Bio-Inspired Metal Oxide Nanostructures for Photocatalytic Disinfection

$30.00

Bio-Inspired Metal Oxide Nanostructures for Photocatalytic Disinfection

Muthuraj Arunpandian, Tammineni Venkata Surendra, Norazriena Yusoff, Saravana Vadivu Arunachalam

Interest in photocatalytic disinfection synthesis has increased in recent years with the use of different semiconductor photoreceptors. While much attention has been given to the photocatalytic inactivation process, researchers have shifted to focusing on bio-inspired metal oxide materials for photocatalytic inactivation in recent years. Bio-inspired metal oxide photocatalysts have unique advantages with special emphasis being placed on its highly earth abundance, economic cost of production, eco-friendliness, simple structure and easy to synthesize. Besides that, bio-inspired metal oxide photocatalysts has also been applied extensively for the development of emerging areas, such as environmental as well as energy materials. Today, the development of simple and inexpensive bacterial disinfection technology to addresses the peril of waterborne disease in the emerging areas has grown rapidly. This chapter proposes an analysis of recent research activities that involved the use of bio-inspired photocatalytst for the disinfection of water under light radiation. Various nano-structured photocatalytic materials like titanium dioxide (TiO2), zinc oxide (ZnO), iron oxide (Fe2O3), nickel oxide (NiO), etc., are introduced. Material and various bacterial pathogens, photocatalytic and pathogens disinfection mechanism are described in detail. Finally, the progress of novel bio-inspired photocatalysts for the disinfection applications is discussed at the end of this chapter.

Keywords
Bio-Inactivation, Metal Oxides, Bio-Inspired Materials, Light Irradiation, Microorganisms, Green Synthesis, Disinfection

Published online 3/25/2022, 44 pages

Citation: Muthuraj Arunpandian, Tammineni Venkata Surendra, Norazriena Yusoff, Saravana Vadivu Arunachalam, Bio-Inspired Metal Oxide Nanostructures for Photocatalytic Disinfection, Materials Research Foundations, Vol. 121, pp 39-82, 2022

DOI: https://doi.org/10.21741/9781644901830-2

Part of the book on Bioinspired Nanomaterials for Energy and Environmental Applications

References
[1] Dujaradin E, Mann S, Bioinspired materials chemistry, Adv. Mater.,14 (2002) 1-13. https://doi.org/10.1002/1521-4095(20020104)14:1<13::AID-ADMA13>3.0.CO;2-W
[2] Bhattacharya D, Gupta RK. Nanotechnology and potential of microorganisms, Crit. Rev. Biotechnol., 25 (2005) 199-204. https://doi.org/10.1080/07388550500361994
[3] Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P, The use of microorganisms for the formation of metal nanoparticles and their application, Appl. Microbiol. Biotechnol. 69 (2006) 485-92. https://doi.org/10.1007/s00253-005-0179-3
[4] Thakkar KN, Mhatre SS, Parikh RY, Biological synthesis of metallic nanoparticles, Nanomed: Nanotechnol. Biol. Med. 6 (2010) 257-62. https://doi.org/10.1016/j.nano.2009.07.002
[5] Gade A, Ingle A, Whiteley C, Rai M, Mycogenic metal nanoparticles: progress and applications, Biotechnol. Lett. 32 (2010) 593-600. https://doi.org/10.1007/s10529-009-0197-9
[6] Sharma VK, Yngard RA, Lin Y, Silver nanoparticles: Green synthesis and their antimicrobial activities, Adv. Coll. Interf. Sci. 145 (2009) 83-96. https://doi.org/10.1016/j.cis.2008.09.002
[7] Vijayaraghavan K, Nalini SP, Biotemplates in the green synthesis of silver nanoparticles, Biotechnol. J., 5 (2010) 109-110. https://doi.org/10.1002/biot.201000167
[8] Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M, An evidence-based environmental perspective of manufactured silver nanoparticles in syntheses and applications: A systematic review and critical appraisal of peer reviewed scientific paper, Sci. Total Environ. 408 (2010) 999-1006. https://doi.org/10.1016/j.scitotenv.2009.11.003
[9] Rai M, Yadav A, Gade A, Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv. 27 (2009) 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
[10] Zhang X, Yan S, Tyagi RD, Surampalli RY, Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates, Chemosphere 82 (2011) 489-94. https://doi.org/10.1016/j.chemosphere.2010.10.023
[11] P. Mohammadzadeh Pakdel, S.J. Peighambardoust, Review on recent progress in chitosan-based hydrogels for wastewater treatment application, Carbohydr. Polym., 201 (2018) 264-279. https://doi.org/10.1016/j.carbpol.2018.08.070
[12] C. Zhang, Y. Li, D. Shuai, Y. Shen, D. Wang, Progress and challenges in photocatalytic disinfection of waterborne Viruses: A review to fill current knowledge gaps, Chem. Eng. J., 355 (2019) 399-415. https://doi.org/10.1016/j.cej.2018.08.158
[13] T. Tatarchuk, N. Paliychuk, R.B. Bitra, A. Shyichuk, Mu. Naushad, I. Mironyuk, D. Ziółkowska, Adsorptive removal of toxic methylene blue and acid orange 7 dyes from aqueous medium using cobalt-zinc ferrite nanoadsorbents, Desalin. Water Treat., 150 (2019) 374-385. https://doi.org/10.5004/dwt.2019.23751
[14] T. Cai, Y. Liu, L. Wang, W. Dong, G. Zeng, Recent advances in round-the-clock photocatalytic system: Mechanisms, characterization techniques and applications, J. Photochem. Photobiol. C, 39 (2019) 58-75. https://doi.org/10.1016/j.jphotochemrev.2019.03.002
[15] A. Kumar, G. Sharma, M. Naushad, A.H. Al-Muhtaseb, A. Kumar, I. Hira, T. Ahamad, A.A. Ghfar, F.J. Stadler, Visible photodegradation of ibuprofen and 2,4-D in simulated waste water using sustainable metal free-hybrids based on carbon nitride and biochar, J. Environ. Manage., 231 (2019) 1164-1175. https://doi.org/10.1016/j.jenvman.2018.11.015
[16] R. Djellabi, B. Yang, Y. Wang, X. Cui, X. Zhao, Carbonaceous biomass-titania composites with TiOC bonding bridge for efficient photocatalytic reduction of Cr(VI) under narrow visible light, Chem. Eng. J., 366 (2019) 172- 180. https://doi.org/10.1016/j.cej.2019.02.035
[17] A. Kumar, G. Sharma, M. Naushad, T. Ahamad, R.C. Veses, F.J. Stadler, Highly visible active Ag2CrO4/Ag/BiFeO3@RGO nano-junction for photoreduction of CO2 and photocatalytic removal of ciprofloxacin and bromate ions: The triggering effect of Ag and RGO, Chem. Eng. J., 370 (2019) 148-165. https://doi.org/10.1016/j.cej.2019.03.196
[18] S.T. Akar, T. Akar, Z. Kaynak, B. Anilan, A. Cabuk, Ö. Tabak, T.A. Demir, T. Gedikbey, Removal of copper (II) ions from synthetic solution and real wastewater by the combined action of dried Trametes versicolor cells and montmorillonite, Hydrometallurgy 97 (2009) 98-104. https://doi.org/10.1016/j.hydromet.2009.01.009
[19] A. Kumar, C. Guo, G. Sharma, D. Pathania, M. Naushad, S. Kalia, P. Dhiman, Magnetically recoverable ZrO2/Fe3O4/chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr(vi) and dechlorination & mineralization of 4-chlorophenol from simulated waste water, RSC Advances 6 (2016) 13251-13263. https://doi.org/10.1039/C5RA23372K
[20] M.M. Khin, A.S. Nair, V.J. Babu, R. Murugan, S. Ramakrishna, A review on nanomaterials for environmental remediation, Energy Environ. Sci., 5 (2012) 8075-8109. https://doi.org/10.1039/c2ee21818f
[21] P. Dhiman, J. Chand, A. Kumar, R.K. Kotnala, K.M. Batoo, M. Singh, Synthesis and characterization of novel Fe@ZnO nanosystem, J. Alloys Compd., 578 (2013) 235-241. https://doi.org/10.1016/j.jallcom.2013.05.015
[22] S. Garcia-Segura, E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters, J. Photochem. Photobiol. C, 31 (2017) 1-35. https://doi.org/10.1016/j.jphotochemrev.2017.01.005
[23] Z. He, X. Cheng, G.Z. Kyzas, J. Fu, Pharmaceuticals pollution of aquaculture and its management in China, J. Mol. Liq. 223 (2016) 781-789. https://doi.org/10.1016/j.molliq.2016.09.005
[24] R. Mirzaei, A. Mesdaghinia, S.S. Hoseini, M. Yunesian, Antibiotics in urban wastewater and rivers of Tehran, Iran: Consumption, mass load, occurrence, and ecological risk, Chemosphere 221 (2019) 55-66. https://doi.org/10.1016/j.chemosphere.2018.12.187
[25] A. Kumar, A. Kumar, G. Sharma, M. Naushad, F.J. Stadler, A.A. Ghfar, P. Dhiman, R.V. Saini, Sustainable nanohybrids of magnetic biochar supported g-C3N4/FeVO4 for solar powered degradation of noxious pollutants- Synergism of adsorption, photocatalysis & photo-ozonation, J. Clean. Prod. 165 (2017) 431-451. https://doi.org/10.1016/j.jclepro.2017.07.117
[26] S. Kant, D. Pathania, P. Singh, P. Dhiman, A. Kumar, Removal of malachite green and methylene blue by Fe0.01Ni0.01Zn0.98O/polyacrylamide nanocomposite using coupled adsorption and photocatalysis, Appl. Catal. B, 147 (2014) 340-352. https://doi.org/10.1016/j.apcatb.2013.09.001
[27] S. Sun, R. Zhao, Y. Xie, Y. Liu, Photocatalytic degradation of aflatoxin B1 by activated carbon supported TiO2 catalyst, Food Control, 100 (2019) 183-188. https://doi.org/10.1016/j.foodcont.2019.01.014
[28] Constantin, C., Neagu, M., Bio-inspired nanomaterials – a better option for nanomedicine, Trends Toxicol. Related Sci., 1 (2017) 2-20. https://doi.org/10.1016/j.carbpol.2018.02.012
[29] S.M. Noorbakhsh-Soltani, M.M. Zerafat, S. Sabbaghi, A comparative study of gelatin and starch-based nanocomposite films modified by nano-cellulose and chitosan for food packaging applications, Carbohydrate Polymers 189 (2018) 48-55.
[30] Y. Mu, Y. Fu, J. Li, X. Yu, Y. Li, Y. Wang, X. Wu, K. Zhang, M. Kong, C. Feng, X. Chen, Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug, Carbohydrate Polymers 203 (2019) 10-18. https://doi.org/10.1016/j.carbpol.2018.09.020
[31] F. Hassan Hassan Abdellatif, J. Babin, C. Arnal-Herault, L. David, A. Jonquieres, Grafting cellulose acetate with ionic liquids for biofuel purification membranes : Influence of the anion, Carbohydrate Polymers 196 (2018) 176-186. https://doi.org/10.1016/j.carbpol.2018.05.008
[32] A. Tabriz, M.A. Ur Rehman Alvi, M.B. Khan Niazi, M. Batool, M.F. Bhatti, A.L. Khan, A.U. Khan, T. Jamil, N.M. Ahmad, Quaternized trimethyl functionalized chitosan based antifungal membranes for drinking water treatment, Carbohydrate Polymers 207 (2019) 17-25. https://doi.org/10.1016/j.carbpol.2018.11.066
[33] K. Zhang, P. Tao, Y. Zhang, X. Liao, S. Nie, Highly thermal conductivity of CNF/AlN hybrid films for thermal management of flexible energy storage devices, Carbohydrate Polymers 213 (2019) 228-235. https://doi.org/10.1016/j.carbpol.2019.02.087
[34] H. Du, W. Liu, M. Zhang, C. Si, X. Zhang, B. Li, Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications, Carbohydrate Polymers 209 (2019) 130-144. https://doi.org/10.1016/j.carbpol.2019.01.020
[35] A.H. Jawad, M.A. Nawi, Characterizations of the Photocatalytically-Oxidized Cross-Linked Chitosan-Glutaraldehyde and its Application as a Sub-Layer in the TiO2/CS-GLA Bilayer Photocatalyst System, Journal of Polymers and the Environment 20 (2012) 817-829. https://doi.org/10.1007/s10924-012-0434-5
[36] S. Mallakpour, V. Behranvand, F. Mallakpour, Synthesis of alginate/carbon nanotube/carbon dot/fluoroapatite/TiO2 beads for dye photocatalytic degradation under ultraviolet light, Carbohydrate Polymers (2019) 115138. https://doi.org/10.1016/j.carbpol.2019.115138
[37] M. Malakootian, A. Nasiri, A. Asadipour, E. Kargar, Facile and green synthesis of ZnFe2O4@CMC as a new magnetic nanophotocatalyst for ciprofloxacin degradation from aqueous media, Process Safety and Environmental Protection 129 (2019) 138-151. https://doi.org/10.1016/j.psep.2019.06.022
[38] H. Wang, L. Wang, S. Ye, X. Song, Construction of Bi2WO6–TiO2/starch nanocomposite films for visible-light catalytic degradation of ethylene, Food Hydrocolloids 88 (2019) 92-100. https://doi.org/10.1016/j.foodhyd.2018.09.021
[39] P. Sirajudheen, S. Meenakshi, Facile synthesis of chitosan-La3+-graphite composite and its influence in photocatalytic degradation of methylene blue, International Journal of Biological Macromolecules 133 (2019) 253-261. https://doi.org/10.1016/j.ijbiomac.2019.04.073
[40] I. Dalponte, B.C. de Sousa, A.L. Mathias, R.M.M. Jorge, Formulation and optimization of a novel TiO2/calcium alginate floating photocatalyst, International Journal of Biological Macromolecules 137 (2019) 992-1001. https://doi.org/10.1016/j.ijbiomac.2019.07.020
[41] L. Midya, A.S. Patra, C. Banerjee, A.B. Panda, S. Pal, Novel nanocomposite derived from ZnO/CdS QDs embedded crosslinked chitosan: An efficient photocatalyst and effective antibacterial agent, Journal of Hazardous Materials 369 (2019) 398-407. https://doi.org/10.1016/j.jhazmat.2019.02.022
[42] D.R. Perinelli, L. Fagioli, R. Campana, J.K.W. Lam, W. Baffone, G.F. Palmieri, L. Casettari, G. Bonacucina, Chitosan-based nanosystems and their exploited antimicrobial activity, European Journal of Pharmaceutical Sciences 117 (2018) 8-20. https://doi.org/10.1016/j.ejps.2018.01.046
[43] R.A. Rashid, A.H. Jawad, M.A.B.M. Ishak, N.N. Kasim, FeCl3 -activated carbon developed from coconut leaves: Characterization and application for methylene blue removal, Sains Malaysiana 47 (2018) 603-610. https://doi.org/10.17576/jsm-2018-4703-22
[44] N.S.A. Shukor, A.B. Alias, M.A.M. Ishak, R.R.R. Deris, A.H. Jawad, K.A. Radzun, K. Ismail, Sulfur dioxide gas adsorption study using mixed activated carbon from different biomass, International Journal of Technology 9 (2018) 1121-1131. https://doi.org/10.14716/ijtech.v9i6.2358
[45] X. Xiong, I.K.M. Yu, L. Cao, D.C.W. Tsang, S. Zhang, Y.S. Ok, A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control, Bioresource Technology 246 (2017) 254-270. https://doi.org/10.1016/j.biortech.2017.06.163
[46] K.-W. Jung, K.-H. Ahn, Fabrication of porosity-enhanced MgO/biochar for removal of phosphate from aqueous solution: Application of a novel combined electrochemical modification method, Bioresource Technology 200 (2016)1029-1032. https://doi.org/10.1016/j.biortech.2015.10.008
[47] X. Dong, L. He, H. Hu, N. Liu, S. Gao, Y. Piao, Removal of 17β-estradiol by using highly adsorptive magnetic biochar nanoparticles from aqueous solution, Chemical Engineering Journal 352 (2018) 371-379. https://doi.org/10.1016/j.cej.2018.07.025
[48] B. Kavitha, P.V.L. Reddy, B. Kim, S.S. Lee, S.K. Pandey, K.-H. Kim, Benefits and limitations of biochar amendment in agricultural soils: A review, Journal of Environmental Management 227 (2018) 146-154. https://doi.org/10.1016/j.jenvman.2018.08.082
[49] T. Xu, L. Lou, L. Luo, R. Cao, D. Duan, Y. Chen, Effect of bamboo biochar on pentachlorophenol leachability and bioavailability in agricultural soil, Science of the Total Environment 414 (2012) 727-731. https://doi.org/10.1016/j.scitotenv.2011.11.005
[50] A. Kumar, A. Kumar, G. Sharma, M. Naushad, R.C. Veses, A.A. Ghfar, F.J. Stadler, M.R. Khan, Solar-driven photodegradation of 17-β-estradiol and ciprofloxacin from waste water and CO2 conversion using sustainable coalchar/ polymeric-g-C3N4/RGO metal-free nano-hybrids, New Journal of Chemistry 41 (2017) 10208-10224. https://doi.org/10.1039/C7NJ01580A
[51] K. Sun, K. Ro, M. Guo, J. Novak, H. Mashayekhi, B. Xing, Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars, Bioresource technology 102 (2011) 5757-5763. https://doi.org/10.1016/j.biortech.2011.03.038
[52] R.-k. Xu, S.-c. Xiao, J.-h. Yuan, A.-z. Zhao, Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues, Bioresource technology 102 (2011) 10293-10298. https://doi.org/10.1016/j.biortech.2011.08.089
[53] C.-H. Zhou, X. Xia, C.-X. Lin, D.-S. Tong, J. Beltramini, Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels, Chemical Society Reviews 40 (2011) 5588-5617. https://doi.org/10.1039/c1cs15124j
[54] D.J. Farrelly, C.D. Everard, C.C. Fagan, K.P. McDonnell, Carbon sequestration and the role of biological carbon mitigation: A review, Renewable and Sustainable Energy Reviews 21 (2013) 712-727. https://doi.org/10.1016/j.rser.2012.12.038
[55] M. Azeem, R. Hayat, Q. Hussain, M. Ahmed, G. Pan, M. Ibrahim Tahir, M. Imran, M. Irfan, H. Mehmood ul, Biochar improves soil quality and N2-fixation and reduces net ecosystem CO2 exchange in a dryland legume-cereal cropping system, Soil and Tillage Research 186 (2019) 172-182. https://doi.org/10.1016/j.still.2018.10.007
[56] W.-J. Liu, H. Jiang, H.-Q. Yu, Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material, Chemical Reviews 115 (2015) 12251-12285. https://doi.org/10.1021/acs.chemrev.5b00195
[57] H. Fu, S. Ma, P. Zhao, S. Xu, S. Zhan, Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation: Structure dependence and mechanism, Chemical Engineering Journal 360 (2019) 157-170. https://doi.org/10.1016/j.cej.2018.11.207
[58] S. Wang, Y. Zhou, S. Han, N. Wang, W. Yin, X. Yin, B. Gao, X. Wang, J. Wang, Carboxymethyl cellulose stabilized ZnO/biochar nanocomposites: Enhanced adsorption and inhibited photocatalytic degradation of methylene blue, Chemosphere 197 (2018) 20-25. https://doi.org/10.1016/j.chemosphere.2018.01.022
[59] M. Chen, C. Bao, D. Hu, X. Jin, Q. Huang, Facile and low-cost fabrication of ZnO/biochar nanocomposites from jute fibers for efficient and stable photodegradation of methylene blue dye, Journal of Analytical and Applied Pyrolysis 139 (2019) 319-332. https://doi.org/10.1016/j.jaap.2019.03.009
[60] J. Nelson, E.G. Griffin, ADSORPTION OF INVERTASE, Journal of the American Chemical Society 38 (1916)1109-1115. https://doi.org/10.1021/ja02262a018
[61] J. Schückel, A. Matura, K.-H. Van Pee, One-copper laccase-related enzyme from Marasmius sp.: Purification, characterization and bleaching of textile dyes, Enzyme and microbial technology 48 (2011) 278-284. https://doi.org/10.1016/j.enzmictec.2010.12.002
[62] B. Ismail, S. Nielsen, Invited review: plasmin protease in milk: current knowledge and relevance to dairy industry, Journal of dairy science 93 (2010) 4999-5009. https://doi.org/10.3168/jds.2010-3122
[63] Y. Bai, H. Huang, K. Meng, P. Shi, P. Yang, H. Luo, C. Luo, Y. Feng, W. Zhang, B. Yao, Identification of an acidic α-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry, Food Chemistry 131 (2012) 1473-1478. https://doi.org/10.1016/j.foodchem.2011.10.036
[64] T.K. Hakala, T. Liitiä, A. Suurnäkki, Enzyme-aided alkaline extraction of oligosaccharides and polymeric xylan from hardwood kraft pulp, Carbohydrate polymers 93 (2013) 102-108. https://doi.org/10.1016/j.carbpol.2012.05.013
[65] C.S. Rao, T. Sathish, P. Ravichandra, R. Prakasham, Characterization of thermo-and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications, Process Biochemistry 44 (2009) 262-268. https://doi.org/10.1016/j.procbio.2008.10.022
[66] K. Luo, Q. Yang, J. Yu, X.-m. Li, G.-j. Yang, B.-x. Xie, F. Yang, W. Zheng, G.-m. Zeng, Combined effect of sodium dodecyl sulfate and enzyme on waste activated sludge hydrolysis and acidification, Bioresource technology 102 (2011) 7103-7110. https://doi.org/10.1016/j.biortech.2011.04.023
[67] Z. Tong, Z. Qingxiang, H. Hui, L. Qin, Z. Yi, Removal of toxic phenol and 4-chlorophenol from waste water by horseradish peroxidase, Chemosphere 34 (1997) 893-903. https://doi.org/10.1016/S0045-6535(97)00015-5
[68] L. Cao, Immobilised enzymes: science or art?, Current Opinion in Chemical Biology 9 (2005) 217-226. https://doi.org/10.1016/j.cbpa.2005.02.014
[69] D.T. Mitchell, S.B. Lee, L. Trofin, N. Li, T.K. Nevanen, H. Söderlund, C.R. Martin, Smart nanotubes for bioseparations and biocatalysis, Journal of the American Chemical Society 124 (2002) 11864-11865. https://doi.org/10.1021/ja027247b
[70] J.M. Thomas, J. Yordy, J. Amador, M. Alexander, Rates of dissolution and biodegradation of water-insoluble organic compounds, Applied and Environmental Microbiology 52 (1986) 290-296. https://doi.org/10.1128/aem.52.2.290-296.1986
[71] F.C. Fraga, A. Valério, V.A. de Oliveira, M. Di Luccio, D.b. de Oliveira, Effect of magnetic field on the Eversa® Transform 2.0 enzyme: Enzymatic activity and structural conformation, International journal of biological macromolecules 122 653-658. https://doi.org/10.1016/j.ijbiomac.2018.10.171
[72] M.A. Rao, R. Scelza, F. Acevedo, M.C. Diez, L. Gianfreda, Enzymes as useful tools for environmental purposes, Chemosphere 107 (2014) 145-162. https://doi.org/10.1016/j.chemosphere.2013.12.059
[73] P. Calza, P. Avetta, G. Rubulotta, M. Sangermano, E. Laurenti, TiO2-soybean peroxidase composite materials as a new photocatalytic system, Chemical Engineering Journal 239 (2014) 87-92. https://doi.org/10.1016/j.cej.2013.10.098
[74] X. Chen, W. Lu, T. Xu, N. Li, D. Qin, Z. Zhu, G. Wang, W. Chen, A bio-inspired strategy to enhance the photocatalytic performance of g-C3N4 under solar irradiation by axial coordination with hemin, Applied Catalysis B: Environmental 201 (2017) 518-526. https://doi.org/10.1016/j.apcatb.2016.08.020
[75] M.V. Arularasu, J. Devakumar, T.V. Rajendran, An innovative approach for green synthesis of iron oxide nanoparticles: Characterization and its photocatalytic activity, Polyhedron 156 (2018) 279-290. https://doi.org/10.1016/j.poly.2018.09.036
[76] Huang J. H, Ho W. K, Wang X. C, Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination. Chem Commun., 50 (2014) 4338–4340. https://doi.org/10.1039/c3cc48374f
[77] A. Angel Ezhilarasi, J. Judith Vijaya, L. John Kennedy, K. Kaviyarasu, Green mediated NiO nano-rods using Phoenix dactylifera (Dates) extract for biomedical and environmental applications, Mater. Chem. Phys., 241 (2020) 122419. https://doi.org/10.1016/j.matchemphys.2019.122419
[78] G. Fu, P.S. Vary, C.T. Lin, Anatase TiO2 nanocomposites for antimicrobial coatings, J. Phys. Chem. B 109 (2005) 8889–8898. https://doi.org/10.1021/jp0502196
[79] A. P. L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. K. Sharma, T. Nevecna, R. Zboril, J. Phys. Chem. B 110 (2006) 16248–16253. https://doi.org/10.1021/jp063826h
[80] M. M. K. Motlagh, A. A. Youzbashi, L. Sabaghzadeh, Synthesis and characterization of Nickel hydroxide/oxide nanorods by the complexation-precipitation method, Int. J. Phys. Sci. 6 (2011) 1471–1476.
[81] J. R. Morones, J. L. Elechigierra, A. Caacho, K. Holt, J. B. Kouri, J. T. Ramirez, M. J. Yacaman, The bactericidal effect of silver nanorods, J.Nanotechnol. 16 (2005) 2346–2353. https://doi.org/10.1088/0957-4484/16/10/059
[82] M. Cho, H. Chung, W. Choi, J. Yoon, LinearCorrelationbetween inactivation of E. coli and OH radical concentration in TiO2 Photocatalytic disinfection, Water Res. 38 (2004) 1069–1077. https://doi.org/10.1016/j.watres.2003.10.029
[83] J. Sawai, E. Kawada, F. Kanou, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, Detection of active Oxygen Generated from ceramic powders having Antibacterial Activity, J. Chem. Eng. Jpn. 29 (1996) 627–633. https://doi.org/10.1252/jcej.29.627
[84] J. Du, J. M. Gebicki, Proteins are major initial cell targets of Hydroxyl free radicals, Int. J. Biochem. Cell Biol. 36 (2004) 2334–2343. https://doi.org/10.1016/j.biocel.2004.05.012
[85] Seerangaraj Vasantharaj, Selvam Sathiyavimal, Palanisamy Senthilkumar, Felix LewisOscar, Arivalagan Pugazhendhi, Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberose: Antimicrobial properties and their applications in photocatalytic Degradation, J. Photoch. Photobio. B, 192 (2019) 74–82. https://doi.org/10.1016/j.jphotobiol.2018.12.025
[86] S. C. Sharma, ZnO nano-flowers from Carica papaya milk: Degradation of Alizarin Red-S dye and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus , Optik, 127 (2016) 6498-6512. https://doi.org/10.1016/j.ijleo.2016.04.036
[87] R. Brayner, R. Ferrari Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fievet Toxicological Impact Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium, Nano Lett. 6 (2006) 866-870. https://doi.org/10.1021/nl052326h
[88] G. Fu, P. S. Vary, C. T. Lin, Anatase TiO2 Nanocomposites for Antimicrobial Coatings, J. Phys. Chem. B 109 (2005) 8889-8898. https://doi.org/10.1021/jp0502196
[89] Fahim Hossain, Oscar J. Perales-Perez, Sangchul Hwang, Félix Román, Antimicrobial nanomaterials as water disinfectant: Applications, limitations and future perspectives, Sci. Total Environ., 466–467 (2014) 1047–1059. https://doi.org/10.1016/j.scitotenv.2013.08.009
[90] Markowska-Szczupak. A, Ulfig. K, Morawski. A. W, The application of titanium dioxide for deactivation of bioparticulates: an overview, Catal. Today, 169 (2011) 257–69. https://doi.org/10.1016/j.cattod.2010.11.055
[91] Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, et al., Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications, Water Res., 42(18) (2008) 4591–602. https://doi.org/10.1016/j.watres.2008.08.015
[92] Wei C, Lin WY, Zainal Z, Williams NE, Zhu K, Kruzic AP, et al., Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar assisted water disinfection system, Environ. Sci. Technol. 28 (1994) 934–8. https://doi.org/10.1021/es00054a027
[93] Sun D. D, Tay J. H, Tan K. M, Photocatalytic degradation of E. coli form in water, Water Res., 37 (2003) 3452–62. https://doi.org/10.1016/S0043-1354(03)00228-8
[94] Cho M, Chung H, ChoiW, Yoon J., Different inactivation behavior of MS-2 phase and E. coli in TiO2 photocatalytic disinfection, Appl. Environ. Microbiol., 71(1) (2005) 270–5. https://doi.org/10.1128/AEM.71.1.270-275.2005
[95] Choi H, Antoniou M. G, De la Cruz A. A, Stathatos E, Dionysiou D. D, Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems, Desalination, 202 (2006) 199–206. https://doi.org/10.1016/j.desal.2005.12.055
[96] Liu Y, Li J, Qiu X, Burda C, Bactericidal activity of nitrogen-doped metal oxide nanocrystals and the influence of bacterial extracellular polymeric substances (EPS), J. Photochem. Photobiol. A – Chem. 190 (2007) 94–100. https://doi.org/10.1016/j.jphotochem.2007.03.017
[97] Deckers A. S, Loo S, L’Hermite M. M, Boime N. H, Menguy N, Reynaud C, et al., Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes towards bacteria, Environ. Sci. Technol. 43 (2009) 8423–9. https://doi.org/10.1021/es9016975
[98] Liga M. V, Bryant E. L, Colvin V. L, Li Q, Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment, Water Res., 45 (2011) 535–44. https://doi.org/10.1016/j.watres.2010.09.012
[99] Dimitroula H, Daskalaki V. M, Frontistis Z, Kondarides D, Panagiotopoulou P, Xekoukoulotakis N. P, et al., Solar photocatalysis for the abatement of emerging micro contaminants in wastewater: synthesis, characterization and testing of various TiO2 samples, Appl. Catal. Environ., 117–118 (2012) 283–91. https://doi.org/10.1016/j.apcatb.2012.01.024
[100] El-Sayed R. El-Sayed, Heba K. Abdelhakim, Zainab Zakaria, Extracellular biosynthesis of cobalt ferrite nanoparticles by Monascus purpureusand their antioxidant, anticancer and antimicrobial activities: Yield enhancement by gamma irradiation, Mater. Sci. Eng. C. Mater. Biol. Appl., 107 (2020) 110318. https://doi.org/10.1016/j.msec.2019.110318
[101] Yi Li, Chi Zhang, Danmeng Shuai, Saraschandra Naraginti, Dawei Wang, Wenlong Zhang, Visible-light-driven photocatalytic inactivation of MS2 by metal-free g-C3N4: Virucidal performance and mechanism, Water Research 106 (2016) 249-258. https://doi.org/10.1016/j.watres.2016.10.009
[102] Tura Safawo, B. V Sandeep, Sudhakar Pola, Aschalew Tadesse, Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment, OpenNano, 3 (2018) 56–63. https://doi.org/10.1016/j.onano.2018.08.001
[103] P. J. P. Espitia, N. deF. F. Soares, J. S. dos R. Coimbra, N. J. de Andrade, R. S. Cruz, E. A. A. Medeiros, Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications, Food Bioprocess Technol 5 (2012) 1447–1464. https://doi.org/10.1007/s11947-012-0797-6
[104] M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, G. Manivannan, Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation, nanomedicine nanotechnology, Biol. Med. 7 (2011) 184–192. https://doi.org/10.1016/j.nano.2010.10.001
[105] K. R. Raghupathi, R. T. Koodali, A. C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles, Langmuir 27 (2011) 4020–4028. https://doi.org/10.1021/la104825u
[106] C. Jayaseelan, A.A. Rahuman, G. Rajakumar, A. Vishnu Kirthi, T. Santhoshkumar, S. Marimuthu, A. Bagavan, C. Kamaraj, A.A. Zahir, G. Elango, Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers, Parasitol. Res. 109 (2011) 185–194. https://doi.org/10.1007/s00436-010-2242-y
[107] R. Venckatesh, P. Rajiv, S. Rajeshwari, Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim. Acta A Mol. Biomol. Spectrosc. 112 (2013) 384–387. https://doi.org/10.1016/j.saa.2013.04.072
[108] N. Jones, B. Ray, K. T. Ranjit, A. C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms, FEMS Microbiol. Lett. 279 (2008) 71–76. https://doi.org/10.1111/j.1574-6968.2007.01012.x
[109] R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fiévet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano Lett. 6 (2006) 866–870. https://doi.org/10.1021/nl052326h
[110] Xiuquan Xua, Songmei Wang, Xiaofeng Yua, Jila Dawa, Dongliang Gui, Ronghui Tang, Biosynthesis of Ag deposited phosphorus and sulfur co-doped g-C3N4 with enhanced photocatalytic inactivation performance under visible light, Appl. Surf. Sci., 501 (2020) 144245. https://doi.org/10.1016/j.apsusc.2019.144245
[111] T. Feng, J. L. Liang, Z. Y. Ma, M. Li, M. P. Tong, Bactericidal activity and mechanisms of BiOBr-AgBr under both dark and visible light irradiation conditions, Colloid. Surface B 167 (2018) 275–283. https://doi.org/10.1016/j.colsurfb.2018.04.022
[112] B. Pant, P. Pokharel, A. P. Tiwari, P. S. Saud, M. Park, Z. K. Ghouri, S. Choi, S. J. Park, H. Y. Kim, Characterization and antibacterial properties of aminophenol grafted and Ag NPs decorated graphene nanocomposites, Ceram. Int. 41 (2015) 5656–5662. https://doi.org/10.1016/j.ceramint.2014.12.150
[113] W. Bing, Z. W. Chen, H. J. Sun, P. Shi, N. Gao, J. S. Ren, X. G. Qu, Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles, Nano Res. 8 (2015) 1648–1658. https://doi.org/10.1007/s12274-014-0654-1
[114] M. Arunpandian, K. Selvakumar, A. Raja, M. Thiruppathi, P. Rajasekaran, P. Rameshkumar, E. R. Nagarajan, S. Arunachalam, Development of novel Nd2WO6/ ZnO incorporated on GO nanocomposite for the photocatalytic degradation of organic pollutants and biological studies, J. Mater. Sci.: Mater. Electron. 30 (2019) 18557- 18574. https://doi.org/10.1007/s10854-019-02209-9
[115] Y. S. Fu, H. Ting, L. L. Zhang, J. W. Zhu, X. Wang, Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach, Nanoscale 7 (2015) 13723. https://doi.org/10.1039/C5NR03260A
[116] P. K. Stoimenov, R. L. Klinger, G. L. Marchin, K. J. Klabunde, Metal oxide nanoparticles as bactericidal agents, Langmuir 18 (2002) 6679–6686. https://doi.org/10.1021/la0202374
[117] T. Hamouda, J. R. Baker, Antimicrobial mechanism of action of surfactant lipid preparations in centeric Gram-negative bacilli, J. Appl. Microbiol. 89 (2000) 397–403. https://doi.org/10.1046/j.1365-2672.2000.01127.x
[118] I. Sondi, B. S. Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci. 275 (2004) 177–182. https://doi.org/10.1016/j.jcis.2004.02.012
[119] S. S. Lee,W. Song, M. Cho, H. L. Puppala, P. Nguyen, H. Zhu, L. Segatori, V. L. Colvin, Antioxidant properties of cerium oxide nanocrystals as function of nanocrystals diameterand surface coating, ACS Nano. 7 (2013) 9693-9703. https://doi.org/10.1021/nn4026806
[120] Assumpta Chinwe Nwanya, Lovasoa Christine Razanamahandry, A. K. H. Bashir, Chinwe O. Ikpo, Stephen C. Nwanya, Subelia Botha, S. K. O. Ntwampe, Fabian I. Ezema, Emmanuel I. Iwuoha, Malik Maaza, Industrial textile effluent treatment and antibacterial effectiveness of Zea mays L. Dry husk mediated bio-synthesized copper oxide nanoparticles, J. Hazard., 375 (2019) 281–289. https://doi.org/10.1016/j.jhazmat.2019.05.004
[121] Qu, Y. Q. & Duan, X. F. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev.42 (2013)2568–2580. https://doi.org/10.1039/C2CS35355E
[122] Park, H. J., Nguyen, T. T. M., Yoon, J. & Lee, C. Role of reactive oxygen species in Escherichia coli inactivation by cupric ion. Environ.Sci. Technol. 46 (2012)11299–11304. https://doi.org/10.1021/es302379q
[123] Wang, W. J. et al. Visible-Light-Driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: Bactericidal performance and mechanism. Environ. Sci. Technol. 46 (2012)4599–4606. https://doi.org/10.1021/es2042977
[124] Rajesh Pandiyan, Shanmugam Mahalingam, Young-Ho Ahn, Antibacterial and photocatalytic activity of hydrothermally synthesized SnO2 doped GO and CNT under visible light irradiation, J. Photoch. Photobio. B,191 (2019) 18–25. https://doi.org/10.1016/j.jphotobiol.2018.12.007
[125] R. Pandiyan, S. Ayyaru, Y.H. Ahn, Non-toxic properties of TiO2 and STiO2 nanocomposite PES ultrafiltration membranes for application in membrane-based environmental biotechnology, Ecotoxicol. Environ. Saf. 158 (2018) 248–255. https://doi.org/10.1016/j.ecoenv.2018.04.027
[126] M. Naushad, T. Ahamad, G. Sharma, A.A.H. Al-Muhtaseb, A.B. Albadarin, M.M. Alam, Z.A. Alothman, S.M. Alshehri, A.A. Ghfar, Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion, Chem. Eng. J. 300 (2016) 306–316. https://doi.org/10.1016/j.cej.2016.04.084
[127] A. Fakhri, S. Behrouz, M. Pourmand, Synthesis, photocatalytic and antimicrobial properties of SnO2, SnS2 and SnO2/SnS2 nanostructure, J. Photochem. Photobiol. B Biol. 149 (2015) 45–50. https://doi.org/10.1016/j.jphotobiol.2015.05.017
[128] S. Sudhaparimala, M. Vaishnavi, Biological synthesis of nano composite SnO2 efficient photocatalytic degradation and antimicrobial activity, Mater. Today 3 (2016) 2373–2380. https://doi.org/10.1016/j.matpr.2016.04.150
[129] M. A. Qamar, S. Shahid, S. A. Khan, S. Zaman, M. N. Sarwar, Synthesis characterization, optical and antibacterial studies of co-doped SnO2 nanoparticles, Digest J. Nanomater. Biostruct. 12 (2017) 1127–1135.
[130] W. Sangchay, The self-cleaning and photocatalytic properties of TiO2 doped with SnO2 thin films preparation by Sol-gel Method, Energy Procedia 89 (2016) 170–176. https://doi.org/10.1016/j.egypro.2016.05.023
[131] S. Kumar, M. Kumar, A. Thakur, S. Patial, Water treatment using photocatalytic and antimicrobial activities of tin oxide nanoparticles, Ind. J. Chem. Tech. 24 (2017) 435–440.
[132] K. A. Omar, B. I. Meena, S. A. Muhammed, Study on the activity of ZnO-SnO2 nanocomposite against bacteria and fungi, Physicochem. Probl. Miner. Process 52 (2016) 754–766.
[133] K. Kaviyarasu, C. Maria Magdalane, K. Kanimozhi, J. Kennedy, B. Siddhardha, E. Subba Reddy, Naresh Kumar Rotte, Chandra Shekhar Sharma, F.T. Thema, Douglas Letsholathebe, Genene Tessema Mola, M. Maaza, Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method, J. Photochem. Photobiol. B, 173 (2017) 466-475. https://doi.org/10.1016/j.jphotobiol.2017.06.026
[134] K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance, J. Photochem. Photobiol. B, 190 (2019) 8-20. https://doi.org/10.1016/j.jphotobiol.2018.11.001
[135] K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Andrographis paniculata extract mediated green synthesis of CdO nanoparticles and its electrochemical and antibacterial studies, J. Mater. Sci: Mater. Electron. 28 (2017) 7991-8001. https://doi.org/10.1007/s10854-017-6503-8
[136] K. Karthik, S. Dhanuskodi, C. Gobinath, S. Sivaramakrishnan, Microwave-assisted synthesis of CdO-ZnO nanocomposite and its antibacterial activity against human pathogens, Spectrochimic. Acta Part A: Mol. Biomol. Spectrosc. 139 (2015) 7-12. https://doi.org/10.1016/j.saa.2014.11.079