Bioinspired Nanomaterials for Supercapacitor Applications

$30.00

Bioinspired Nanomaterials for Supercapacitor Applications

Adhigan Murali, R. Suresh Babu, M. Sakar, Sahariya Priya, R. Vinodh5, K. P. Bhuvana, Senthil A. Gurusamy Thangavelu, M. Abdul Kader

Energy storage devices have acquired great research attention in the fabrication of ultra-high efficient supercapacitors. In order to enhance the electrochemical performance of the supercapacitors, different electrodes have been fabricated using various nanomaterials with precisely controlled morphologies and interfaces. Nevertheless, the low-dimensional nanomaterials still suffer from the factors such as severe re-stacking, non-homogeneous aggregation, and low contacts during the processing and assembly. These bottle-neck problems essentially lead to the hindrance of transport of electrons and/or ions in the energy devices. In this direction, recently, the bioinspired nanomaterials are emerging as the potential candidates to overcome the said disadvantages of the chemically derived low dimensional nanomaterials. The well-aligned or highly oriented bioinspired nanostructures found to effectively promote the transport of electrons, facilitate the ion diffusions through the hierarchical pores and provide the large specific surface area for their interfacial interactions with the surroundings. Moreover, the nanoscale materials can be easily tuned or engineered for their physicochemical properties, thereby they can be potentially used in many device applications. In this context, this chapter is intended to highlight the recent progress in bioinspired nanomaterials towards developing the electrode materials for supercapacitors with the emphasize on the fundamental understandings between their structural properties and electrochemical performances. Finally, it concludes with an outlook on the next generation nanostructured electrodes to design the ultra high-efficient supercapacitors.

Keywords
Bioinspired Nanomaterials, Energy Storage, Supercapacitors, Biomass, Protein Nanotubes, Graphene

Published online 3/25/2022, 34 pages

Citation: Adhigan Murali, R. Suresh Babu, M. Sakar, Sahariya Priya, R. Vinodh5, K. P. Bhuvana, Senthil A. Gurusamy Thangavelu, M. Abdul Kader, Bioinspired Nanomaterials for Supercapacitor Applications, Materials Research Foundations, Vol. 121, pp 141-174, 2022

DOI: https://doi.org/10.21741/9781644901830-5

Part of the book on Bioinspired Nanomaterials for Energy and Environmental Applications

References
[1] J. Yan, Q. Wang, T. Wei and Z. J. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities, Adv. Energy Mater. 4 (2014) 1300816. https://doi.org/10.1002/aenm.201300816
[2] L. M. Dai, D. W. Chang, J. B. Baek and W. Lu, Carbon nanomaterials for advanced energy conversion and storage, Small, 8 (2012)1130-1166. https://doi.org/10.1002/smll.201101594
[3] Y. C. Liu, B. B. Huang, X. X. Lin and Z. L. Xie, Biomass-derived hierarchical porous carbons: boosting the energy density of supercapacitors via an ionothermal approach, J. Mater. Chem. A, 5 (2017) 25090. https://doi.org/10.1039/C7TA90265D
[4] J. P. Holdren, Energy and sustainability, Science 315 (2007) 737. https://doi.org/10.1126/science.1139792
[5] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797-828. https://doi.org/10.1039/C1CS15060J
[6] Y. Huang, J. Liang, Y. Chen, An overview of the applications of graphene-based materials in supercapacitors, Small 8 (2012) 1805-1834. https://doi.org/10.1002/smll.201102635
[7] L. Ji, P. Meduri, V. Agubra, X. Xiao, and M. Alcoutlabi, Graphene-Based Nanocomposites for Energy Storage, Adv. Energy Mater. (2016) 1502159. https://doi.org/10.1002/aenm.201502159
[8] H. Lu, X. S. Zhao, Biomass-derived carbon electrode materials for supercapacitors, Sustainable Energy Fuels 1 (2017) 1265-1281. https://doi.org/10.1039/C7SE00099E
[9] Z. Yu, L. Tetard, L. Zhai and J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy & Environmental Science, 8 (2015) 702-730. https://doi.org/10.1039/C4EE03229B
[10] L. L. Zhang, Y. Gu and X. Zhao, Advanced porous carbon electrodes for electrochemical capacitors, J. Mater. Chem. A, 1(2013) 9395-9408. https://doi.org/10.1039/c3ta11114h
[11] S. Saha, P. Samanta, N. C. Murmu, T. Kuila, A review on the heterostructure nanomaterials for supercapacitor application, J. Energy Storage 17 (2018) 181-202. https://doi.org/10.1016/j.est.2018.03.006
[12] H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-Graphene composite as a high performance photocatalyst, ACS Nano 4 (2010) 380-386. https://doi.org/10.1021/nn901221k
[13] E. Munch, M.E. Launey, D. H. Alsem, E. Saiz, A. P. Tomsia, R.O. Ritchie Tough, Bio-Inspired Hybrid Materials, Science 322 (2008) 1516. https://doi.org/10.1126/science.1164865
[14] C. Tamerler, M. Sarikaya, Molecular biomimitics: Utilizing naturels molecular ways in practical engineering, Acta Biomater 3 (2007) 289. https://doi.org/10.1016/j.actbio.2006.10.009
[15] F. Bonaccorso, L. Colombo, G. H. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff and V. Pellegrini, 2D Materials. Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage Science, 347 (2015)1246501. https://doi.org/10.1126/science.1246501
[16] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56. https://doi.org/10.1038/354056a0
[17] G. Jorio, Dresselhaus, M. S. Dresselhaus, “Carbon Nanotubes: Advanced topics in synthesis, structure and properties”, Springer, New York, (2007). https://doi.org/10.1007/978-3-540-72865-8
[18] S. Iijima, and T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameter, Nature, 363 (1993) 603. https://doi.org/10.1038/363603a0
[19] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Catalytic growth of single-walled manotubes by laser vaporization, Chem. Phys. Lett,. 243 (1995) 49. https://doi.org/10.1016/0009-2614(95)00825-O
[20] P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett., 313, (1999) 91. https://doi.org/10.1016/S0009-2614(99)01029-5
[21] M. Joseyacaman, M. Mikiyoshida, L. Rendon, and J. G. Santiesteban. Catalytic growth of carbon microtubules with fullerene structure, Appl. Phys. Lett., 62 (1993) 657. https://doi.org/10.1063/1.108857
[22] J. Li, and Y. Zhang, A simple purification for single-walled carbon nanotubes, Physica E., 28 (2005) 309. https://doi.org/10.1016/j.physe.2005.03.022
[23] M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties, Phys. Rev. Lett., 84 (2000) 5552. https://doi.org/10.1103/PhysRevLett.84.5552
[24] P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite, Science, 265(1994) 1212. https://doi.org/10.1126/science.265.5176.1212
[25] G. L. Hornyak, J. Dutta, H. F. Tibbals, and A. K. Rao, Introduction to Nanoscience, CRC Press, Taylor and Francis Group, Boca Raton, (2008). https://doi.org/10.1201/b12835
[26] P. M. Ajayan, and O. Z. Zhou, Applications of carbon nanotubes, In Carbon nanotubes, Springer Berlin Heidelberg, pp. 391(2001). https://doi.org/10.1007/3-540-39947-X_14
[27] A.Jorio, G. Dresselhaus and M. S. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Springer-Verlag, Berlin, Heidelberg, (2008). https://doi.org/10.1007/978-3-540-72865-8
[28] R. C. Haddon, Carbon Nanotubes Acc. Chem. Res.,35(2002) 997. https://doi.org/10.1021/ar020259h
[29] P. Singh, S. Campidelli, S. Giordani, D. Bonifazi, A. Biancoa and M. Prato, Organic Functionalisation and Characterisation of Single-Walled Carbon Nanotubes, Chem. Soc. Rev., 38(2009) 2214. https://doi.org/10.1039/b518111a
[30] W. Ranran, J. Sun, L. Gao, and J. Zhang, Base and Acid Treatment of SWCNT-RNA Transparent Conductive Films, ACS nano., 4 (2010) 4890. https://doi.org/10.1021/nn101208m
[31] C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett. 70 (1997) 1480. https://doi.org/10.1063/1.118568
[32] J.N. Barisci, G.G. Wallace, R.H. Baughman, Electrochemical Characterization of Single‐Walled Carbon Nanotube Electrodes, J. Electrochem. Soc. 147 (2000) 4580. https://doi.org/10.1149/1.1394104
[33] S. Shiraishi, H. Kurihara, K. Okabe, D. Hulicova, A. Oya, Electric double layer capacitance of multi-walled carbon nanotubes and B-doping effect, Electrochem. Commun. 4(2002) 593. https://doi.org/10.1016/S1388-2481(02)00382-X
[34] V. Romano, B. Martín-García, S. Bellani, L. Marasco, J. Kumar Panda, R. Oropesa-Nuñez, L. Najafi, A. Esau Del Rio Castillo, M. Prato, E. Mantero, V. Pellegrini, Giovanna D’Angelo, and F. Bonaccorso, Flexible Graphene/Carbon Nanotube Electrochemical Double‐Layer Capacitors with Ultrahigh Areal Performance, Chem Plus Chem, 84 (2019) 882–892. https://doi.org/10.1002/cplu.201900235
[35] J. Gamby, P. L. Taberna, P. Simon, J. F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors J. Power Sources 101 (2001) 109–116. https://doi.org/10.1016/S0378-7753(01)00707-8
[36] L. Permann, M. Lätt, J. Leis, M. Arulepp, Electrical double layer characteristics of nanoporous carbon derived from titanium carbide, Electrochim. Acta 51 (2006) 1274–1281. https://doi.org/10.1016/j.electacta.2005.06.024
[37] R.Shah, X. Zhang and S. Talapatra, Electrochemical double layer capacitor electrodes using aligned carbon nanotubes grown directly on metals, Nanotechnology 20 (2009) 395202. https://doi.org/10.1088/0957-4484/20/39/395202
[38] J. Guo, Y. Yu, L. Sun, Z. Zhang, R. Chai, K. Shi, Y. Zhao, Bio-inspired multicomponent carbon nanotube microfibers from microfluidics for supercapacitor, Chem Eng. J. (2020), 125517. https://doi.org/10.1016/j.cej.2020.125517
[39] (a) G. Xiong, P. He, Z. Lyu, T. Chen, B. Huang, L. Chen & T. S. Fisher, Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors, Nat Commun. 9, (2018) 790; https://doi.org/10.1038/s41467-018-03112-3 (b) Y. Zhou, Y. Zhu, B. Xu, and X. Zhang, Chem. Commun. 55 (2019) 4083-4086. https://doi.org/10.1039/C9CC01277J
[40] T. Chen, L. Dai, Carbon nanomaterials for high-performance supercapacitors. Mater. Today 16 (2013) 272–280. https://doi.org/10.1016/j.mattod.2013.07.002
[41] H. Zhang, G.Cao, Z. Wang, Y. Yang, Z. Shi, and Z. Gu Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano. Lett. 8 (2008) 2664-2668. https://doi.org/10.1021/nl800925j
[42] Y. Shin-Yi, C. Kuo-Hsin, H. Tien , L.Ying-Feng, S. Li , Y. Wang , J. Wang , C. M. Ma , C. Hu, Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. J. Mater. Chem. 21 (2011) 2374–2380. https://doi.org/10.1039/C0JM03199B
[43] A. Kumar, M.R. Maschmann, S. L. Hodson, J. Baur, T. S. Fisher, Carbon nanotube arrays decorated with multi-layer graphene-nanopetals enhance mechanical strength and durability. Carbon 84 (2015) 236–245. https://doi.org/10.1016/j.carbon.2014.11.060
[44] X. Zhao, H. Tian, M. Zhu, K. Tian, J. J. Wang, F. Kang, R. A. Outlaw Carbon nanosheets as the electrode material in supercapacitors. J. Power Sources 194, (2009)1208–1212. https://doi.org/10.1016/j.jpowsour.2009.06.004
[45] L. Jiang, Z. Ren, S. Chen, Q. Zhang, X. Lu, H. Zhang and G. Wan, Bio-derived three-dimensional hierarchical carbon-graphene-TiO2 as electrode for supercapacitors. Sci Rep 8 (2018) 4412. https://doi.org/10.1038/s41598-018-22742-7
[46] J. Xu, Z.Tan, W. Zeng, G. Chen, S. Wu, Y. Zhao, K. Ni, Z. Tao, M. Ikram, H.Ji, Y. Zhu, A Hierarchical Carbon Derived from Sponge‐Templated Activation of Graphene Oxide for High‐Performance Supercapacitor Electrodes. Adv. Mater. 28, (2016) 5222–5228. https://doi.org/10.1002/adma.201600586
[47] Y. Sun, R. B. Sills,X.Hu, Z. Wei Seh, X. Xiao, H. Xu, W. Luo, H. Jin, Y. Xin, T. Li, Z. Zhang, J. Zhou, W. Cai, Y. Huang, and Y. Cui, A Bamboo-Inspired Nanostructure Design for Flexible, Foldable, and Twistable Energy Storage Devices. Nano Lett. 15, (2015) 3899–3906. https://doi.org/10.1021/acs.nanolett.5b00738
[48] A. Langlois, and F. Coeuret, Flow-through and flow-by porous electrodes of nickel foam. I. Material characterization. J Appl. Electrochem. 19, (1989) 43–50. https://doi.org/10.1007/BF01039388
[49] D. H. Jacob, M. Wasala, J. Richie, J. Barron, A. Winchester, S. Ghosh, C. Yang W. Xu, L. Song, S. Kar and S. Talapatra, High Performance Graphene-Based Electrochemical Double Layer Capacitors Using 1-Butyl-1-methylpyrrolidinium tris (pentafluoroethyl) trifluorophosphate Ionic Liquid as an Electrolyte, Electronics, 7(2018), 229. https://doi.org/10.3390/electronics7100229
[50] K. Singh, S. Kumar, K. Agarwal, K. Soni, V. Ramana Gedela, and K. Ghosh, Three-dimensional Graphene with MoS2 Nanohybrid as Potential Energy Storage/Transfer Device, Sci Rep., 7 (2017) 9458. https://doi.org/10.1038/s41598-017-09266-2
[51] B. Senthilkumar, Z. Khan, S. Park, K. Kim, H. Ko and Y. Kim, Highly porous graphitic carbon and Ni2 P2 O7 for a high performance aqueous hybrid supercapacitor. J. Mater. Chem. A. 3 (2015) 21553–21561. https://doi.org/10.1039/C5TA04737D
[52] Q. Liao, N. Li, S. Jin, G. Yang, C.Wang, All-solid-state symmetric supercapacitor based on Co2 P2 O7 nanoparticles on vertically aligned graphene. ACS Nano. 9 (2015) 5310–5317. https://doi.org/10.1021/acsnano.5b00821
[53] D.D. Nguyen, C. Hsiao, T. Su, P. Hsieh, Y. Chen, Y. Chueh, C. Lee and N. Tai. Bioinspired networks consisting of spongy carbon wrapped by graphene sheath for flexible transparent supercapacitors. Commun Chem 2(2019) 137. https://doi.org/10.1038/s42004-019-0238-9
[54] Y. Wang, S. Tao, Y. An, S. Wu and C. Meng, Bio-inspired high performance electrochemical supercapacitors based on conducting polymer modified coral-like monolithic carbon J. Mater. Chem. A, 1 (2013)8876. https://doi.org/10.1039/c3ta11348e
[55] P. Beker and G. Rosenman, Bioinspired nanostructural peptide materials for supercapacitor electrodes J. Mater. Res., 25, (2011) 1661-1666. https://doi.org/10.1557/JMR.2010.0213
[56] P. Beker, I. Koren, N. Amdursky, E. Gazit, G. Rosenman, Bioinspired peptide nanotubes as supercapacitor electrodes J. Mater. Sci. 45 (2010) 6374–6378. https://doi.org/10.1007/s10853-010-4624-z
[57] M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. McRee, and N. Khazanovich, Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 372(1994) 709. https://doi.org/10.1038/372709a0
[58] Y. Boyjoo, Y. Cheng, H. Zhong, H. Tian, J. Pan, V. K. Pareek, S. P. Jiang, J. F. Lamonier, M. Jaroniec and J. Liu, From waste Coco-cola to activated carbons with impressive capabilities for CO2 adsorption and supercapacitors, Carbon, 116 (2017) 490-499. https://doi.org/10.1016/j.carbon.2017.02.030
[59] Q. L. Ma, Y. F. Yu, M. Sindoro, A. G. Fane, R. Wang and H. Zhang, Carbon-Based Functional Materials Derived From Waste for Water Remediation and Energy Storage, Adv. Mater., 29 (2017) 1605361. https://doi.org/10.1002/adma.201605361
[60] Z. Bi, Kong, Y. Cao, G. Sun, F. Su, X. Wei, X. Li, A. Ahmad, L. Xie and C. Chen, Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review, J. Mater. Chem. A, 7 (2019)16028-16045. https://doi.org/10.1039/C9TA04436A
[61] W. F. Chen, S. Iyer, S. Iyer, K. Sasaki, C. H. Wang, Y. M. Zhu, J. T. Muckerman and E. Fujita, Biomass-derived electrocatalytic composites for hydrogen evolution, Energy Environ. Sci., 6 (2013)1818-1826. https://doi.org/10.1039/c3ee40596f
[62] J. Z. Chen, K. L. Fang, Q. Y. Chen, J. L. Xu and C. P. Wong, P. Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors Nano Energy, 53 (2018) 337-344. https://doi.org/10.1016/j.nanoen.2018.08.056
[63] S. J. Song, F. W. Ma, G. Wu, D. Ma, W. D. Geng and J. F. Wan, Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors, J. Mater. Chem. A, 3 (2015)18154-18162. https://doi.org/10.1039/C5TA04721H
[64] J. Wang, P. Nie, B. Ding, S. Y. Dong, X. D. Hao, H. Dou and X. G. Zhang, Biomass derived carbon for energy storage devices, J. Mater. Chem. A, 2017, 5, 2411-2428. https://doi.org/10.1039/C6TA08742F
[65] M. Liu, K. Zhang, M. Si, H. Wang, L. Chai, Y. Shi, Three-dimensional carbon nanosheets derived from micro-morphologically regulated biomass for ultrahigh-performance supercapacitors, Carbon 153 (2019) 707-716. https://doi.org/10.1016/j.carbon.2019.07.060
[66] H. Lu, L. Zhuang, R. Gaddam, X. Sun, C. Xiao, T. Duignan, Z. Zhu, X. Zhao, Microcrystalline cellulose-derived porous carbons with defective sites for electrochemical applications, J. Mater. Chem. 7 (2019) 22579-22587. https://doi.org/10.1039/C9TA05891E
[67] S. Liu, Y. Zhao, B. Zhang, H. Xia, J. Zhou, W. Xie, H. Li, Nano-micro carbon spheres anchored on porous carbon derived from dual-biomass as high rate performance supercapacitor electrodes, J. Power Sources 381 (2018) 116-126. https://doi.org/10.1016/j.jpowsour.2018.02.014
[68] J. Mi, X-R.Wang, R-J.Fan, W-H.Qu, WC.Li, Coconut-shell-based porous carbons with a tunable micro/mesopore ratio for high-performance supercapacitors, Energy Fuels 26 (2012) 5321-9. https://doi.org/10.1021/ef3009234
[69] Y. Li, G. Wang, T. Wei, Z. Fan, P. Yan, Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors, Nano Energy 19 (2016) 165-75. https://doi.org/10.1016/j.nanoen.2015.10.038
[70] W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu, C. Yang, H. Zhang, Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material, J. Mater. Chem. A 3 (2015) 5656-5664. https://doi.org/10.1039/C4TA06620K
[71] Y. Lv, L. Gan, M. Liu, W. Xiong, Z. Xu, D. Zhu, D.S. Wright, A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes, J. Power Sources 209 (2012) 152-157. https://doi.org/10.1016/j.jpowsour.2012.02.089
[72] L. Zhang, T. You, T. Zhou, X. Zhou, F. Xu, Interconnected hierarchical porous carbon from lignin-derived byproducts of bioethanol production for ultra-high performance supercapacitors, ACS Appl. Mater. Inter. 8 (2016) 13918-13925. https://doi.org/10.1021/acsami.6b02774
[73] C. Zhao, Y. Huang, C. Zhao, S. Shao, Z. Zhu, Rose-derived 3D carbon nanosheets for high cyclability and extended voltage supercapacitors, Electrochim. Acta 291 (2018) 287-296. https://doi.org/10.1016/j.electacta.2018.09.136
[74] F. H-h, L. Chen, H. Gao, X. Yu, J. Hou, G. Wang, F. Yu, H. Li, C. Fan, Y-l.Shi, X. Guo, Walnut Shell-derived hierarchical porous carbon with high performances for electrocatalytic hydrogen evolution and symmetry supercapacitors, Int. J. Hydrogen Energ.45 (2020) 443-51. https://doi.org/10.1016/j.ijhydene.2019.10.159
[75] Q. Xiong, Q. Bai, C. Li, D. Li, X. Miao, Y. Shen, H. Uyama, Nitrogen-doped hierarchical porous carbons from used cigarette filters for supercapacitors, J. Taiwan. Inst. Chem. E. 95 (2019) 315-323. https://doi.org/10.1016/j.jtice.2018.07.019
[76] M-S. Wu, L-J. Lyu, J-H. Syu, Copper and nickel hexacyanoferrate nanostructures with graphene-coated stainless steel sheets for electrochemical supercapacitors, Journal of Power Sources 297 (2015) 75-82. https://doi.org/10.1016/j.jpowsour.2015.07.101
[77] J. Chen, K. Huang, S. Liu, Insoluble metal hexacyanoferrates as supercapacitor electrodes, Electrochem. Commun. 10 (2008) 1851–1855. https://doi.org/10.1016/j.elecom.2008.07.046
[78] F. Zhao, Y. Wang, X. Xu, Y. Liu, R. Song, G. Lu, Y. Li, ACSAppl. Mater. Interfaces 6, 11007–11012 (2014). https://doi.org/10.1021/am503375h
[79] A. Safavi, S. H. Kazemi, H. Kazemi, Electrochemically deposited hybrid nickel-cobalt hexacyanoferrate nanostructures for electrochemical applications. Electrochem Acta 56 (2011)9191. https://doi.org/10.1016/j.electacta.2011.07.122
[80] Y. Wang, Y. Yang, X. Zhang, C. Liu, X. Hao, One-step electrodeposition of polyaniline/nickel hexacyanoferrate/sulfonated carbon nanotubes interconnected composite films for supercapacitor, J. Solid State Electrochem.19(2015) 3157-3168. https://doi.org/10.1007/s10008-015-2934-4
[81] R.S. Babu, A.L.F. de Barros, M.A. Maier, D.M.Sampaio, J. Balamurugan, J.H. Lee, Novel polyaniline/manganese hexacyanoferrate nanoparticles on carbon fiber as binder-free electrode for flexible supercapacitors, Compos. Part B Eng. 143 (2018) 141-147. https://doi.org/10.1016/j.compositesb.2018.02.007
[82] M. A. Maier, R.S. Babu, D.M. Sampaio, A.L.F. de Barros, Binder-free polyaniline interconnected metal hexacyanoferrates nanocomposites (Metal = Ni, Co) on carbon fibers for flexible supercapacitors, J. Mater. Sci. Mater. Electron. 28 (2017) 17405-17413. https://doi.org/10.1007/s10854-017-7674-z
[83] G. Wang, L. Zhang and J. Zhang, A Review of Electrode Materials for Electrochemical Supercapacitors, Chem. Soc. Rev., 41 (2012)797–828. https://doi.org/10.1039/C1CS15060J
[84] G. Yu, L. Hu, N. Liu, H. Wang, M. Vosguerichian, Y. Yang, Y. Cui and Z. Bao, Enhancing the Supercapacitor Performance of Graphene/MnO2 Nanostructured Electrodes by Conductive Wrapping, Nano Lett., 11 (2011) 4438–4442. https://doi.org/10.1021/nl2026635
[85] Q. Lu, J. Chen and J. Xiao, Nanostructured Electrodes for High‐Performance Pseudocapacitors, Angew. Chem., Int. Ed., 52 (2013) 1882–1889. https://doi.org/10.1002/anie.201203201
[86] Z. Yu, L. Tetard, L. Zhai and J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ. Sci., 8 (2015) 702–730. https://doi.org/10.1039/C4EE03229B
[87] X. Lu, C. Wang, F. Favier and N. Pinna, Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance, Adv. Energy Mater., 7 (2017)1601301. https://doi.org/10.1002/aenm.201601301
[88] E. Johan ten Elshof, H. Yuan, P. Gonzalez Rodriguez, Two-dimensional metal oxide and metal hydroxide nanosheets: synthesis, controlled assembly and applications in energy conversion and storage. Adv Energy Mater 6 (2016)1600355. https://doi.org/10.1002/aenm.201600355
[89] H. Xia, Y. Shirley Meng, G. Yuan, C. Cui, and L. Luc, A symmetric RuO2/RuO2 supercapacitor operating at 1.6 V by using a neutral aqueous electrolyte. Electrochem Solid-State Lett 15 (2012)A60–A63. https://doi.org/10.1149/2.023204esl
[90] A.Bello, O.O. Fashedemi, J.N. Lekitima, M.Fabiane, D. Dodoo-Arhin, K. I. Ozoemena, Y. Gogotsi, A. T. Charlie Johnson, and N. Manyala High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide. AIP Adv 3 (2013)82118. https://doi.org/10.1063/1.4819270
[91] K. Makgopa, P.M. Ejikeme, C.J. Jafta et al, A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessite-type manganese oxide nanohybrids. J Mater Chem A 3 (2015)3480–3490. https://doi.org/10.1039/C4TA06715K
[92] J. Yan, E. Khoo, A. Sumboja, P. S. Lee, Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 4 (2010) 4247–4255. https://doi.org/10.1021/nn100592d
[93] D. Wei, M.R.J Scherer, C. Bower et al., A nanostructured electrochromic supercapacitor. Nano Lett 12 (2012)1857–1862. https://doi.org/10.1021/nl2042112
[94] N-L.Wu, S-Y. Wang, C-Y. Han et al., Electrochemical capacitor of magnetite in aqueous electrolytes. J Power Sources 113(2003)173–178. https://doi.org/10.1016/S0378-7753(02)00482-2
[95] T.P. Gujar, V.R. Shinde, C.D. Lokhande, S-H. Han, Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J Power Sources 161(2006)1479–1485. https://doi.org/10.1016/j.jpowsour.2006.05.036
[96] S.K. Deb, Opportunities and challenges in science and technology of WO3 for electrochromics and related applications. Sol Energy Mater Sol Cells 92 (2008) 245–258. https://doi.org/10.1016/j.solmat.2007.01.026
[97] G. Zhou, D-W. Wang, P-X. Hou et al., A nanosized Fe2O3 decorated single-walled carbon nanotube membrane as a high-performance flexible anode for lithium ion batteries. J Mater Chem 22(2012)17942. https://doi.org/10.1039/c2jm32893c
[98] S. Trasatti and G. Buzzanca, J. Electroanal. Chem., 29 (1971)l–5. https://doi.org/10.1016/S0022-0728(71)80111-0
[99] S. Kong, K. Cheng, T. Ouyang, Y. Gao, K. Ye, G. Wang and D. Cao, Facile electrodepositing processed of RuO2-graphene nanosheets-CNT composites as a binder-free electrode for electrochemical supercapacitors, Electrochim. Acta, 246 (2017) 433–442. https://doi.org/10.1016/j.electacta.2017.06.019
[100] W. Zhang, H. Lin, H. Kong, H. Lu, Z. Yang and T. Liu, High energy density PbO2/activated carbon asymmetric electrochemical capacitor based on lead dioxide electrode with three-dimensional porous titanium substrate, Int. J. Hydrogen Energy, 39 (2014)17153–17161. https://doi.org/10.1016/j.ijhydene.2014.08.039
[101] S. K. Meher and G. Ranga Rao, Ultralayered Co3O4 for High-Performance Supercapacitor Applications, . Phys. Chem. C 115, (2011)15646–15654. https://doi.org/10.1021/jp201200e
[102] T. Xiong, T. L. Tan, L. Lu, W. S. V. Lee and J. Xue, Adv. Energy Mater., 8 (2018) 1702630. https://doi.org/10.1002/aenm.201702630
[103] Y. Liu, L. Guo, X. Teng, J. Wang, T. Hao, X. He and Z. Chen, High-performance 2.5 V flexible aqueous asymmetric supercapacitors based on K+/Na+-inserted MnO2 nanosheets, Electrochim. Acta, 300 (2019)9–17. https://doi.org/10.1016/j.electacta.2019.01.087
[104] T. Liu, L. Zhang, W. You and J. Yu, Core–Shell Nitrogen‐Doped Carbon Hollow Spheres/Co3O4 Nanosheets as Advanced Electrode for High‐Performance Supercapacitor, Small, 14 (2018)1702407. https://doi.org/10.1002/smll.201702407
[105] G. Saeed, S. Kumar, N. H. Kim and J. H. Lee, Fabrication of 3D graphene-CNTs/α-MoO3 hybrid film as an advance electrode material for asymmetric supercapacitor with excellent energy density and cycling life, Chem. Eng. J., 352 (2018) 268–276. https://doi.org/10.1016/j.cej.2018.07.026
[106] F. Zheng, C. Xi, J. Xu, Y. Yu, W. Yang, P. Hu, Y. Li, Q. Zhen, S. Bashir and J. L. Liu, Facile preparation of WO3 nano-fibers with super large aspect ratio for high performance supercapacitor, J. Alloys Compd., 772 (2019) 933–942. https://doi.org/10.1016/j.jallcom.2018.09.085
[107] X. Yuan, B. Chen, X. Wu, J. Mo, Z. Liu, Z. Hu, z. Liu, c. Zhou, h. Yang and Y. Wu, An Aqueous Asymmetric Supercapacitor Based on Activated Carbon and Tungsten Trioxide Nanowire Electrodes, Chin. J. Chem., 35(2017) 61–66. https://doi.org/10.1002/cjoc.201600212
[108] S.Jiao, T. Li,C. Xiong, C. Tang, A. Dang, H. Li, and T. Zhao, A Facile Method of Preparing the Asymmetric Supercapacitor with Two Electrodes Assembled on a Sheet of Filter Paper, Nanomaterials (Basel). 9 (2019)1338. https://doi.org/10.3390/nano9091338
[109] X. Hong, S. Li, R. Wang and J. Fu, Hierarchical SnO2 nanoclusters wrapped functionalized carbonized cotton cloth for symmetrical supercapacitor, J. Alloys Compd., 775(2019) 15–21. https://doi.org/10.1016/j.jallcom.2018.10.099
[110] D. Wei, M.R.J. Scherer, C.Bower et al A nanostructured electrochromic supercapacitor. Nano Lett 12(2012)1857–1862. https://doi.org/10.1021/nl2042112
[111] S. E. Moosavifard, M. F. El-Kady, M. S. Rahmanifar, R. B. Kaner and M. F. Mousavi, Designing 3D Highly Ordered Nanoporous CuO Electrodes for High-Performance Asymmetric Supercapacitors, ACS Appl. Mater. Interfaces, 7 (2015) 4851–4860. https://doi.org/10.1021/am508816t
[112] J. Chang, W. Lee, R.S.Mane et al Morphology-dependent electrochemical supercapacitor properties of indium oxide. Electrochem Solid-State Lett 11 (2008) A9. https://doi.org/10.1149/1.2805996
[113] V. S. Kumbhar and D. H. Kim, Hierarchical coating of MnO2 nanosheets on ZnCo2O4 nanoflakes for enhanced electrochemical performance of asymmetric supercapacitors, Electrochim. Acta, 271 (2018) 284–296. https://doi.org/10.1016/j.electacta.2018.03.147
[114] C. Chen, S. Wang, X. Luo, W. J. Gao, G. J. Huang, Y. Zeng and Z. H. Zhu, Reduced ZnCo2O4@NiMoO4·H2O heterostructure electrodes with modulating oxygen vacancies for enhanced aqueous asymmetric supercapacitors, J. Power Sources, 409 (2019)112–122. https://doi.org/10.1016/j.jpowsour.2018.10.066
[115] S. C. Sekhar, G. Nagaraju and J. S. Yu, High-performance pouch-type hybrid supercapacitor based on hierarchical NiO-Co3O4-NiO composite nanoarchitectures as an advanced electrode material, Nano Energy, 48(2018) 81–92. https://doi.org/10.1016/j.nanoen.2018.03.037
[116] Z. Li, J. Han, L. Fan and R. Guo, Template-free synthesis of Ni7S6 hollow spheres with mesoporous shells for high performance supercapacitors, Cryst Eng Comm, 17(2015) 1952-1958. https://doi.org/10.1039/C4CE02548B
[117] N. Li, T. Lv, Y. Yao, H. Li, K. Liu and T. Chen, Compact graphene/MoS2 composite films for highly flexible and stretchable all-solid-state supercapacitors, J. Mater. Chem. A, 5(2017) 3267-3273. https://doi.org/10.1039/C6TA10165H
[118] S. Sahoo, R. Mondal, D. J. Late and C. S. Rout, Electrodeposited Nickel Cobalt Manganese based mixed sulfide nanosheets for high performance supercapacitor application, Microporous Mesoporous Mater., 244(2017) 101-108. https://doi.org/10.1016/j.micromeso.2017.02.043
[119] R. Gao, Q. Zhang, F. Soyekwo, C. Lin, R. Lv, Y. Qu, M. Chen, A. Zhu and Q. Liu, Novel amorphous nickel sulfide@CoS double-shelled polyhedral nanocages for supercapacitor electrode materials with superior electrochemical properties, Electrochem. Acta, 237 (2017) 94-104. https://doi.org/10.1016/j.electacta.2017.03.214
[120] S. Chandrasekaran, L. Yao, L. Deng, C.Bowen, Y. Zhang, S. Chen, Z. Lin, F. Peng, P. Zhang, Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem Soc Rev, 48 (2019)4178-4280. https://doi.org/10.1039/C8CS00664D
[121] X. Rui, H. Tan, Q.Yan, Nanostructured metal sulfides for energy storage. Nanoscale, 6 (2014)9889-9924. https://doi.org/10.1039/C4NR03057E
[122] A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5 (2017)12653–12672. https://doi.org/10.1039/C7TA00863E
[123] Y. Shao, F. M. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R. B. Kaner, Design and mechanisms of asymmetric supercapacitors. Chem Rev 118 (2018) 9233−9280. https://doi.org/10.1021/acs.chemrev.8b00252apacitor, Int J Electrochem Sci 11 (2016)10628-10643. https://doi.org/10.20964/2016.12.50
[125] K. Durga Ikkurthi, S. Srinivasa Rao, M. Jagadeesh, Araveeti Eswar Reddy, Tarugu Anitha, Hee-Je Kim, Synthesis of nanostructured metal sulfides via a hydrothermal method and their use as an electrode material for supercapacitors, New J.Chem.
[124] S. Z. Iro, C. Subramani, S.S. Dash, A brief review on electrode materials for superc42 (2018) 19183-19192. https://doi.org/10.1039/C8NJ04358B
[126] K.S. Ryu, K. M. Kim, N.-G. Park, Y. J. Park, and S. H. Chang. Symmetric redox supercapacitor with conductingpolyaniline electrodes. J. Power Sources 103 (2002)305–309. https://doi.org/10.1016/S0378-7753(01)00862-X
[127] A.Rudge, I. Raistrick, S. Gottesfeld, and J. P. Ferraris. A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors. Electrochim. Acta 39 (1994)273–287. https://doi.org/10.1016/0013-4686(94)80063-4
[128] Burke, R&D considerations for the performance and application of electrochemical capacitors, Electrochim. Acta53 (2007)1083–1091. https://doi.org/10.1016/j.electacta.2007.01.011
[129] G. L. Wang, L. Zhang, and J. Zhang. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev.41 (2012)797–828. https://doi.org/10.1039/C1CS15060J
[130] E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, and F. Béguin. Supercapacitors based on conductingpolymers/nanotubes composites. J. Power Sources153 (2006)413–418. https://doi.org/10.1016/j.jpowsour.2005.05.030