.S., George, J., Kumaran, M.G., Thomas, S.: The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres. Compos. Sci. Technol. 62(3), 339-353 (2002). https://doi.org/10.1016/S0266-3538(01)00219-6
[135] Arpitha, G.R., Yogesha, B.: An Overview on Mechanical Property Evaluation of Natural Fiber Reinforced Polymers. Materials Today: Proceedings 4(2, Part A), 2755-2760 (2017). https://doi.org/10.1016/j.matpr.2017.02.153
[136] Ticoalu, A., Aravinthan, T., Cardona, F.: A review on the characteristics of gomuti fibre and its composites with thermoset resins. J. Reinf. Plast. Compos. 32(2), 124-136 (2013). doi:doi: 10.1177/0731684412463109
[137] University_of_Washington: Young’s Modulus. https://depts.washington.edu/matseed/mse_resources/Webpage/Biomaterials/young’s_modulus.htm.
[138] Wikipedia: Flexural modulus. https://en.wikipedia.org/wiki/Flexural_modulus.
[139] Asim, M., Jawaid, M., Abdan, K., Ishak, M.R., Alothman, O.Y.: Effect of Hybridization on the Mechanical Properties of Pineapple Leaf Fiber/Kenaf Phenolic Hybrid Composites. Journal of Renewable Materials 6(1), 38-46 (2018).
[140] Trindade, W.G., Hoareau, W., Megiatto, J.D., Razera, I.A.T., Castellan, A., Frollini, E.: Thermoset Phenolic Matrices Reinforced with Unmodified and Surface-Grafted Furfuryl Alcohol Sugar Cane Bagasse and Curaua Fibers:  Properties of Fibers and Composites. Biomacromolecules 6(5), 2485-2496 (2005). https//doi.org/10.1021/bm058006+
[141] Li, C., Fan, H., Wang, D.-Y., Hu, J., Wan, J., Li, B.: Novel silicon-modified phenolic novolacs and their biofiber-reinforced composites: Preparation, characterization and performance. Compos. Sci. Technol. 87, 189-195 (2013). https://doi.org/10.1016/j.compscitech.2013.08.016
[142] Chai, L.-L., Chia, C.-H., Zakaria, S., Nabihah, S., Rasid, R.: Morphology and Properties of Polypropylene Blends Containing Phenolic Resin Produced from the Liquefaction of Empty Fruit Bunch Fibres. Polym. Polym. Compos. 19(8), 669-676 (2011). https//doi.org/10.1177/096739111101900807
[143] Rochardjo, H.S.B., Ridlo, M.: Effects of Fiber Contents on Wear Resistance of Salacca zalacca Frond Fiber Reinforced Phenolic. Mater. Sci. Forum 948, 181-185 (2019). https//doi.org/10.4028/www.scientific.net/MSF.948.181
[144] Omrani, E., Menezes, P.L., Rohatgi, P.K.: State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Engineering Science and Technology, an International Journal 19(2), 717-736 (2016). https://doi.org/10.1016/j.jestch.2015.10.007
[145] Wei, C., Zeng, M., Xiong, X., Liu, H., Luo, K., Liu, T.: Friction properties of sisal fiber/nano-silica reinforced phenol formaldehyde composites. Polym. Compos. 36(3), 433-438 (2015). https://doi.org/10.1002/pc.22957
[146] Ma, Y., Liu, Y., Mao, C., Li, J., Yu, J., Tong, J.: Effects of Structured Fibre on Mechanical and Tribological Properties of Phenolic Composites for Application to Friction Brakes. Polym. Polym. Compos. 26(4), 315-324 (2018). https//doi.org/10.1177/096739111802600406
[147] Xiong, X.-M., Wei, C., Zeng, M.: Study on the Tribological Performance of Sisal Fiber/Polysulfone/Phenolic Composite Friction Material. Advanced Science Letters 4(3), 1108-1112 (2011). https//doi.org/10.1166/asl.2011.1411
[148] Wang, Z.-Y., Wang, J., Cao, F.-H., Ma, Y.-H., Tej, S., Gusztáv, F.: Influence of banana fiber on physicomechanical and tribological properties of phenolic based friction composites. Mater. Res. Express 6(7), 075103 (2019). https//doi.org/10.1088/2053-1591/ab160a
[149] Wei, C., Zeng, M., Xiong, X.M., Zhang, F.A.: Thermal and frictional properties of modified sisal fibre/phenolic resin composites. Plastics, Rubber and Composites 39(2), 61-66 (2010). https//doi.org/10.1179/174328910X12608851832452
[150] Md, J.A., Saibalaji, M.A., B, S.R., Liu, Y.: Characterization of alkaline treated Areva Javanica fiber and its tribological performance in phenolic friction composites. Mater. Res. Express 6(11), 115307 (2019). https//doi.org/10.1088/2053-1591/ab43ad
[151] Lai, J.C., Ani, F.N., Hassan, A.: Water Absorption of Lignocellulosic Phenolic Composites. Polym. Polym. Compos. 16(6), 379-387 (2008). https//doi.org/10.1177/096739110801600605
[152] Joseph, S., Oommen, Z., Thomas, S.: Environmental durability of banana-fiber-reinforced phenol formaldehyde composites. J. Appl. Polym. Sci. 100(3), 2521-2531 (2006). https://doi.org/10.1002/app.23680
[153] Botaro, V.R., Siqueira, G., Megiatto, J.D., Frollini, E.: Sisal fibers treated with NaOH and benzophenonetetracarboxylic dianhydride as reinforcement of phenolic matrix. J. Appl. Polym. Sci. 115(1), 269-276 (2010). https//doi.org/10.1002/app.31113
[154] Ly, E.B., Lette, M.J., Diallo, A.K., Gassama, A., Takasaki, A., Ndiaye, D.: Effect of Reinforcing Fillers and Fibres Treatment on Morphological and Mechanical Properties of Typha-Phenolic Resin Composites. Fibers and Polymers 20(5), 1046-1053 (2019). https//doi.org/10.1007/s12221-019-1087-y
[155] Asim, M., Paridah, M.T., Jawaid, M., Nasir, M., Siakeng, R.: Effects of nanoclay on tensile and flexural properties of pineapple leaf fibre reinforced phenolic composite. International Journal of Recent Technology and Engineering 8(2 Special Issue 4), 473-476 (2019). https//doi.org/10.35940/ijrte.B1092.0782S419
[156] Wang, H., Xian, G., Li, H., Sui, L.: Durability study of a ramie-fiber reinforced phenolic composite subjected to water immersion. Fibers and Polymers 15(5), 1029-1034 (2014). https//doi.org/10.1007/s12221-014-1029-7
[157] Xian, G., Yin, P., Kafodya, I., Li, H., Wang, W.-l.: Durability study of ramie fiber fabric reinforced phenolic plates under humidity conditions. Science and Engineering of Composite Materials 23(1), 45-52 (2016). https://doi.org/10.1515/secm-2014-0018
[158] Singh, B., Gupta, M., Verma, A.: The durability of jute fibre-reinforced phenolic composites. Compos. Sci. Technol. 60(4), 581-589 (2000). https://doi.org/10.1016/S0266-3538(99)00172-4
[159] Azwa, Z.N., Yousif, B.F., Manalo, A.C., Karunasena, W.: A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 47, 424-442 (2013). https://doi.org/10.1016/j.matdes.2012.11.025
[160] Zárate, C.N., Aranguren, M.I., Reboredo, M.M.: Thermal degradation of a phenolic resin, vegetable fibers, and derived composites. J. Appl. Polym. Sci. 107(5), 2977-2985 (2008). https//doi.org/10.1002/app.27455
[161] Asim, M., Paridah, M.T., Saba, N., Jawaid, M., Alothman, O.Y., Nasir, M., Almutairi, Z.: Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites. Compos. Struct. 202, 1330-1338 (2018). https://doi.org/10.1016/j.compstruct.2018.06.068
[162] Ma, Y., Geng, X., Zhang, X., Wang, C., Chu, F.: A novel DOPO-g-KH550 modification wood fibers and its effects on the properties of composite phenolic foams. Polish Journal of Chemical Technology 20(2), 47-53 (2018). https://doi.org/10.2478/pjct-2018-0022
[163] Agrebi, F., Hammami, H., Asim, M., Jawaid, M., Kallel, A.: Impact of silane treatment on the dielectric properties of pineapple leaf/kenaf fiber reinforced phenolic composites. J. Compos. Mater. 54(7), 937-946 (2020). https//doi.org/10.1177/0021998319871351
[164] Agrebi, F., Ghorbel, N., Rashid, B., Kallel, A., Jawaid, M.: Influence of treatments on the dielectric properties of sugar palm fiber reinforced phenolic composites. J. Mol. Liq. 263, 342-348 (2018). https://doi.org/10.1016/j.molliq.2018.04.130
[165] Huang, Y., Lin, Q., Yang, C., Bian, G., Zhang, Y., Yu, W.: Multi-scale characterization of bamboo bonding interfaces with phenol-formaldehyde resin of different molecular weight to study the bonding mechanism. Journal of The Royal Society Interface 17(162), 20190755 (2020). doi:https//doi.org/10.1098/rsif.2019.0755
[166] Wang, X., Deng, Y., Li, Y., Kjoller, K., Roy, A., Wang, S.: In situ identification of the molecular-scale interactions of phenol-formaldehyde resin and wood cell walls using infrared nanospectroscopy. RSC Adv. 6(80), 76318-76324 (2016). https//doi.org/10.1039/C6RA13159J
[167] Lotfi, A., Li, H., Dao, D.V., Prusty, G.: Natural fiber–reinforced composites: A review on material, manufacturing, and machinability. J. Thermoplast. Compos. Mater. 34(2), 238-284 (2021). https//doi.org/10.1177/0892705719844546
[168] Wang, B., Huang, Y., Liu, L.: Effect of solvents on adsorption of phenolic resin onto γ-aminopropyl-triethoxysilane treated silica fiber during resin transfer molding. J. Mater. Sci. 41(4), 1243-1246 (2006). https//doi.org/10.1007/s10853-005-4226-3
[169] Hou, T.H., Bai, J.M., Baughman, J.M.: Processing and Properties of a Phenolic Composite System. J. Reinf. Plast. Compos. 25(5), 495-502 (2006). https//doi.org/10.1177/0731684405058271
[170] Bandyopadhyay-Ghosh, S., Ghosh, S.B., Sain, M.: 19 – The use of biobased nanofibres in composites. In: Faruk, O., Sain, M. (eds.) Biofiber Reinforcements in Composite Materials. pp. 571-647. Woodhead Publishing, (2015)
[171] Miyashiro, D., Hamano, R., Umemura, K.: A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes. Nanomaterials 10(2), 186 (2020).
[172] Hajiha, H., Sain, M.: 17 – The use of sugarcane bagasse fibres as reinforcements in composites. In: Faruk, O., Sain, M. (eds.) Biofiber Reinforcements in Composite Materials. pp. 525-549. Woodhead Publishing, (2015)
[173] Ni, W., Shi, L.: Layer-structured carbonaceous materials for advanced Li-ion and Na-ion batteries: Beyond graphene. J. Vac. Sci. Technol. A 37(4), 040803 (2019). https//doi.org/10.1116/1.5095413
[174] Xu, Q., Peng, Q., Ni, W., Hou, Z., Li, J., Yu, L.: Study of different effect on foaming process of biodegradable bionolle in supercritical carbon dioxide. J. Appl. Polym. Sci. 100(4), 2901-2906 (2006). https//doi.org/10.1002/app.23796
[175] Ni, W., Chen, J., Xu, Q.: Synthesis and characterization of hierarchically porous silica with poplar tissue as template with assistance of supercritical CO2. BioResources 3(2), 461-476 (2008).
[176] Tang, L.-Q., Ni, W., Zhao, H., Xu, Q., Jiao, J.-X.: Preparation of macroporous TiO2 by starch microspheres template with assistance of supercritical CO2. BioResources 4(1), 38-48 (2009).
[177] Ni, W., Xu, Q., Jiao, J.-X., Liu, X., Ren, C.: Hierarchically porous Fe2O3 and Fe2O3/SiO2 composites prepared by cypress tissue template with assistance of supercritical CO2. BioResources 3(3), 774-788 (2008).
[178] de Medeiros, E.S., Agnelli, J.A.M., Joseph, K., de Carvalho, L.H., Mattoso, L.H.C.: Mechanical properties of phenolic composites reinforced with jute/cotton hybrid fabrics. Polym. Compos. 26(1), 1-11 (2005).
[179. Prashanth, B.H.M., Manjunath, T.S., Gouda, P.S.S., Sajjan, S.S., Ramesh, S.: Physico-mechanical response of phenolic resin composites reinforced with jute and banana fibers. AIP Conference Proceedings 2057(1), 020016 (2019). https//doi.org/10.1063/1.5085587
[180] Ramlee, N.A., Jawaid, M., Zainudin, E.S., Yamani, S.A.K.: Tensile, physical and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid composites. Journal of Materials Research and Technology 8(4), 3466-3474 (2019). https://doi.org/10.1016/j.jmrt.2019.06.016
[181] Asim, M., Paridah, M.T., Jawaid, M., Nasir, M., Saba, N.: Physical and flammability properties of kenaf and pineapple leaf fibre hybrid composites. IOP Conference Series: Materials Science and Engineering 368, 012018 (2018). https//doi.org/10.1088/1757-899x/368/1/012018
[182] Asim, M., Jawaid, M., Abdan, K., Ishak, M.R.: The Effect of Silane Treated Fibre Loading on Mechanical Properties of Pineapple Leaf/Kenaf Fibre Filler Phenolic Composites. J. Polym. Environ. 26(4), 1520-1527 (2018). https//doi.org/10.1007/s10924-017-1060-z
[183] Öztürk, B.: Hybrid effect in the mechanical properties of jute/rockwool hybrid fibres reinforced phenol formaldehyde composites. Fibers and Polymers 11(3), 464-473 (2010). https//doi.org/10.1007/s12221-010-0464-3
[184] Bharath, K., Sanjay, M., Jawaid, M., Harisha, Basavarajappa, S., Siengchin, S.: Effect of stacking sequence on properties of coconut leaf sheath/jute/E-glass reinforced phenol formaldehyde hybrid composites. Journal of Industrial Textiles 49(1), 3-32 (2019). https//doi.org/10.1177/1528083718769926
[185] Gao, L., Tang, Q., Chen, Y., Wang, Z., Guo, W.: Investigation of novel lightweight phenolic foam-based composites reinforced with flax fiber mats. Polym. Compos. 39(6), 1809-1817 (2018). https://doi.org/10.1002/pc.24130
[186] Del Saz-Orozco, B., Alonso, M.V., Oliet, M., Domínguez, J.C., Rodriguez, F.: Mechanical, thermal and morphological characterization of cellulose fiber-reinforced phenolic foams. Composites Part B: Engineering 75, 367-372 (2015). https://doi.org/10.1016/j.compositesb.2015.01.049
[187] Tang, Q., Fang, L., Guo, W.: Investigation into Mechanical, Thermal, Flame-Retardant Properties of Wood Fiber Reinforced Ultra-High-Density Fiberboards. Bioresources 12(3), 6749-6762 (2017). https//doi.org/10.15376/biores.12.3.6749-6762
[188] Wikipedia: Bakelite. https://en.wikipedia.org/wiki/Bakelite.
[189] Wikipedia: Novotext. https://en.wikipedia.org/wiki/Novotext.
[190] Pei, W., Shang, W., Liang, C., Jiang, X., Huang, C., Yong, Q.: Using lignin as the precursor to synthesize Fe3O4@lignin composite for preparing electromagnetic wave absorbing lignin-phenol-formaldehyde adhesive. Industrial Crops and Products 154, 112638 (2020). https://doi.org/10.1016/j.indcrop.2020.112638
[191] Ramires, E.C., Megiatto, J.D., Gardrat, C., Castellan, A., Frollini, E.: Biobased composites from glyoxal-phenolic resins and sisal fibers. Bioresour. Technol. 101(6), 1998-2006 (2010). https//doi.org/10.1016/j.biortech.2009.10.005