Durability Against Fatigue and Moisture of Natural Fibre Composite
Bidita Salahuddin, Zhao Sha, Shazed Aziz, Shaikh N. Faisal, Mohammad S. Islam
The development of high-performing engineering materials fabricated using constituents of natural origins is gradually increasing around the globe. In the last few decades, there have been notable research achievements in green materials science through the development of natural fibre reinforced composites (NFCs). The advantages of these materials over synthetic fibre composites support extensive range of potential applications, with added benefits of low environmental impact and inexpensive throughput. Significant effort has gone into improving their performance to extend the capabilities and applications of this materials. Although there is a range of performance limitations which can be seen from NFCs, durability against fatigue and moisture of these materials are amongst the major concerns. This chapter aims to provide an overview of the effects of fatigue and moisture on NFCs by discussing factors, testing technology and protection techniques, and their effect on the durability and performance of the composites.
Keywords
Natural Fibre Polymer Composites (NFCs), Durability, Fatigue, Moisture, Hygroscopicity, Degradation
Published online 4/10/2022, 26 pages
Citation: Bidita Salahuddin, Zhao Sha, Shazed Aziz, Shaikh N. Faisal, Mohammad S. Islam, Durability Against Fatigue and Moisture of Natural Fibre Composite, Materials Research Foundations, Vol. 122, pp 128-153, 2022
DOI: https://doi.org/10.21741/9781644901854-6
Part of the book on Sustainable Natural Fiber Composites
References
[1] V.K. Balla, K.H. Kate, J. Satyavolu, P. Singh, J.G.D. Tadimeti, Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects, Composites Part B: Engineering 174 (2019) 106956. https://doi.org/10.1016/j.compositesb.2019.106956
[2] M. Li, Y. Pu, V.M. Thomas, C.G. Yoo, S. Ozcan, Y. Deng, K. Nelson, A.J. Ragauskas, Recent advancements of plant-based natural fiber–reinforced composites and their applications, Composites Part B: Engineering 200 (2020) 108254. https://doi.org/10.1016/j.compositesb.2020.108254
[3] V. Paul, K. Kanny, G.G. Redhi, Mechanical, thermal and morphological properties of a bio-based composite derived from banana plant source, Composites Part A: Applied Science and Manufacturing 68 (2015) 90-100. https://doi.org/10.1016/j.compositesa.2014.08.032
[4] Y.G. Thyavihalli Girijappa, S. Mavinkere Rangappa, J. Parameswaranpillai, S. Siengchin, Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review, Frontiers in Materials 6(226) (2019). https://doi.org/10.3389/fmats.2019.00226
[5] R.T.S. Freire, J.C. dos Santos, T.H. Panzera, L.J. da Silva, Chapter Five – Recent research and developments in hybrid natural fiber composites, in: A. Khan, S.M. Rangappa, S. Siengchin, M. Jawaid, A.M. Asiri (Eds.), Hybrid Natural Fiber Composites, Woodhead Publishing 2021, pp. 91-112. https://doi.org/10.1016/B978-0-12-819900-8.00008-8
[6] A. Azman, M.R.M. Asyraf, K. Abdan, M. Petru, C. Ruzaidi, S. Sapuan, w.s. wan nik, M. Ishak, I. R.A, S. Mat Jusoh, Natural Fiber Reinforced Composite Material for Product Design: A Short Review, Polymers 13 (2021) 1-24. https://doi.org/10.3390/polym13121917
[7] M. Zwawi, A Review on Natural Fiber Bio-Composites, Surface Modifications and Applications, Molecules 26(2) (2021) 404. https://doi.org/10.3390/molecules26020404
[8] K. Amulya, R. Katakojwala, S. Ramakrishna, S. Venkata Mohan, Low carbon biodegradable polymer matrices for sustainable future, Composites Part C: Open Access 4 (2021) 100111. https://doi.org/10.1016/j.jcomc.2021.100111
[9] S.S.R. Raj, J.E.R. Dhas, C.P. Jesuthanam, Challenges on machining characteristics of natural fiber-reinforced composites – A review, Journal of Reinforced Plastics and Composites 40(1-2) (2020) 41-69. https://doi.org/10.1177/0731684420940773
[10] P. Peças, H. Carvalho, H. Salman, M. Leite, Natural Fibre Composites and Their Applications: A Review, Journal of Composites Science 2(4) (2018) 66. https://doi.org/10.3390/jcs2040066
[11] S. Mat Jusoh, M.M.H.M. Hamdan, H.Y. Sastra, S. Sapuan, Study of Interfacial Adhesion of Tensile Specimens of Arenga Pinnata Fiber Reinforced Composites, Multidiscipline Modeling in Materials and Structures 3 (2007) 213-224. https://doi.org/10.1163/157361107780744360
[12] H.-y. Cheung, M.-p. Ho, K.-t. Lau, F. Cardona, D. Hui, Natural fibre-reinforced composites for bioengineering and environmental engineering applications, Composites Part B: Engineering 40(7) (2009) 655-663. https://doi.org/10.1016/j.compositesb.2009.04.014
[13] M. Muneer Ahmed, H.N. Dhakal, Z.Y. Zhang, A. Barouni, R. Zahari, Enhancement of impact toughness and damage behaviour of natural fibre reinforced composites and their hybrids through novel improvement techniques: A critical review, Composite Structures 259 (2021) 113496. https://doi.org/10.1016/j.compstruct.2020.113496
[14] K.L. Pickering, M.G.A. Efendy, T.M. Le, A review of recent developments in natural fibre composites and their mechanical performance, Composites Part A: Applied Science and Manufacturing 83 (2016) 98-112. https://doi.org/10.1016/j.compositesa.2015.08.038
[15] P.J. Herrera-Franco, A. Valadez-González, Mechanical properties of continuous natural fibre-reinforced polymer composites, Composites Part A: Applied Science and Manufacturing 35(3) (2004) 339-345. https://doi.org/10.1016/j.compositesa.2003.09.012
[16] M.-P. Ho, H. Wang, J.-H. Lee, C.-k. Ho, K.-t. Lau, J. Leng, D. Hui, Critical factors on manufacturing processes of natural fibre composites, Composites Part B: Engineering 43(8) (2012) 3549-3562. https://doi.org/10.1016/j.compositesb.2011.10.001
[17] O.I. Okoli, G. Smith, Failure modes of fibre reinforced composites: The effects of strain rate and fibre content, Journal of Materials Science 33 (1998) 5415-5422.
[18] M. Alhijazi, B. Safaei, Q. Zeeshan, M. Asmael, A. Eyvazian, Z. Qin, Recent Developments in Luffa Natural Fiber Composites: Review, Sustainability 12 (2020) 7683. https://doi.org/10.3390/su12187683
[19] L. Mohammed, M.N.M. Ansari, G. Pua, M. Jawaid, M.S. Islam, A Review on Natural Fiber Reinforced Polymer Composite and Its Applications, International Journal of Polymer Science 2015 (2015) 243947. https://doi.org/10.1155/2015/243947
[20] T. Mokhothu, M. John, Review on hygroscopic aging of cellulose fibres and their biocomposites, Carbohydrate Polymers 131 (2015) 337-354. https://doi.org/10.1016/j.carbpol.2015.06.027
[21] A. Célino, S. Fréour, F. Jacquemin, P. Casari, The hygroscopic behavior of plant fibers: a review, Front Chem 1 (2014) 43-43. https://doi.org/10.3389/fchem.2013.00043
[22] H. Dhakal, Z.Y. Zhang, M. Richardson, Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites, Composites Science and Technology 67 (2007) 1674-1683. https://doi.org/10.1016/j.compscitech.2006.06.019
[23] A. Moudood, A. Rahman, A. Ochsner, M. Islam, G. Francucci, Flax fiber and its composites: An overview of water and moisture absorption impact on their performance, Journal of Reinforced Plastics and Composites 38 (2018). https://doi.org/10.1177/0731684418818893
[24] M.M. Kabir, H. Wang, K.T. Lau, F. Cardona, Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview, Composites Part B: Engineering 43(7) (2012) 2883-2892. https://doi.org/10.1016/j.compositesb.2012.04.053
[25] C.H. Lee, A. Khalina, S.H. Lee, Importance of Interfacial Adhesion Condition on Characterization of Plant-Fiber-Reinforced Polymer Composites: A Review, Polymers 13(3) (2021) 438. https://doi.org/10.3390/polym13030438
[26] O. Daramola, A. Adediran, Mechanical Properties and Water Absorption Behaviour of Treated Pineapple Leaf Fibre Reinforced Polyester Matrix Composites, Leonardo Journal of Sciences (2017) 15-30.
[27] J. Zangenberg, P. Brøndsted, J. Gillespie, Fatigue damage propagation in unidirectional glass fibre reinforced composites made of a non-crimp fabric, Journal of Composite Materials 48 (2013) 2711-2727. https://doi.org/10.1177/0021998313502062
[28] M. Misra, S. Ahankari, A. Mohanty, Creep and fatigue of natural fibre composites, 2011, pp. 289-332. https://doi.org/10.1533/9780857092281.2.289
[29] S. Chikkol Venkateshappa, A. Arifulla, N. Goutham, T. Santhosh, H. Jaeethendra, R. Ravikumar, S. Anil, D. Kumar, J. Ashish, Static bending and impact behaviour of areca fibers composites, Materials & Design 32 (2011) 2469-2475. https://doi.org/10.1016/j.matdes.2010.11.020
[30] J. Fajrin, Compressive Properties of Tropical Natural Fibers Reinforced Epoxy Polymer Composites, Jurnal Ilmu dan Teknologi Kayu Tropis 14 (2016).
[31] T. Raja, A. Palanivel, M. Karthik, M. Sundaraj, Evaluation of mechanical properties of natural fibre reinforced composites – A review, International Journal of Mechanical Engineering and Technology 8 (2017) 915-924.
[32] A. Fotouh, J. Wolodko, M. Lipsett, Fatigue of natural fiber thermoplastic composites, Composites Part B: Engineering 62 (2014) 175–182. https://doi.org/10.1016/j.compositesb.2014.02.023
[33] P. N H, C. K N, Pavan, O. Anand, Fatigue Behaviour and Life Assessment of Jute-epoxy Composites under Tension-Tension Loading, IOP Conference Series: Materials Science and Engineering 225 (2017) 012017. https://doi.org/10.1088/1757-899X/225/1/012017
[34] A. Liber-Kneć, P. Kuźniar, S. Kuciel, Accelerated Fatigue Testing of Biodegradable Composites with Flax Fibers, Journal of Polymers and the Environment 23(3) (2015) 400-406. https://doi.org/10.1007/s10924-015-0719-6
[35] D. Shah, Fatigue characterisation of plant fibre composites for rotor blade applications, JEC Composites Magazine, No. 73: Special JEC Asia 49 (2012) 51-54.
[36] A. Towo, M. Ansell, Fatigue of sisal fibre reinforced composites: Constant-life diagrams and hysteresis loop capture, Composites Science and Technology 68 (2008) 915-924. https://doi.org/10.1016/j.compscitech.2007.08.021
[37] J. Huang, G. Tian, P. Huang, Z. Chen, Flexural Performance of Sisal Fiber Reinforced Foamed Concrete under Static and Fatigue Loading, Materials (Basel) 13(14) (2020) 3098. https://doi.org/10.3390/ma13143098
[38] H.-S. Yang, P. Qiao, M. Wolcott, Flexural Fatigue and Reliability Analysis of Wood Flour/High-density Polyethylene Composites, Journal of Reinforced Plastics and Composites 29 (2010) 1295-1310. https://doi.org/10.1177/0731684409102753
[39] T. Gurunathan, S. Mohanty, S.K. Nayak, A review of the recent developments in biocomposites based on natural fibres and their application perspectives, Composites Part A: Applied Science and Manufacturing 77 (2015) 1-25. https://doi.org/10.1016/j.compositesa.2015.06.007
[40] K.M.F. Hasan, P.G. Horváth, T. Alpár, Potential Natural Fiber Polymeric Nanobiocomposites: A Review, Polymers 12(5) (2020) 1072. https://doi.org/10.3390/polym12051072
[41] Z. Mahboob, H. Bougherara, Fatigue of flax-epoxy and other plant fibre composites: Critical review and analysis, Composites Part A: Applied Science and Manufacturing 109 (2018) 440-462. https://doi.org/10.1016/j.compositesa.2018.03.034
[42] F. Bensadoun, V. Ignaas, A.W. Vuure, Interlaminar fracture toughness of flax-epoxy composites, Journal of Reinforced Plastics and Composites 36 (2016). https://doi.org/10.1177/0731684416672925
[43] 7 – Defects and damage and their role in the failure of polymer composites, in: E.S. Greenhalgh (Ed.), Failure Analysis and Fractography of Polymer Composites, Woodhead Publishing, pp. 356-440, (2009). https://doi.org/10.1533/9781845696818.356
[44] D.U. Shah, Damage in biocomposites: Stiffness evolution of aligned plant fibre composites during monotonic and cyclic fatigue loading, Composites Part A: Applied Science and Manufacturing 83 (2016) 160-168. https://doi.org/10.1016/j.compositesa.2015.09.008
[45] H.A. Aisyah, M.T. Paridah, S.M. Sapuan, R.A. Ilyas, A. Khalina, N.M. Nurazzi, S.H. Lee, C.H. Lee, A Comprehensive Review on Advanced Sustainable Woven Natural Fibre Polymer Composites, Polymers 13(3) (2021) 471. https://doi.org/10.3390/polym13030471
[46] J. Gassan, A study of fibre and interface parameters affecting the fatigue behaviour of natural fibre composites, Composites Part A: Applied Science and Manufacturing 33(3) (2002) 369-374. https://doi.org/10.1016/S1359-835X(01)00116-6
[47] K.-P. Mieck, A. Nechwatal, C. Knobelsdorf, Faser-Matrix-Haftung in Kunststoffverbunden aus thermoplastischer Matrix und Flachs, 2. Die anwendung von funktionalisiertem polypropylen, Die Angewandte Makromolekulare Chemie 225(1) (1995) 37-49. https://doi.org/10.1002/apmc.1995.052250104
[48] J. Beaugrand, S. Guessasma, J.-E. Maigret, Damage mechanisms in defected natural fibers, Scientific Reports 7(1) (2017) 14041. https://doi.org/10.1038/s41598-017-14514-6
[49] V. Mahesh, S. Joladarashi, S.M. Kulkarni, A comprehensive review on material selection for polymer matrix composites subjected to impact load, Defence Technology 17(1) (2021) 257-277. https://doi.org/10.1016/j.dt.2020.04.002
[50] M. Mehdikhani, L. Gorbatikh, I. Verpoest, S. Lomov, Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance, Journal of Composite Materials 53 (2018) 002199831877215. https://doi.org/10.1177/0021998318772152
[51] A. Lotfi, H. Li, D.V. Dao, G. Prusty, Natural fiber–reinforced composites: A review on material, manufacturing, and machinability, Journal of Thermoplastic Composite Materials 34 (2019) 089270571984454. https://doi.org/10.1177/0892705719844546
[52] J. Gassan, Naturfaserverstarkte Kunststoffe-Korrelation zwischen Struktur und Eigenschaften der Fasern und deren Composites, PhD thesis, Institut fur Werkstofftechnik, University of Kassel (1997).
[53] J. Gassan, A. Bledzki, Possibilities to Improve the Properties of Natural Fiber Reinforced Plastics by Fiber Modification – Jute Polypropylene Composites –, Applied Composite Materials 7 (2000) 373-385. https://doi.org/10.1023/A:1026542208108
[54] N. Chand and M. Fahim (Editors), Tribology of Natural Fiber Polymer Composites, Woodhead Publishing. p. 1-58, (2008). https://doi.org/10.1533/9781845695057.1
[55] S. Amiandamhen, M. Meincken, L. Tyhoda, Natural Fibre Modification and Its Influence on Fibre-matrix Interfacial Properties in Biocomposite Materials, 2020. https://doi.org/10.1007/s12221-020-9362-5
[56] K.M.F. Hasan, P.G. Horváth, Z. Kóczán, T. Alpár, Thermo-mechanical properties of pretreated coir fiber and fibrous chips reinforced multilayered composites, Scientific Reports 11(1) (2021) 3618. https://doi.org/10.1038/s41598-021-83140-0
[57] M. Sorieul, A. Dickson, S.J. Hill, H. Pearson, Plant Fibre: Molecular Structure and Biomechanical Properties, of a Complex Living Material, Influencing Its Deconstruction towards a Biobased Composite, Materials (Basel) 9(8) (2016) 618. https://doi.org/10.3390/ma9080618
[58] V.K. Thakur, M.K. Thakur, Processing and characterization of natural cellulose fibers/thermoset polymer composites, Carbohydrate Polymers 109 (2014) 102-117. https://doi.org/10.1016/j.carbpol.2014.03.039
[59] I. Van de Weyenberg, T. Chi Truong, B. Vangrimde, I. Verpoest, Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment, Composites Part A: Applied Science and Manufacturing 37(9) (2006) 1368-1376. https://doi.org/10.1016/j.compositesa.2005.08.016
[60] C. Hansen, The significance of the surface condition in solutions to the diffusion equation: explaining “anomalous” sigmoidal, Case II, and Super Case II absorption behavior, European Polymer Journal 46 (2010) 651-662. https://doi.org/10.1016/j.eurpolymj.2009.12.008
[61] A. Azizan, M. Johar, S.S. Karam Singh, S. Abdullah, S.S.R. Koloor, M. Petrů, K.J. Wong, M.N. Tamin, An Extended Thickness-Dependent Moisture Absorption Model for Unidirectional Carbon/Epoxy Composites, Polymers 13(3) (2021) 440. https://doi.org/10.3390/polym13030440
[62] W. Wang, M. Sain, P. Cooper, Study of moisture absorption in natural fiber plastic composites, Composites Science and Technology – Compos Sci Technol 66 (2006) 379-386. https://doi.org/10.1016/j.compscitech.2005.07.027
[63] E. Manaila, G. Craciun, D. Ighigeanu, Water Absorption Kinetics in Natural Rubber Composites Reinforced with Natural Fibers Processed by Electron Beam Irradiation, Polymers 12(11) (2020) 2437. https://doi.org/10.3390/polym12112437
[64] N.A. Zulkarnain, Degradability of bamboo fibre reinforced polyester composites, 2014.
[65] Y. Zhou, M. Fan, L. Chen, Interface and bonding mechanisms of plant fibre composites: An overview, Composites Part B: Engineering 101 (2016) 31-45. https://doi.org/10.1016/j.compositesb.2016.06.055
[66] A. Al-Maharma, N. Al-Huniti, Critical Review of the Parameters Affecting the Effectiveness of Moisture Absorption Treatments Used for Natural Composites, 3 (2019) 40. https://doi.org/10.3390/jcs3010027
[67] H.M. Akil, L.W. Cheng, Z.A. Mohd Ishak, A. Abu Bakar, M.A. Abd Rahman, Water absorption study on pultruded jute fibre reinforced unsaturated polyester composites, Composites Science and Technology 69(11) (2009) 1942-1948. https://doi.org/10.1016/j.compscitech.2009.04.014
[68] Z.N. Azwa, B.F. Yousif, A.C. Manalo, W. Karunasena, A review on the degradability of polymeric composites based on natural fibres, Materials & Design 47 (2013) 424-442. https://doi.org/10.1016/j.matdes.2012.11.025
[69] N. Banik, V. Dey, G.R.K. Sastry, An Overview of Lignin & Hemicellulose Effect Upon Biodegradable Bamboo Fiber Composites Due to Moisture, Materials Today: Proceedings 4(2, Part A) (2017) 3222-3232. https://doi.org/10.1016/j.matpr.2017.02.208
[70] O.A.Z. Errajhi, J.R.F. Osborne, M. Richardson, H. Dhakal, Water absorption characteristics of aluminised E-glass fibre reinforced unsaturated polyester composites, Composite Structures 71 (2005) 333-336. https://doi.org/10.1016/j.compstruct.2005.09.008
[71] J. Gassan, A.K. Bledzki, Effect of cyclic moisture absorption desorption on the mechanical properties of silanized jute-epoxy composites, Polymer Composites 20 (1999) 604-611. https://doi.org/10.1002/pc.10383
[72] N. Jauhari, R. Misra, H. Thakur, Natural Fibre Reinforced Composite Laminates – A Review, 2015. https://doi.org/10.1016/j.matpr.2015.07.304
[73] Y. Pan, Z. Zhong, A nonlinear constitutive model of unidirectional natural fiber reinforced composites considering moisture absorption, Journal of the Mechanics and Physics of Solids 69 (2014). https://doi.org/10.1016/j.jmps.2014.04.007
[74] D.N. Saheb, J.P. Jog, Natural fiber polymer composites: A review, Advances in Polymer Technology 18(4) (1999) 351-363. https://doi.org/10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X
[75] H.S. Abdo, R. Abuzade, O. Adekomaya, M.G. Akhil, K.I. Alzebdeh, A.G. Arsha, V. Babaahmadi, A. Balea, A. Bergeret, V. Bermudez, F. Berzin, C.W. Bielawski, K. Bilisik, Á. Blanco, L.G. Blok, R. Brüll, A. Caggiano, A.M.B. da Silva, B.D.S. Deeraj, M. Delgado-Aguilar, D. Devapal, R. Devasia, F.X. Espinach, R. Fangueiro, S. Fathima, D.P. Ferreira, E. Fuente, G. George, W. Gindl-Altmutter, T. Gries, R. Haas, I. Hamerton, P. Huber, I. Improta, J.S. Jayan, K. Joseph, C. Jubsilp, F. Julian, S.V. Kanhere, N.S. Karaduman, Y. Karaduman, K.A. Khalil, H. Lammer, K. Lebelo, M.L. Longana, Z. Lu, S. Magagula, A.R. Mahendran, T. Majozi, V. Manoj, G. Marmol, A.B. Martins, M.J. Mochane, M.L. Mohammed, M. Mohapi, M.C. Monte, P. Mora, T.S. Motsoeneng, P. Mutjé, M. Naeimirad, M.M.A. Nassar, C. Negro, R.E. Neisiany, L. Nele, A.A. Ogale, K. Oksman, H. Oliver-Ortega, B.C. Pai, A. Painuly, F. Pursche, T. Quadflieg, T.P.D. Rajan, R.S. Rajeev, S. Rimdusit, R.M.C. Santana, F. Sarasini, S. Appukuttan, F. Sbardella, J.S. Sefadi, C. Sergi, K.J. Sreejith, M. Sreejith, O. Stolyarov, R.J. Tapper, Q. Tarrés, J. Tirillò, B. Vergnes, R. Wilson, G. Wuzella, Contributors, in: K. Joseph, K. Oksman, G. George, R. Wilson, S. Appukuttan (Eds.), Fiber Reinforced Composites, Woodhead Publishing, pp. xiii-xix, (2021).
[76] H.S. Abdo, M.L. Mohammed, K.A. Khalil, 21 – Fiber-reinforced metal-matrix composites, in: K. Joseph, K. Oksman, G. George, R. Wilson, S. Appukuttan (Eds.), Fiber Reinforced Composites, Woodhead Publishing, pp. 649-667, (2021). https://doi.org/10.1016/B978-0-12-821090-1.00010-7
[77] O. Adekomaya, T. Majozi, 23 – Industrial and biomedical applications of fiber reinforced composites, in: K. Joseph, K. Oksman, G. George, R. Wilson, S. Appukuttan (Eds.), Fiber Reinforced Composites, Woodhead Publishing pp. 753-783, (2021). https://doi.org/10.1016/B978-0-12-821090-1.00004-1
[78] M.G. Akhil, A.G. Arsha, V. Manoj, T.P.D. Rajan, B.C. Pai, P. Huber, T. Gries, 17 – Metal fiber reinforced composites, in: K. Joseph, K. Oksman, G. George, R. Wilson, S. Appukuttan (Eds.), Fiber Reinforced Composites, Woodhead Publishing, pp. 479-513, (2021). https://doi.org/10.1016/B978-0-12-821090-1.00024-7
[79] K.I. Alzebdeh, M.M.A. Nassar, 9 – Polymer blend natural fiber based composites, in: K. Joseph, K. Oksman, G. George, R. Wilson, S. Appukuttan (Eds.), Fiber Reinforced Composites, Woodhead Publishing, pp. 215-239, (2021). https://doi.org/10.1016/B978-0-12-821090-1.00011-9
[80] A. Balea, E. Fuente, M.C. Monte, Á. Blanco, C. Negro, 20 – Fiber reinforced cement based composites, in: K. Joseph, K. Oksman, G. George, R. Wilson, S. Appukuttan (Eds.), Fiber Reinforced Composites, Woodhead Publishing, pp. 597-648, (2021). https://doi.org/10.1016/B978-0-12-821090-1.00019-3
[81] A. Bergeret, 3 – Surface treatments in fiber-reinforced composites, in: K. Joseph, K. Oksman, G. George, R. Wilson, S. Appukuttan (Eds.), Fiber Reinforced Composites, Woodhead Publishing, pp. 47-81, (2021). https://doi.org/10.1016/B978-0-12-821090-1.00020-X
[82] F. Berzin, B. Vergnes, 5 – Thermoplastic natural fiber based composites, in: K. Joseph, K. Oksman, G. George, R. Wilson, S. Appukuttan (Eds.), Fiber Reinforced Composites, Woodhead Publishing, pp. 113-139, (2021). https://doi.org/10.1016/B978-0-12-821090-1.00015-6
[83] K. Bilisik, 18 – Aramid fiber reinforced composites, in: K. Joseph, K. Oksman, G. George, R. Wilson, S. Appukuttan (Eds.), Fiber Reinforced Composites, Woodhead Publishing, pp. 515-559, (2021). https://doi.org/10.1016/B978-0-12-821090-1.00003-X
[84] Front Matter, in: K. Joseph, K. Oksman, G. George, R. Wilson, S. Appukuttan (Eds.), Fiber Reinforced Composites, Woodhead Publishing, pp. i-iii, (2021).
[85] A.M.B. da Silva, A.B. Martins, R.M.C. Santana, 10 – Biodegradability studies of lignocellulosic fiber reinforced composites, in: K. Joseph, K. Oksman, G. George, R. Wilson, S. Appukuttan (Eds.), Fiber Reinforced Composites, Woodhead Publishing, pp. 241-271, (2021). https://doi.org/10.1016/B978-0-12-821090-1.00006-5
[86] R. Devasia, A. Painuly, D. Devapal, K.J. Sreejith, 22 – Continuous fiber reinforced ceramic matrix composites, in: K. Joseph, K. Oksman, G. George, R. Wilson, S. Appukuttan (Eds.), Fiber Reinforced Composites, Woodhead Publishing, pp. 669-751, (2021). https://doi.org/10.1016/B978-0-12-821090-1.00022-3
[87] S. Fathima, B.D.S. Deeraj, S. Appukuttan, K. Joseph, 12 – Carbon fiber and glass fiber reinforced elastomeric composites, in: K. Joseph, K. Oksman, G. George, R. Wilson, S. Appukuttan (Eds.), Fiber Reinforced Composites, Woodhead Publishing, pp. 307-340, (2021). https://doi.org/10.1016/B978-0-12-821090-1.00005-3
[88] J.S. Jayan, S. Appukuttan, R. Wilson, K. Joseph, G. George, K. Oksman, 1 – An introduction to fiber reinforced composite materials, in: K. Joseph, K. Oksman, G. George, R. Wilson, S. Appukuttan (Eds.), Fiber Reinforced Composites, Woodhead Publishing2021, pp. 1-24. https://doi.org/10.1016/B978-0-12-821090-1.00025-9
[89] H. Oliver-Ortega, F. Julian, F.X. Espinach, Q. Tarrés, M. Delgado-Aguilar, P. Mutjé, 6 – Biobased polyamide reinforced with natural fiber composites, in: K. Joseph, K. Oksman, G. George, R. Wilson, S. Appukuttan (Eds.), Fiber Reinforced Composites, Woodhead Publishing, pp. 141-165, (2021). https://doi.org/10.1016/B978-0-12-821090-1.00008-9
[90] M. Sreejith, R.S. Rajeev, 25 – Fiber reinforced composites for aerospace and sports applications, in: K. Joseph, K. Oksman, G. George, R. Wilson, S. Appukuttan (Eds.), Fiber Reinforced Composites, Woodhead Publishing, pp. 821-859, (2021). https://doi.org/10.1016/B978-0-12-821090-1.00023-5
[91] A. Orue, A. Eceiza, C. Peña-Rodriguez, A. Arbelaiz, Water Uptake Behavior and Young Modulus Prediction of Composites Based on Treated Sisal Fibers and Poly(Lactic Acid), Materials (Basel) 9(5) (2016) 400. https://doi.org/10.3390/ma9050400
[92] S. Sanjeevi, V. Shanmugam, S. Kumar, V. Ganesan, G. Sas, D.J. Johnson, M. Shanmugam, A. Ayyanar, K. Naresh, R.E. Neisiany, O. Das, Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites, Scientific Reports 11(1) (2021) 13385. https://doi.org/10.1038/s41598-021-92457-9
[93] P. Benard, E. Kroener, P. Vontobel, A. Kaestner, A. Carminati, Water percolation through the root-soil interface, Advances in Water Resources 95 (2016) 190-198. https://doi.org/10.1016/j.advwatres.2015.09.014
[94] H.N. Dhakal, Z.Y. Zhang, M.O.W. Richardson, Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites, Composites Science and Technology 67(7) (2007) 1674-1683. https://doi.org/10.1016/j.compscitech.2006.06.019
[95] A. Espert, F. Vilaplana, S. Karlsson, Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties, Composites Part A: Applied Science and Manufacturing 35(11) (2004) 1267-1276. https://doi.org/10.1016/j.compositesa.2004.04.004
[96] C.M. Hansen, A. Björkman, The Ultrastructure of Wood from a Solubility Parameter Point of View, 52(4) (1998) 335-344. https://doi.org/10.1515/hfsg.1998.52.4.335
[97] S. Kalia, A. Dufresne, B.M. Cherian, B.S. Kaith, L. Avérous, J. Njuguna, E. Nassiopoulos, Cellulose-Based Bio- and Nanocomposites: A Review, International Journal of Polymer Science 2011 (2011) 837875. https://doi.org/10.1155/2011/837875
[98] N. Sgriccia, M.C. Hawley, M. Misra, Characterization of natural fiber surfaces and natural fiber composites, Composites Part A: Applied Science and Manufacturing 39(10) (2008) 1632-1637. https://doi.org/10.1016/j.compositesa.2008.07.007
[99] N. Soykeabkaew, N. Arimoto, T. Nishino, T. Peijs, All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres, Composites Science and Technology 68(10) (2008) 2201-2207. https://doi.org/10.1016/j.compscitech.2008.03.023
[100] Y. Wang, Q. Wei, S. Wang, W. Chai, Y. Zhang, Structural and water diffusion of poly(acryl amide)/poly(vinyl alcohol) blend films: Experiment and molecular dynamics simulations, Journal of Molecular Graphics and Modelling 71 (2017) 40-49. https://doi.org/10.1016/j.jmgm.2016.11.001
[101] T. Mokhothu, M. John, Bio-based coatings for reducing water sorption in natural fibre reinforced composites, Scientific Reports 7 (2017). https://doi.org/10.1038/s41598-017-13859-2
[102] Index, in: K. Joseph, K. Oksman, G. George, R. Wilson, S. Appukuttan (Eds.), Fiber Reinforced Composites, Woodhead Publishing, pp. 861-883, (2021). https://doi.org/10.1016/B978-0-12-821090-1.09999-3
[103] V. Chaudhary, P. Bajpai, S. Maheshwari, Effect of moisture absorption on the mechanical performance of natural fiber reinforced woven hybrid bio-composites, Journal of Natural Fibers 17 (2018) 1-17. https://doi.org/10.1080/15440478.2018.1469451
[104] J. Sudeepan, A Review of Chemical Treatments on Natural Fibers-Based Hybrid Composites for Engineering Applications, in: K. Kumar, J.P. Davim (Eds.), Composites and Advanced Materials for Industrial Applications, IGI Global, Hershey, PA, USA, 2018, pp. 16-37. https://doi.org/10.4018/978-1-5225-5216-1.ch002
[105] B.P. Chang, A.K. Mohanty, M. Misra, Studies on durability of sustainable biobased composites: a review, RSC Advances 10(31) (2020) 17955-17999. https://doi.org/10.1039/C9RA09554C