Recent Advancement in Green Synthesis of Metal Nanoparticles and their Catalytic Applications

$30.00

Recent Advancement in Green Synthesis of Metal Nanoparticles and their Catalytic Applications

P. Arunkumar, S. Saran, G. Manjari and K. Mohanty

Nanotechnology is growing as an essential discipline in research with several applications. For the synthesis of nanoparticles, distinct methods such as chemical, physical and biological entities have been adopted. Among these, green synthesis of metal nanoparticles has gained wider attention owing to its simplicity, non-toxicity, cost-effective, sustainable and easy availability. The phyto compounds existing in the plant extract either acts as reducing, stabilizing and capping agents; thereby, it reduces the cost and consumptions of energy and hazardous chemicals. This review mainly focused on the recent trend in the utilization of the plant material for the synthesizing of various metal nanoparticles and their catalytic application with special reference to their morphological features.

Keywords
Biogenic Synthesis, Metal Nanoparticles, Phytochemicals, Catalysis, Organic Pollutant Degradation

Published online 3/25/2022, 38 pages

Citation: P. Arunkumar, S. Saran, G. Manjari and K. Mohanty, Recent Advancement in Green Synthesis of Metal Nanoparticles and their Catalytic Applications, Materials Research Foundations, Vol. 121, pp 1-38, 2022

DOI: https://doi.org/10.21741/9781644901830-1

Part of the book on Bioinspired Nanomaterials for Energy and Environmental Applications

References
[1] J.H. Fendler, Nanoparticles and nanostructured films: preparation, characterization, and applications, John Wiley & Sons (2008).
[2] R.M. Crooks, M. Zhao, L. Sun, V. Chechik, L.K. Yeung, Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis, Acc. Chem. Res, 34(2001) 181-190. https://doi.org/10.1021/ar000110a
[3] M.P. Ferraz, F.J. Monteiro, C.M. Manuel, Hydroxyapatite nanoparticles: a review of preparation methodologies, J. Appl.Biomater.Biomech. 2(2004) 74-80.
[4] F. Mafuné, J.Y. Kohno, Y. Takeda, T. Kondow, Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control, ‎J. Phys. Chem. B, 106 (2002) 7575-7577. https://doi.org/10.1021/jp020577y
[5] A. Fujita, Y. Matsumoto, M. Takeuchi, H. Ryuto, G.H. Takaoka, Growth behavior of gold nanoparticles synthesized in unsaturated fatty acids by vacuum evaporation methods, Phys. Chem. Chem. Phys.18 (2016) 5464-5470. https://doi.org/10.1039/C5CP07323E
[6] F.E. Kruis, H. Fissan, A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review, ‎J. Aerosol Sci. 29 (1998) 511-535. https://doi.org/10.1016/S0021-8502(97)10032-5
[7] A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions, Chem. Soc. Rev. 44(2015) 1922-1947. https://doi.org/10.1039/C4CS00254G
[8] B.C. Gates, Supported metal clusters: synthesis, structure, and catalysis, Chem. Rev. 95 (1995) 511-522. https://doi.org/10.1021/cr00035a003
[9] R.P. Singh, S. Magesh, C. Rakkiyappan, Formation of fenugreek (Trigonellafoenum-graecum) extract mediated Ag nanoparticles: mechanism and applications, Int. J. Bioeng. Sci. Technol. 2(2011), 64-73.
[10] M. Kasithevar, M. Saravanan, P. Prakash, H. Kumar, M. Ovais, H. Barabadi, Z.K. Shinwari, Green synthesis of silver nanoparticles using Alysicarpusmonilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients, J. Interdiscip. Nanomed. 2(2017) 131-141. https://doi.org/10.1002/jin2.26
[11] J. Singh, T. Dutta, K.H. Kim, M. Rawat, P. Samddar, P. Kumar, Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation, J.Nanobiotechnol. 16(2018) 84. https://doi.org/10.1186/s12951-018-0408-4
[12] P. Deepak, V. Amutha, C. Kamaraj, G. Balasubramani, D. Aiswarya, P. Perumal, Chemical and green synthesis of nanoparticles and their efficacy on cancer cells. In Green Synthesis, Characterization and Applications of Nanoparticles, Elsevier (2019) 369-387. https://doi.org/10.1016/B978-0-08-102579-6.00016-2
[13] S. Patra, S. Mukherjee, A.K. Barui, A. Ganguly, B.Sreedhar, C.R.Patra, Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics, Mater. Sci. Eng. C 53 (2015) 298-309. https://doi.org/10.1016/j.msec.2015.04.048
[14] T.J.I. Edison, M.G. Sethuraman, Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue, Process Biochem. 47 (2012) 1351-1357. https://doi.org/10.1016/j.procbio.2012.04.025
[15] M. Ayaz, M. Junaid, F. Ullah, F. Subhan, A. Sadiq, G. Ali, M. Ovais, M. Shahid, A. Ahmad, A. Wadood, M. El-Shazly, Anti-Alzheimer’s studies on β-sitosterol isolated from Polygonumhydropiper L., Front. Pharmacol. 8 (2017) 697. https://doi.org/10.3389/fphar.2017.00697
[16] M. Ovais, A.T. Khalil, N.U. Islam, I. Ahmad, M. Ayaz, M. Saravanan, Z.K. Shinwari, S. Mukherjee, Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles, Appl. Microbiol. Biotechnol. 102 (2018) 6799-6814.
[17] A.K. Jha, K. Prasad, K. Prasad, A.R. Kulkarni, Plant system: nature’s nanofactory, Colloids Surf., B 73 (2009) 219-223. https://doi.org/10.1016/j.colsurfb.2009.05.018
[18] S. Raja, V. Ramesh, V. Thivaharan, Green biosynthesis of silver nanoparticles using Calliandrahaematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability, Arab. J. Chem. 10 (2017) 253-261. https://doi.org/10.1016/j.arabjc.2015.06.023
[19] J. Lee, H.Y. Kim, H. Zhou, S. Hwang, K. Koh, D.W. Han, J. Lee, Green synthesis of phytochemical-stabilized Au nanoparticles under ambient conditions and their biocompatibility and antioxidative activity, J. Mater. Chem. 21 (2011) 13316-13326. https://doi.org/10.1039/c1jm11592h
[20] Y. Zhou, W. Lin, J. Huang, W. Wang, Y. Gao, L. Lin, M. Du, Biosynthesis of gold nanoparticles by foliar broths: roles of biocompounds and other attributes of the extracts, Nanoscale Res. Lett, 5 (2010) 1351. https://doi.org/10.1007/s11671-010-9652-8
[21] N. Ahmad, S. Sharma, M.K. Alam, V.N. Singh, S.F. Shamsi, B.R. Mehta, A. Fatma, Rapid synthesis of silver nanoparticles using dried medicinal plant of basil, Colloids Surf. B 81 (2010) 81-86. https://doi.org/10.1016/j.colsurfb.2010.06.029
[22] S.M. Ghoreishi, M. Behpour, M. Khayatkashani, Green synthesis of silver and gold nanoparticles using Rosa damascena and its primary application in electrochemistry, Physica E Low Dimens. Syst. Nanostruct.44 (2011) 97-104. https://doi.org/10.1016/j.physe.2011.07.008
[23] N. Sahu, D. Soni, B. Chandrashekhar, D.B. Satpute, S. Saravanadevi, B.K. Sarangi, R.A. Pandey, Synthesis of silver nanoparticles using flavonoids: hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity, Int. Nano Lett. 6 (2016) 173-181. https://doi.org/10.1007/s40089-016-0184-9
[24] P. Trouillas, P. Marsal, D. Siri, R. Lazzaroni, J.L. Duroux, A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: The specificity of the 3-OH site, Food Chem. 97 (2006) 679-688. https://doi.org/10.1016/j.foodchem.2005.05.042
[25] K. Yoosaf, B.I. Ipe, C.H. Suresh, K.G. Thomas, In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media, ‎J. Phys. Chem. C, 111 (2007) 12839-12847. https://doi.org/10.1021/jp073923q
[26] A.E. Edris, Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21(2007) 308-323. https://doi.org/10.1002/ptr.2072
[27] JYBS Kim, Rapid biological synthesis of silver nanoparticles using plant leaf extracts, Bioprocess Biosyst. Eng. 32 (2009) 79. https://doi.org/10.1007/s00449-008-0224-6
[28] D.S. Sheny, J. Mathew, D. Philip, Synthesis characterization and catalytic action of hexagonal gold nanoparticles using essential oils extracted from Anacardiumoccidentale, Spectrochim. Acta Part A, 97 (2012) 306-310. https://doi.org/10.1016/j.saa.2012.06.009
[29] EC Da Silva, M.G.A. Da Silva, S.M.P. Meneghetti, G. Machado, M. A. R. C. Alencar, J. M. Hickmann, M.R. Meneghetti, Synthesis of colloids based on gold nanoparticles dispersed in castor oil, J.Nanopart. Res. 10 (2008) 201-208. https://doi.org/10.1007/s11051-008-9483-z
[30] V. Vilas, D. Philip, J. Mathew, Catalytically and biologically active silver nanoparticles synthesized using essential oil,Spectrochim. Acta Part A 132 (2014) 743-750. https://doi.org/10.1016/j.saa.2014.05.046
[31] M. M. Kumari, D.Philip, Facile one-pot synthesis of gold and silver nanocatalysts using edible coconut oil, Spectrochim. Acta, Part A, 111 (2013). 154-160. https://doi.org/10.1016/j.saa.2013.03.076
[32] A.K. Singh, M. Talat, D.P. Singh, O.N. Srivastava, Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group, J. Nanopart. Res. 12 (2010) 1667-1675. https://doi.org/10.1007/s11051-009-9835-3
[33] S. Li, Y. Shen, A. Xie, X. Yu, L. Qiu, L. Zhang, Q. Zhang. Green synthesis of silver nanoparticles using Capsicum annuum L. extract, Green Chem. 9 (2007) 852-858. https://doi.org/10.1039/b615357g
[34] S. Mukherjee, D. Chowdhury, R. Kotcherlakota, S. Patra, Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system), Theranostics4 (2014) 316. https://doi.org/10.7150/thno.7819
[35] R. Shukla, S.K. Nune, N. Chanda, K. Katti, S. Mekapothula, RR. Kulkarni, WV. Welshons, R. Kannan, K.V. Katti, Soybeans as a phytochemical reservoir for the production and stabilization of biocompatible gold nanoparticles, Small 4 (2008)1425-1436. https://doi.org/10.1002/smll.200800525
[36] P. Raveendran, J. Fu, SL. Wallen, Completely “green” synthesis and stabilization of metal nanoparticles, J. Am. Chem. Soc. 125 (2003) 13940-13941. https://doi.org/10.1021/ja029267j
[37] X. Zhao, Y. Xia, Q. Li, X. Ma, F. Quan, C. Geng, Z. Han, Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity, Colloids Surf. A 444 (2014) 180-188. https://doi.org/10.1016/j.colsurfa.2013.12.008
[38] AJ González Fá, A. Juan, MS Di Nezio, Synthesis and characterization of silver nanoparticles prepared with honey: the role of carbohydrates, Anal. Lett. 50 (2017) 877-888. https://doi.org/10.1080/00032719.2016.1199558
[39] M. Shah, D. Fawcett, S. Sharma, SK. Tripathy, G.E.J. Poinern, Green synthesis of metallic nanoparticles via biological entities, Materials 8 (2015) 7278-7308. https://doi.org/10.3390/ma8115377
[40] K.S. Chou, C.Y. Ren, Synthesis of nanosized silver particles by chemical reduction method, Mater Chem Phys. 64 (2000) 241–246. https://doi.org/10.1016/S0254-0584(00)00223-6
[41] G. Guzman, J. Dille, S. Godet, Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity, Int. J. Chem. Biol. Eng. 2 (2009) 104–111.
[42] Q.H. Tran, A.T. Le, Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives, Adv. Nat. Sci. Nanosci. Nanotechnol. 4 (2013) 033001. https://doi.org/10.1088/2043-6262/4/3/033001
[43] G. Reddy, J. Joy, T. Mitra, S. Shabnam, T. Shilpa, Nanosilver review, Int. J. Adv. Pharm. 2 (2012) 9–15.
[44] S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise, J. Adv. Res. 7 (2016) 17–28. https://doi.org/10.1016/j.jare.2015.02.007
[45] S. Francis, S. Joseph, E.P. Koshy, B. Mathew, Green synthesis and characterization of gold and silver nanoparticles using Mussaendaglabrata leaf extract and their environmental applications to dye degradation, Environ. Sci. Poll. Res. 24(2017) 17347-17357. https://doi.org/10.1007/s11356-017-9329-2
[46] S. Joseph, B. Mathew, Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes, J. Mol. Liq. 204 (2015) 184-191. https://doi.org/10.1016/j.molliq.2015.01.027
[47] K. Jyoti, A. Singh, Green synthesis of nanostructured silver particles and their catalytic application in dye degradation, J. Genet. Eng. Biotechnol. 14(2016) 311-317. https://doi.org/10.1016/j.jgeb.2016.09.005
[48] J. Saha, A. Begum, A. Mukherjee, S. Kumar, A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye, Sustain. Environ. Res. 27 (2017) 245-250. https://doi.org/10.1016/j.serj.2017.04.003
[49] H. Kolya, P. Maiti, A. Pandey, T. Tripathy, Green synthesis of silver nanoparticles with antimicrobial and azo dye (Congo red) degradation properties using Amaranthusgangeticus Linn leaf extract, J. Anal. Sci. Technol. 6 (2015) 33. https://doi.org/10.1186/s40543-015-0074-1
[50] V.K. Vidhu, D. Philip, Catalytic degradation of organic dyes using biosynthesized silver nanoparticles, Micron 56 (2014) 54-62. https://doi.org/10.1016/j.micron.2013.10.006
[51] R. Mata, J.R. Nakkala, S.R. Sadras, Catalytic and biological activities of green silver nanoparticles synthesized from Plumeria alba (frangipani) flower extract, Mater. Sci. Eng. C 51 (2015) 216-225. https://doi.org/10.1016/j.msec.2015.02.053
[52] H. Veisi, S. Azizi, P. Mohammadi, Green synthesis of the silver nanoparticles mediated by Thymbraspicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water, J. Clean. Prod. 170 (2018) 1536-1543. https://doi.org/10.1016/j.jclepro.2017.09.265
[53] T. Varadavenkatesan, R. Selvaraj, R. Vinayagam, Phyto-synthesis of silver nanoparticles from Mussaendaerythrophylla leaf extract and their application in catalytic degradation of methyl orange dye, J. Mol. Liq. 221 (2016) 1063-1070. https://doi.org/10.1016/j.molliq.2016.06.064
[54] Y. Ping, J. Zhang, T. Xing, G. Chen, R. Tao, K.H. Choo, Green synthesis of silver nanoparticles using grape seed extract and their application for reductive catalysis of Direct Orange 26, ‎Ind. Eng. Chem. Res. 58 (2018) 74-79. https://doi.org/10.1016/j.jiec.2017.09.009
[55] Y. Junejo, A. Baykal, M. Safdar, A. Balouch, A novel green synthesis and characterization of Ag NPs with its ultra-rapid catalytic reduction of methyl green dye, Appl. Surf. Sci. 290 (2014) 499-503. https://doi.org/10.1016/j.apsusc.2013.11.106
[56] W. Qing, K. Chen, Y. Wang, X. Liu, M. Lu, Green synthesis of silver nanoparticles by waste tea extract and degradation of organic dye in the absence and presence of H2O2, Appl. Surf. Sci. 423 (2017) 1019-1024. https://doi.org/10.1016/j.apsusc.2017.07.007
[57] S. Francis, S. Joseph, E.P. Koshy, B. Mathew, Microwave assisted green synthesis of silver nanoparticles using leaf extract of elephantopusscaber and its environmental and biological applications, Artif. Cells Nanomed. Biotechnol. 46 (2018) 795-804. https://doi.org/10.1080/21691401.2017.1345921
[58] G. Arya, R.M. Kumari, N. Gupta, A. Kumar, R. Chandra, S. Nimesh, Green synthesis of silver nanoparticles using Prosopisjuliflora bark extract: reaction optimization, antimicrobial and catalytic activities, Artif. Cells Nanomed. Biotechnol. 46 (2018) 985-993. https://doi.org/10.1080/21691401.2017.1354302
[59] T. N. J. I. Edison, Y.R. Lee, M.G. Sethuraman, Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye, Spectrochim. Acta Part A 161 (2016) 122-129. https://doi.org/10.1016/j.saa.2016.02.044
[60] K. B. A. Ahmed, S. Subramaniam, G. Veerappan, N. Hari, A. Sivasubramanian, A. Veerappan, β-Sitosterol-d-glucopyranoside isolated from Desmostachyabipinnata mediates photoinduced rapid green synthesis of silver nanoparticles, RSC. Adv. 4 (2014) 59130-59136. https://doi.org/10.1039/C4RA10626A
[61] N. K. R. Bogireddy, H. A. K.Kumar, B.K. Mandal, Biofabricated silver nanoparticles as green catalyst in the degradation of different textile dyes, J. Environ. Chem. Eng. 4 (2016) 56-64. https://doi.org/10.1016/j.jece.2015.11.004
[62] C. T. N. J. I. Edison, R. Atchudan, M.G. Sethuraman, Y.R. Lee, Reductive-degradation of carcinogenic azo dyes using Anacardiumoccidentaletesta derived silver nanoparticles, J. Photochem. Photobiol. B 162 (2016) 604-610. https://doi.org/10.1016/j.jphotobiol.2016.07.040
[63] Saravanan, R. Rajesh, T. Kaviarasan, K. Muthukumar, D. Kavitake, P.H. Shetty, Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes, Biotechnol. Rep. 15 (2017) 33-40. https://doi.org/10.1016/j.btre.2017.02.006
[64] K. B. A. Ahmed, R. Senthilnathan, S. Megarajan, V. Anbazhagan, Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing, J. Photochem. Photobiol. B 151 (2015) 39-45. https://doi.org/10.1016/j.jphotobiol.2015.07.003
[65] K. Anand, K. Kaviyarasu, S. Muniyasamy, S.M. Roopan, R.M. Genga, A.A. Chuturgoon, Bio-synthesis of silver nanoparticles using agroforestry residue and their catalytic degradation for sustainable waste management, J. Clust. Sci. 28 (2017) 2279-2291. https://doi.org/10.1007/s10876-017-1212-2
[66] K. Muthu, S. Priya, Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower extract separated fraction, Spectrochim. Acta Part A 179 (2017) 66-72. https://doi.org/10.1016/j.saa.2017.02.024
[67] G. Manjari, S. Saran, T. Arun, S.P. Devipriya, A.V.B. Rao, Facile Aglaia elaeagnoidea mediated synthesis of silver and gold nanoparticles: antioxidant and catalysis properties, J. Clust. Sci. 28 (2017) 2041-2056. https://doi.org/10.1007/s10876-017-1199-8
[68] R. Vijayan, S. Joseph, B. Mathew, Green synthesis of silver nanoparticles using Nervaliazeylanica leaf extract and evaluation of their antioxidant, catalytic, and antimicrobial potentials, Particul. Sci. Technol. 37 (2019) 809-819. https://doi.org/10.1080/02726351.2018.1450312
[69] S.A. Aromal, D. Philip, Green synthesis of gold nanoparticles using Trigonellafoenum-graecum and its size-dependent catalytic activity, Spectrochim. Acta A 97 (2012) 1-5. https://doi.org/10.1016/j.saa.2012.05.083
[70] P. Dauthal, M. Mukhopadhyay, Prunusdomestica fruit extract-mediated synthesis of gold nanoparticles and its catalytic activity for 4-nitrophenol reduction,Ind. Eng. Chem. Res. 51 (2012) 13014-13020. https://doi.org/10.1021/ie300369g
[71] S. Maity, I.K. Sen, S.S. Islam, Green synthesis of gold nanoparticles using gum polysaccharide of Cochlospermumreligiosum (katira gum) and study of catalytic activity,Physica E Low Dimens. Syst. 45 (2012) 130-134. https://doi.org/10.1016/j.physe.2012.07.020
[72] IK Sen, K. Maity, S.S. Islam, Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity, Carbohydr. Polym. 91 (2013) 518-528. https://doi.org/10.1016/j.carbpol.2012.08.058
[73] R. Majumdar, B.G. Bag, N. Maity, Acacia nilotica (Babool) leaf extract mediated size-controlled rapid synthesis of gold nanoparticles and study of its catalytic activity, Int. Nano Lett. 3 (2013) 53. https://doi.org/10.1186/2228-5326-3-53
[74] C. Tamuly, M. Hazarika, M. Bordoloi, Biosynthesis of Au nanoparticles by Gymnocladusassamicus and its catalytic activity, Mater. Lett. 108 (2013) 276-279. https://doi.org/10.1016/j.matlet.2013.07.020
[75] SS Dash, BG Bag, Synthesis of gold nanoparticles using renewable Punicagranatum juice and study of its catalytic activity, Appl. Nanosci. 4 (2014) 55-59. https://doi.org/10.1007/s13204-012-0179-4
[76] K, Paul, B.G. Bag, K. Samanta, Green coconut (Cocos nucifera Linn) shell extract mediated size controlled green synthesis of polyshaped gold nanoparticles and its application in catalysis, Appl. Nanosci. 4 (2014) 769-775. https://doi.org/10.1007/s13204-013-0261-6
[77] SS, Dash, R. Majumdar, A.K. Sikder, B.G. Bag, BKPatra, Saracaindica bark extract mediated green synthesis of polyshaped gold nanoparticles and its application in catalytic reduction, Appl. Nanosci.4 (2014) 485-490. https://doi.org/10.1007/s13204-013-0223-z
[78] Y. Choi, M.J. Choi, S.H. Cha, Y.S. Kim, S. Cho, Y. Park, Catechin-capped gold nanoparticles: green synthesis, characterization, and catalytic activity toward 4-nitrophenol reduction, Nanoscale Res. Lett. 9 (2014) 103. https://doi.org/10.1186/1556-276X-9-103
[79] A. Rajan, M. MeenaKumari, D. Philip, Shape tailored green synthesis and catalytic properties of gold nanocrystals, Spectrochim. Acta A 118 (2014) 793-799. https://doi.org/10.1016/j.saa.2013.09.086
[80] Z. Gao, R. Su, R. Huang, W. Qi, Z. He, Glucomannan-mediated facile synthesis of gold nanoparticles for catalytic reduction of 4-nitrophenol, Nanoscale Res. Lett. 9 (2014) 404. https://doi.org/10.1186/1556-276X-9-404
[81] SS Dash, BG Bag, P. Hota, Lantana camara Linn leaf extract mediated green synthesis of gold nanoparticles and study of its catalytic activity, Appl. Nanosci. 5 (2015) 343-350. https://doi.org/10.1007/s13204-014-0323-4
[82] K. Anand, R.M. Gengan, A. Phulukdaree, A. Chuturgoon, Agroforestry waste Moringaoleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity, J. Ind. Eng. Chem. 21 (2015) 1105-1111. https://doi.org/10.1016/j.jiec.2014.05.021
[83] N.K.R. Bogireddy, K.K.H. Anand, B.K., Mandal, Gold nanoparticles synthesis by Sterculiaacuminata extract and its catalytic efficiency in alleviating different organic dyes, J. Mol. Liq. 211 (2015) 868-875. https://doi.org/10.1016/j.molliq.2015.07.027
[84] S. Wu, S. Yan, W. Qi, R. Huang, J. Cui, R. Su, Z He, Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction, Nanoscale Res. Lett. 10 (2015) 213. https://doi.org/10.1186/s11671-015-0910-7
[85] S. Das, B.G. Bag, R. Basu, Abromaaugusta Linn bark extract-mediated green synthesis of gold nanoparticles and its application in catalytic reduction, Appl. Nanosci. 5 (2015) 867-873. https://doi.org/10.1007/s13204-014-0384-4
[86] J. Yu, D. Xu, H.N. Guan, C. Wang, L.K. Huang, Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity, Mater. Lett. 166 (2016) 110-112. https://doi.org/10.1016/j.matlet.2015.12.031
[87] R. Majumdar, B.G. Bag, P. Ghosh, Mimusopselengi bark extract mediated green synthesis of gold nanoparticles and study of its catalytic activity, Appl. Nanosci. 6 (2016) 521-528. https://doi.org/10.1007/s13204-015-0454-2
[88] M. Ramakrishna, D.R. Babu, RM. Gengan, S. Chandra, G.N. Rao, Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity, J. Nanostructure Chem. 6 (2016) 1-13. https://doi.org/10.1007/s40097-015-0173-y
[89] K. Banerjee, V.R. Rai, Study on green synthesis of gold nanoparticles and their potential applications as catalysts, J. Clust. Sci. 27 (2016) 1307-1315. https://doi.org/10.1007/s10876-016-1001-3
[90] J. Park, S.H. Cha, S. Cho, Y. Park, Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction, J. Nanopart. Res. 18 (2016) 166. https://doi.org/10.1007/s11051-016-3466-2
[91] X. Zhang, Y. Qu, W. Shen, J. Wang, H. Li, Z. Zhang, S. Li, J. Zhou, Biogenic synthesis of gold nanoparticles by yeast Magnusiomycesingens LH-F1 for catalytic reduction of nitrophenols, Colloids Surf. A Physicochem. Eng. Aspects 497 (2016) 280-285. https://doi.org/10.1016/j.colsurfa.2016.02.033
[92] A.G. Assefa, AAMesfin, M.L. Akele, A.K. Alemu, B.R. Gangapuram, V.Guttena, M. Alle, Microwave-assisted green synthesis of gold nanoparticles using Olibanum gum (Boswelliaserrate) and its catalytic reduction of 4-nitrophenol and hexacyanoferrate (III) by sodium borohydride, J. Clust. Sci. 28 (2017) 917-935. https://doi.org/10.1007/s10876-016-1078-8
[93] S. Sunkari, B.R. Gangapuram, R. Dadigala, R. Bandi, M. Alle, V Guttena, Microwave-irradiated green synthesis of gold nanoparticles for catalytic and anti-bacterial activity, J. Anal. Sci. Technol. 8 (2017) 13. https://doi.org/10.1186/s40543-017-0121-1
[94] N.K.R. Bogireddy, U. Pal, L.M. Gomez, V. Agarwal, Size controlled green synthesis of gold nanoparticles using Coffeaarabica seed extract and their catalytic performance in 4-nitrophenol reduction, RSC.Advan. 8 (2018) 24819-24826. https://doi.org/10.1039/C8RA04332A
[95] C. Umamaheswari, A. Lakshmanan, NS. Nagarajan, Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange, J Photochem. Photobiol. B 178 (2018) 33-39. https://doi.org/10.1016/j.jphotobiol.2017.10.017
[96] B.R. Gangapuram, R.Bandi, M. Alle, R. Dadigala, G.M. Kotu, V. Guttena, Microwave assisted rapid green synthesis of gold nanoparticles using Annona squamosa L peel extract for the efficient catalytic reduction of organic pollutants, J. Mol. Struct. 1167 (2018) 305-315. https://doi.org/10.1016/j.molstruc.2018.05.004
[97] Z. Issaabadi, M. Nasrollahzadeh, S.M. Sajadi, Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity, J. Clean. Prod. 142 (2017) 3584-3591. https://doi.org/10.1016/j.jclepro.2016.10.109
[98] S. Saran, G. Manjari, S.P. Devipriya, Synergistic eminently active catalytic and recyclable Ag, Cu and Ag-Cu alloy nanoparticles supported on TiO2 for sustainable and cleaner environmental applications: A phytogenic mediated synthesis, J. Clean. Prod. 177 (2018) 134-143. https://doi.org/10.1016/j.jclepro.2017.12.181
[99] M. Ismail, S. Gul, M.I. Khan, M.A. Khan, A.M. Asiri, S.B. Khan, Green synthesis of zerovalent copper nanoparticles for efficient reduction of toxic azo dyes congo red and methyl orange, Green Process. Synth. 8 (2019) 135-143. https://doi.org/10.1515/gps-2018-0038
[100] H.S. Devi, T.D. Singh, Synthesis of copper oxide nanoparticles by a novel method and its application in the degradation of methyl orange, Adv. Electron Electr. Eng. 4 (2014) 83-88.
[101] VNKalpana, P. Chakraborthy, V. Palanichamy, V.D Rajeswari, Synthesis and characterization of copper nanoparticles using Tridaxprocumbens and its application in degradation of bismarck brown, Analysis 10 (2016) 17.
[102] G. Manjari, S. Saran, T. Arun, A.V.B. Rao, S.P. Devipriya, Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract, J. Saudi Chem. Soc. 21 (2017) 610-618. https://doi.org/10.1016/j.jscs.2017.02.004
[103] B. Khodadadi, M. Bordbar, M. Nasrollahzadeh, Achilleamillefolium L. extract mediated green synthesis of waste peach kernel shell supported silver nanoparticles: Application of the nanoparticles for catalytic reduction of a variety of dyes in water, J. Colloid Interface Sci.493 (2017) 85-93. https://doi.org/10.1016/j.jcis.2017.01.012
[104] M. Qasem, R. El Kurdi, D.Patra, Green Synthesis of Curcumin Conjugated CuO Nanoparticles for Catalytic Reduction of Methylene Blue, ChemistrySelect 5 (2020) 1694-1704. https://doi.org/10.1002/slct.201904135
[105] A.J. Kora, L. Rastogi, Green synthesis of palladium nanoparticles using gum ghatti (Anogeissuslatifolia) and its application as an antioxidant and catalyst, Arab. J. Chem. 11 (2018) 1097-1106. https://doi.org/10.1016/j.arabjc.2015.06.024
[106] A.J. Kora, L. Rastogi, Catalytic degradation of anthropogenic dye pollutants using palladium nanoparticles synthesized by gum olibanum, a glucuronoarabinogalactan biopolymer, Ind. Crops Prod. 81 (2016) 1-10. https://doi.org/10.1016/j.indcrop.2015.11.055
[107] G. Li, Y. Li, Z. Wang, H. Liu, Green synthesis of palladium nanoparticles with carboxymethyl cellulose for degradation of azo-dyes, Mater. Chem. Phys. 187(2017) 133-140. https://doi.org/10.1016/j.matchemphys.2016.11.057
[108] M. Bordbar, N. Mortazavimanesh, Green synthesis of Pd/walnut shell nanocomposite using Equisetum arvense L. leaf extract and its application for the reduction of 4-nitrophenol and organic dyes in a very short time, Environ. Sci. Pollut. Res. 24 (2017) 4093-4104. https://doi.org/10.1007/s11356-016-8183-y
[109] C. Garai, S.N. Hasan, A.C. Barai, S. Ghorai, S.K. Panja, B.G. Bag, Green synthesis of Terminalia arjuna-conjugated palladium nanoparticles (TA-PdNPs) and its catalytic applications, J. Nanostructure Chem, 8(2018) 465-472. https://doi.org/10.1007/s40097-018-0288-z
[110] M. Nasrollahzadeh, S.M. Sajadi, M. Maham, Green synthesis of palladium nanoparticles using Hippophaerhamnoides Linn leaf extract and their catalytic activity for the Suzuki–Miyaura coupling in water, J. Mol. Catal. A: Chem. 396 (2015) 297-303. https://doi.org/10.1016/j.molcata.2014.10.019
[111] M. Nasrollahzadeh, S.M. Sajadi, A. Rostami-Vartooni, M. Alizadeh, M. Bagherzadeh, Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes, J. Colloid Interface Sci. 466 (2016) 360-368. https://doi.org/10.1016/j.jcis.2015.12.036
[112] M. Khan, M. Khan, M. Kuniyil, S.F. Adil, A. Al-Warthan, H.Z. Alkhathlan, M. R. H. Siddiqui, Biogenic synthesis of palladium nanoparticles using Pulicariaglutinosa extract and their catalytic activity towards the Suzuki coupling reaction, Dalton Trans. 43 (2014) 9026-9031. https://doi.org/10.1039/C3DT53554A
[113] M. Nasrollahzadeh, S.M. Sajadi, Pd nanoparticles synthesized in situ with the use of Euphorbia granulate leaf extract: Catalytic properties of the resulting particles, J. Colloid Interface Sci. 462 (2016) 243-251. https://doi.org/10.1016/j.jcis.2015.09.065
[114] M. Khan, G.H. Albalawi, M.R. Shaik, M. Khan, S.F. Adil, M. Kuniyil, M. R. H. Siddiqui, Miswak mediated green synthesized palladium nanoparticles as effective catalysts for the Suzuki coupling reactions in aqueous media, Saudi Chem. Soc. 21(2017) 450-457. https://doi.org/10.1016/j.jscs.2016.03.008
[115] R. Venu, T.S. Ramulu, S. Anandakumar, V.S. Rani, C.G. Kim, Bio-directed synthesis of platinum nanoparticles using aqueous honey solutions and their catalytic applications, Colloids Surf. A Physicochem. Eng. Aspects384 (2011) 733-738. https://doi.org/10.1016/j.colsurfa.2011.05.045
[116] D.S. Sheny, D. Philip, J. Mathew, Synthesis of platinum nanoparticles using dried Anacardiumoccidentale leaf and its catalytic and thermal applications, Spectrochim. Acta A 114 (2013) 267-271. https://doi.org/10.1016/j.saa.2013.05.028
[117] S. Pandey, S.B. Mishra, Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilized by guar gum, Carbohydr. Polym. 113 (2014) 525-531. https://doi.org/10.1016/j.carbpol.2014.07.047
[118] P. Dauthal, M. Mukhopadhyay, Biofabrication, characterization, and possible bio-reduction mechanism of platinum nanoparticles mediated by agro-industrial waste and their catalytic activity, J. Ind. Eng. Chem. 22 (2015) 185-191. https://doi.org/10.1016/j.jiec.2014.07.009
[119] W. Ye, J. Yu, Y Zhou, D. Gao, D. Wang, C. Wang, D. Xue, Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction, Appl. Catal. B Environ. 181 (2016) 371-378. https://doi.org/10.1016/j.apcatb.2015.08.013
[120] VSRamkumar, A. Pugazhendhi, S. Prakash, N.K. Ahila, G. Vinoj, S. Selvam, G. Kumar, E. Kannapiran, R.B. Rajendran, Synthesis of platinum nanoparticles using seaweed Padinagymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications, Biomed. Pharmacother. 92 (2017) 479-490. https://doi.org/10.1016/j.biopha.2017.05.076
[121] R. Dobrucka, Biofabrication of platinum nanoparticles using Fumariaeherba extract and their catalytic properties, Saudi J. Biol. Sci. 26(2019) 31-37. https://doi.org/10.1016/j.sjbs.2016.11.012
[122] G.E. Hoag, J.B. Collins, J.L. Holcomb, J.R. Hoag, M.N. Nadagouda, R.S. Varma, Degradation of bromothymol blue by ‘greener’ nanoscale zero-valent iron synthesized using tea polyphenols, J. Mater. Chem. 19 (2009) 8671–8677. https://doi.org/10.1039/b909148c
[123] E.C. Njagi, H. Huang, L. Stafford, H. Genuino, H.M. Galindo, J.B. Collins, G.E. Hoag, S.L. Suib, Biosynthesis of iron and silver nanoparticles at room temperature using aqueous Sorghum bran extracts, Langmuir 27 (2011) 264–271. https://doi.org/10.1021/la103190n
[124] T. Shahwan, S. Abu Sirriah, M. Nairat, E. Boyacı, A.E. Ero ˘glu, T.B. Scott, K.R. Hallam Green synthesis of iron nanoparticles and their application as a fenton-like catalyst for the degradation of aqueous cationic and anionic dyes, Chem. Eng. J. 172 (2011) 258–266. https://doi.org/10.1016/j.cej.2011.05.103
[125] L. Huang, X. Weng, Z. Chen, M. Megharaj, R. Naidu, Synthesis of iron-based nanoparticles using Oolong tea extract for the degradation of malachite green, Spectrochim. Acta A 117 (2013) 801–804. https://doi.org/10.1016/j.saa.2013.09.054
[126] Y. Kuang, Q. Wang, Z. Chen, M. Megharaj, R. Naidu, Heterogeneous fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles, J. Colloid Interface Sci. 410 (2013) 67–73. https://doi.org/10.1016/j.jcis.2013.08.020
[127] L. Huang, F. Luo, Z. Chen, M. Megharaj, R. Naidu, Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green, Spectrochim. Acta A 137 (2015) 154–159. https://doi.org/10.1016/j.saa.2014.08.116
[128] F. Luo, Z. Chen, M. Megharaj, R. Naidu, Biomolecules in grape leaf extract involved in one-step synthesis of iron-based nanoparticles, RSC. Adv. 4 (2014) 53467–53474. https://doi.org/10.1039/C4RA08808E
[129] Truskewycz, R. Shukla, AS Ball, Iron nanoparticles synthesized using green tea extracts for the fenton-like degradation of concentrated dye mixtures at elevated temperatures, J. Environ. Chem. Eng. 4 (2016) 4409-4417. https://doi.org/10.1016/j.jece.2016.10.008
[130] M. Khoshnamvand, C. Huo, J. Liu, Silver nanoparticles synthesized using Allium ampeloprasum L. leaf extract: characterization and performance in catalytic reduction of 4-nitrophenol and antioxidant activity. J. Mol. Struct. 1175 (2019) 90-96. https://doi.org/10.1016/j.molstruc.2018.07.089