Advanced Functional Membrane for CO2 Capture
H.J. Bora, N. Sultana, K.J. Goswami, N.S. Sarma, A. Kalita
The capture of carbon dioxide directly from the air has been shown a growing interest in the mitigation of greenhouse gases but remains controversial among the research community. Due to the high dilution factor of CO2 in air, simultaneously increases the energy requirement as well as the charge of the respective technology. Membrane/Thin film technology has been conceded as the most investigated as well as most appealing technology to attenuate carbon dioxide from the atmosphere. The membrane and membrane process technique are found to be alluring and eco-friendly to mitigate the carbon due to its cost efficiency, low expenditure of energy as well as comprehensibility in operation. Traditionally, the materials are cast into dense membranes with a standard thickness and after the formation of the membranes, their applications such as carbon capture/separation are evaluated by commutation between permeability and selectivity. In present scenario, efficient separation of CO2 from other gases has become a worldwide issue. Coal/Natural/Flue gases are evolving as the primary source of CO2, so the capture of CO2 from the mentioned sources are extensively contemplated as the next opportunity for the large-scale deployment of gas separation membranes. Although, current researches indicate the advances in material process designs that can crucially enhance the membrane capture systems as well as the separation systems, which make membrane process technique contentious with other technologies present till date for carbon capture. The aforementioned application requires novel polymeric materials which have the ability for efficient carbon capture and possesses high CO2 separation properties from different mixed gases, along with high mechanical and thermal stability for a longer time. Herein, the present report precisely highlights the recent advancement on the membrane technology based on the functional materials and their applications in the field of CO2 capture.
Keywords
Functional Materials, Composite, Membrane, Carbon-Dioxide Capture
Published online 2/5/2022, 48 pages
Citation: H.J. Bora, N. Sultana, K.J. Goswami, N.S. Sarma, A. Kalita, Advanced Functional Membrane for CO2 Capture, Materials Research Foundations, Vol. 120, pp 267-314, 2022
DOI: https://doi.org/10.21741/9781644901816-9
Part of the book on Advanced Functional Membranes
References
[1] R. Y. Cui, N. Hultman, M. R. Edwards, L. He, A. Sen, K. Surana, H. McJeon, G. Iyer, P. Patel, S. Yu, T. Nace, C. Shearer, Quantifying operational lifetimes for coal power plants under the Paris goals, Nat. Commun. 10 (2019), 4759. https://doi.org/10.1038/s41467-019-12618-3
[2] R. B. Mansour, M. A. Habib, O.E. Bamidele, M. Basha, N. A. A. Qasem, A. Peedikakkal, T. Laoui, M. Ali, Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations–a review. Appl. Energy. 161 (2016), 225-255. https://doi.org/10.1016/j.apenergy.2015.10.011
[3] E. S. Sanz-Pérez, C. R. Murdock, S. A. Didas, C. W. Jones, Recent advances in multilayer composite polymeric membranes for CO2 separation: A review. Green Energy & Environ. 1 (2016), 102-128. https://doi.org/10.1016/j.gee.2016.08.001
[4] D. D. Iarikov, P. Hacarlioglu, S. T. Oyama, Supported room temperature ionic liquid membranes for CO2/CH4 separation, Chem. Eng. Journal, 166 (2011), 401-406. https://doi.org/10.1016/j.cej.2010.10.060
[5] A. Ghoufi, L. Gaberova, J. Rouquerol, D. Vincent, P. L. Llewellyn, G. Maurin, Adsorption of CO2, CH4 and their binary mixture in Faujasite NaY: a combination of molecular simulations with gravimetry–manometry and microcalorimetry measurements, Microporous and Mesoporous Mater. 119 (2009), 117-128. https://doi.org/10.1016/j.micromeso.2008.10.014
[6] G. George, N. Bhoria, S. AlHallaq, A. Abdala, V. Mittal, Polymer membranes for acid gas removal from natural gas, Sep. Purif. Technol. 158 (2016), 333-356. https://doi.org/10.1016/j.seppur.2015.12.033
[7] K. Huang, J.-Y. Zhang, X.-B. Hu, Y.-T. Wu, Absorption of H2S and CO2 in aqueous solutions of tertiary-amine functionalized protic ionic liquids, Energy Fuels. 31 (2017), 14060-14069. https://doi.org/10.1021/acs.energyfuels.7b03049
[8] K. Huang, D. N. Cai, Y. L. Chen, Y. T. Wu, X. B. Hu, Z. B. Zhang, Dual lewis base functionalization of ionic liquids for highly efficient and selective capture of H2S, Chem Plus Chem, 79 (2014), 241. https://doi.org/10.1002/cplu.201300365
[9] K. Huang, X. M. Zhang, X. B. Hu, Y. T. Wu, Hydrophobic protic ionic liquids tethered with tertiary amine group for highly efficient and selective absorption of H2S from CO2. Alchem Journal, 62 (2016), 4480-4490. https://doi.org/10.1002/aic.15363
[10] L. Riboldi, O. Bolland, Comprehensive analysis on the performance of an IGCC plant with a PSA process integrated for CO2 capture. Int. J. Greenh. Gas Control. 43 (2015), 57-69. https://doi.org/10.1016/j.ijggc.2015.10.006
[11] J. T. Culp, Flexible solid sorbents for CO2 capture and separation. Novel Materials for Carbon Dioxide Mitigation Technology, 2015, 149. https://doi.org/10.1016/B978-0-444-63259-3.00005-7
[12] H. Schultz, Climate change and viticulture: a European perspective on climatology, carbon dioxide and UV-B effects. Australian Journal of Grape and Wine Research, 6 (2000), 2-12. https://doi.org/10.1111/j.1755-0238.2000.tb00156.x
[13] L. Riboldi, O. Bolland, Evaluating Pressure Swing Adsorption as a CO2 separation technique in coal-fired power plants. Int. J. Greenh. Gas Control. 39 (2015), 1-16. https://doi.org/10.1016/j.ijggc.2015.02.001
[14] L. Riboldi, O. Bolland, Pressure swing adsorption for coproduction of power and ultrapure H2 in an IGCC plant with CO2 capture. Int. J. Hydrog. Energy, 41(2016), 10646-10660. https://doi.org/10.1016/j.ijhydene.2016.04.089
[15] F. R. Abdeen, M. Mel, M. S. Jami, S. I. Ihsan, A. F. Ismail, A review of chemical absorption of carbon dioxide for biogas upgrading. Chin. J. Chem. Eng. 24 (2016), 693-702. https://doi.org/10.1016/j.cjche.2016.05.006
[16] D. P. Hanak, C. Biliyok, E. J. Anthony, V. Manovic, Modelling and comparison of calcium looping and chemical solvent scrubbing retrofits for CO2 capture from coal-fired power plant. Int. J. Greenh. Gas Control. 42 (2015), 226-236. https://doi.org/10.1016/j.ijggc.2015.08.003
[17] D. P. Hanak, C. Biliyok, V. Manovic, Rate-based model development, validation and analysis of chilled ammonia process as an alternative CO2 capture technology for coal-fired power plants. Int. J. Greenh. Gas Control, 34 (2015), 52-62. https://doi.org/10.1016/j.ijggc.2014.12.013
[18] K. A. Mumford, Y. Wu, K. H. Smith, G. W. Stevens, Review of solvent based carbon-dioxide capture technologies. Front. Chem. Sci. Eng. 9 (2015), 125-141. https://doi.org/10.1007/s11705-015-1514-6
[19] S. Mirzaei, A. Shamiri, M. K. Aroua, A review of different solvents, mass transfer, and hydrodynamics for post combustion CO2 capture. Rev. Chem. Eng. 31 (2015), 521-561. https://doi.org/10.1515/revce-2014-0045
[20] T. Mulukutla, J. Chau, D. Singh, G. Obuskovic, K.K. Sirkar, Novel membrane contactor for CO2 removal from flue gas by temperature swing absorption. J. Membr. Sci. 493 (2015), 321-328. https://doi.org/10.1016/j.memsci.2015.06.039
[21] S. Li, T.J. Pyrzynski, N.B. Klinghoffer, T. Tamale, Y. Zhong, J.L. Aderhold, B. Bikson, Scale-up of PEEK hollow fiber membrane contactor for post-combustion CO2 capture. J. Membr. Sci. 527 (2017), 92-101. https://doi.org/10.1016/j.memsci.2017.01.014
[22] I. Sreedhar, R. Vaidhiswaran, B.M. Kamani, A. Venugopal, Process and engineering trends in membrane-based carbon capture. Renew. Sust. Energ. Rev. 68 (2017), 659-684. https://doi.org/10.1016/j.rser.2016.10.025
[23] M. Li, X. Jiang, G. He, Application of membrane separation technology in postcombustion carbon dioxide capture process. Front. Chem. Sci. Eng. 8 (2014), 233-239. https://doi.org/10.1007/s11705-014-1408-z
[24] P. Luis, B. Van der Bruggen, The role of membranes in post‐combustion CO2 capture. Greenh. Gases. 3 (2013), 318-337. https://doi.org/10.1002/ghg.1365
[25] L. Li, N. Zhao, W. Wei, Y. Sun, A review of research progress on CO2 capture, storage, and utilization. Fuel, 108 (2013), 112-130. https://doi.org/10.1016/j.fuel.2011.08.022
[26] M. E. Boot-Handford, J. C. Abanades, E. J. Anthony, M. J. Blunt, S. Brandani, N. Mac Dowell, P.S. Fennell, Carbon capture and storage update. Energy Environ. Sci. 7 (2014), 130-189. https://doi.org/10.1039/C3EE42350F
[27] G. Hu, N. J. Nicholas, K. H. Smith, K. A. Mumford, S. E. Kentish, G. W. Stevens, Carbon dioxide absorption into promoted potassium carbonate solutions: A review. Int. J. Greenh. Gas Control. 53 (2016), 28-40. https://doi.org/10.1016/j.ijggc.2016.07.020
[28] B. Zhao, W. Tao, M. Zhong, Y. Su, G. Cui, Process, performance and modeling of CO2 capture by chemical absorption using high gravity: A review. Renew. Sust. Energ. Rev. 65 (2016), 44-56. https://doi.org/10.1016/j.rser.2016.06.059
[29] Z. Liang, K. Fu, R. Idem, P. Tontiwachwuthikul, Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents. Chin. J. chem. Eng. 24 (2016), 278-288. https://doi.org/10.1016/j.cjche.2015.06.013
[30] Z. Dai, L. Ansaloni, L. Deng, Recent advances in multilayer composite polymeric membranes for CO2 separation: A review. Green Energy Environ. 1 (2016), 102-128. https://doi.org/10.1016/j.gee.2016.08.001
[31] Y. S. Bae, K. L. Mulfort, H. Frost, P. Ryan, S. Punnathanam, L. J. Broadbelt, R. Q. Snurr, Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks. Langmuir. 24 (2008), 8592-8598. https://doi.org/10.1021/la800555x
[32] X. Q. Zhang, W. C. Li, A. H. Lu, Designed porous carbon materials for efficient CO2 adsorption and separation. New Carbon Mater. 30 (2015), 481-501. https://doi.org/10.1016/S1872-5805(15)60203-7
[33] M. Wiśniewski, S. Koter, A. P. Terzyk, J. Włoch, P. Kowalczyk, CO2-Reinforced nanoporous carbon potential energy field during CO2/CH4 mixture adsorption. A comprehensive volumetric, in-situ IR, and thermodynamic insight. Carbon. 122 (2017), 185-193. https://doi.org/10.1016/j.carbon.2017.06.057
[34] N. Jusoh, Y. F. Yeong, K. K. Lau, A. M. Shariff, Fabrication of silanated zeolite T/6FDA-durene composite membranes for CO2/CH4 separation. J. Clean. Prod. 166 (2017), 1043-1058. https://doi.org/10.1016/j.jclepro.2017.08.080
[35] S. R. Venna, M. A. Carreon, Metal organic framework membranes for carbon dioxide separation. Chem. Eng. Sci. 124 (2015), 3-19. https://doi.org/10.1016/j.ces.2014.10.007
[36] S. Kayal, A. Chakraborty, Activated carbon (type Maxsorb-III) and MIL-101 (Cr) metal organic framework based composite adsorbent for higher CH4 storage and CO2 capture. Chem. Eng. J. 334 (2018), 780-788. https://doi.org/10.1016/j.cej.2017.10.080
[37] G. Bello, R. Garcı́a, R. Arriagada, A. Sepulveda-Escribano, F. Rodrıguez-Reinoso, Carbon molecular sieves from Eucalyptus globulus charcoal. Microporous and mesoporous materials. 56 (2002), 139-145. https://doi.org/10.1016/S1387-1811(02)00465-1
[38] R. Arriagada, G. Bello, R. García, F. Rodríguez-Reinoso, A. Sepúlveda-Escribano, Carbon molecular sieves from hardwood carbon pellets. The influence of carbonization temperature in gas separation properties. Microporous and mesoporous materials. 81 (2005), 161-167. https://doi.org/10.1016/j.micromeso.2005.02.005
[39] M. Lutyński, P. Waszczuk, P. Słomski, J. Szczepański, CO2 sorption of Pomeranian gas bearing shales–the effect of clay minerals. Energy Procedia. 125 (2017), 457-466. https://doi.org/10.1016/j.egypro.2017.08.153
[40] F. Gholipour, M. Mofarahi, Adsorption equilibrium of methane and carbon dioxide on zeolite 13X: Experimental and thermodynamic modeling. The Journal of Supercritical Fluids. 111 (2016), 47-54. https://doi.org/10.1016/j.supflu.2016.01.008
[41] X. Xu, J. Wang, A. Zhou, S. Dong, K. Shi, B. Li, D. O’Hare, High-efficiency CO2 separation using hybrid LDH-polymer membranes. Nature comm. 12 (2021), 1-10. https://doi.org/10.1038/s41467-021-23121-z
[42] A. Mukhtar, S. Saqib, N. B. Mellon, M. Babar, S. Rafiq, S. Ullah, M. Chawla, CO2 capturing, thermo-kinetic principles, synthesis and amine functionalization of covalent organic polymers for CO2 separation from natural gas: A review. J. Nat. Gas Sci. Eng. 77 (2020), 103203. https://doi.org/10.1016/j.jngse.2020.103203
[43] Z. Dai, L. Ansaloni, L. Deng, Recent advances in multilayer composite polymeric membranes for CO2 separation: A review. Green Energy Environ. 1 (2016), 102-128. https://doi.org/10.1016/j.gee.2016.08.001
[44] Y. W. Jeon, D. H. Lee, Gas membranes for CO2/CH4 (biogas) separation: a review. Env. Eng. Sci. 32 (2015), 71-85. https://doi.org/10.1089/ees.2014.0413
[45] X. Y. Chen, H. Vinh-Thang, A. A. Ramirez, D. Rodrigue, S. Kaliaguine, Membrane gas separation technologies for biogas upgrading. Rsc Adv. 5 (2015), 24399-24448. https://doi.org/10.1039/C5RA00666J
[46] E. R. Minardi, S. Chakraborty, V. Calabro, S. Curcio, E. Drioli, Membrane applications for biogas production and purification processes: an overview on a smart alternative for process intensification. Rsc Adv. 5 (2015), 14156-14186. https://doi.org/10.1039/C4RA11819G
[47] M. Scholz, T. Melin, M. Wessling, Transforming biogas into biomethane using membrane technology. Renew. Sust. Energ. Rev. 17 (2013), 199-212. https://doi.org/10.1016/j.rser.2012.08.009
[48] S. Basu, A.L. Khan, A. Cano-Odena, C. Liu, I.F. Vankelecom, Membrane-based technologies for biogas separations. Chem. Soc. Rev. 39 (2010), 750-768. https://doi.org/10.1039/B817050A
[49] J. K. Adewole, A. L. Ahmad, S. Ismail, C. P. Leo, Current challenges in membrane separation of CO2 from natural gas: A review. Int. J. Greenh. Gas Control. 17 (2013), 46-65. https://doi.org/10.1016/j.ijggc.2013.04.012
[50] Y. Zhang, J. Sunarso, S. Liu, R. Wang, Current status and development of membranes for CO2/CH4 separation: A review. Int. J. of Greenh. Gas Control, 12 (2013), 84-107. https://doi.org/10.1016/j.ijggc.2012.10.009
[51] C. A. Scholes, G. W. Stevens, S. E. Kentish, Membrane gas separation applications in natural gas processing. Fuel. 9 6(2012), 15-28. https://doi.org/10.1016/j.fuel.2011.12.074
[52] Z. Y. Yeo, T. L. Chew, P. W. Zhu, A. R. Mohamed, S. P. Chai, Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review. J. Nat. Gas Chem. 21 (2012), 282-298. https://doi.org/10.1016/S1003-9953(11)60366-6
[53] P. Luis, T. Van Gerven, B. Van der Bruggen, Recent developments in membrane-based technologies for CO2 capture. Prog. Energy Combust. Sci. 38 (2012), 419-448. https://doi.org/10.1016/j.pecs.2012.01.004
[54] C. A. Scholes, K. H. Smith, S. E. Kentish, G. W. Stevens, CO2 capture from pre-combustion processes-strategies for membrane gas separation. Int. J. Greenh. Gas Control. 4 (2010), 739-755. https://doi.org/10.1016/j.ijggc.2010.04.001
[55] K. Ramasubramanian, W. W. Ho, Recent developments on membranes for post-combustion carbon capture. Curr. Opi. Chem. Eng. 1 (2011), 47-54. https://doi.org/10.1016/j.coche.2011.08.002
[56] X. Zhang, B. Singh, X. He, T. Gundersen, L. Deng, S. Zhang, Post-combustion carbon capture technologies: energetic analysis and life cycle assessment. Int. J. Greenh. Gas Control. 27 (2014), 289-298. https://doi.org/10.1016/j.ijggc.2014.06.016
[57] F. Gallucci, E. Fernandez, P. Corengia, M. van Sint Annaland, Recent advances on membranes and membrane reactors for hydrogen production. Chem. Eng. Sci. 92 (2013), 40-66. https://doi.org/10.1016/j.ces.2013.01.008
[58] L. Shao, B. T. Low, T. S. Chung, A. R. Greenberg, Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future. J. Membr. Sci. 327 (2009), 18-31. https://doi.org/10.1016/j.memsci.2008.11.019
[59] N. W. Ockwig, T. M. Nenoff, Membranes for hydrogen separation. Chem. Rev. 107 (2007), 4078-4110. https://doi.org/10.1021/cr0501792
[60] P. Bakonyi, N. Nemestóthy, K. Bélafi-Bakó, Biohydrogen purification by membranes: an overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid-based gas separation membranes. Int. J. Hydrogen Energy. 38 (2013), 9673-9687. https://doi.org/10.1016/j.ijhydene.2013.05.158
[61] R. Faiz, K. Li, Olefin/paraffin separation using membrane based facilitated transport/chemical absorption techniques. Chem. Eng. Sci. 73 (2012), 261-284. https://doi.org/10.1016/j.ces.2012.01.037
[62] M. T. Ravanchi, T. Kaghazchi, A. Kargari, Application of membrane separation processes in petrochemical industry: a review. Desalination. 235 (2009), 199-244. https://doi.org/10.1016/j.desal.2007.10.042
[63] L. M. Robeson, The upper bound revisited. J. Membr. Sci. 320 (2008), 390-400. https://doi.org/10.1016/j.memsci.2008.04.030
[64] R. W. Baker, B. T. Low, Gas separation membrane materials: a perspective. Macromolecules. 47 (2014), 6999-7013. https://doi.org/10.1021/ma501488s
[65] S. H. Yoo, J. H. Kim, J. Y. Jho, J. Won, Y. S. Kang, Influence of the addition of PVP on the morphology of asymmetric polyimide phase inversion membranes: effect of PVP molecular weight. J. Membr. Sci. 236(2004), 203-207. https://doi.org/10.1016/j.memsci.2004.02.017
[66] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Env. Sci. 7 (2014), 3857-3886. https://doi.org/10.1039/C4EE01432D
[67] T. Masuda, Y. Iguchi, B. Z. Tang, T. Higashimura, Diffusion and solution of gases in substituted polyacetylene membranes. Polymer, 29 (1988), 2041-2049. https://doi.org/10.1016/0032-3861(88)90178-4
[68] L. M. Robeson, W. F. Burgoyne, M. Langsam, A. C. Savoca, C. F. Tien, High performance polymers for membrane separation. Polymer. 35(1994), 4970-4978. https://doi.org/10.1016/0032-3861(94)90651-3
[69] R. W. Baker, B. T. Low, Gas separation membrane materials: a perspective. Macromolecules. 47(2014), 6999-7013. https://doi.org/10.1021/ma501488s
[70] S. Harms, K. Rätzke, F. Faupel, N. Chaukura, P. M. Budd, W. Egger, L. Ravelli, Aging and free volume in a polymer of intrinsic microporosity (PIM-1). The Journal of Adhesion. 88 (2012), 608-619. https://doi.org/10.1080/00218464.2012.682902
[71] J. G. Wijmans, R. W. Baker, The solution-diffusion model: a unified approach to membrane permeation. Materials science of membranes for gas and vapor separation. 1 (2006), 159-189. https://doi.org/10.1002/047002903X.ch5
[72] R. D. Noble, C. A. Koval, Review of facilitated transport membranes John Wiley and Sons: Chichester, England. 2006, 411-435. https://doi.org/10.1002/047002903X.ch17
[73] L. Deng, T. J. Kim, M. B. Hägg, Facilitated transport of CO2 in novel PVAm/PVA blend membrane. J. Membr. Sci. 340(2009), 154-163. https://doi.org/10.1016/j.memsci.2009.05.019
[74] R. D. Noble, C. A. Koval, Review of facilitated transport membranes. John Wiley and Sons: Chichester, England, 2006, 411-435. https://doi.org/10.1002/047002903X.ch17
[75] M. Wang, Z. Wang, S. Li, C. Zhang, J. Wang, S. Wang, A high performance antioxidative and acid resistant membrane prepared by interfacial polymerization for CO2 separation from flue gas. Energy Environ. Sci. 6 (2013), 539-551. https://doi.org/10.1039/C2EE23080A
[76] Y. Li, Q. Xin, H. Wu, R. Guo, Z. Tian, Y. Liu, Z. Jiang, Efficient CO2 capture by humidified polymer electrolyte membranes with tunable water state. Energy Environ. Sci. 7 (2014), 1489-1499. https://doi.org/10.1039/c3ee43163k
[77] M. Saeed, L. Deng, CO2 facilitated transport membrane promoted by mimic enzyme. J. Membr. Sci. 494 (2015), 196-204. https://doi.org/10.1016/j.memsci.2015.07.028
[78] K. Yao, Z. Wang, J. Wang, S. Wang, Biomimetic material-poly (N-vinylimidazole)-zinc complex for CO2 separation. Chem. Comm. 48 (2012), 1766-1768. https://doi.org/10.1039/c2cc16835a
[79] W. R. Browall, Washington, DC: US Patent and Trademark Office, 1976, US Patent No. 3,980,456.
[80] J. M., Henis, M. K. Tripodi, Washington, DC: US Patent and Trademark Office. 1980, US Patent No. 4,230,463.
[81] S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, S. Zhang, Ionic-liquid-based CO2 capture systems: structure, interaction and process. Chem. Rev. 117 (2017), 9625-9673. https://doi.org/10.1021/acs.chemrev.7b00072
[82] M. E. Boot-Handford, J. C. Abanades, E. J. Anthony, M. J. Blunt, S. Brandani, N. Mac Dowell, P.S. Fennell, Carbon capture and storage update. Energy Env. Sci. 7 (2014), 130-189. https://doi.org/10.1039/C3EE42350F
[83] X. Liu, Y. Huang, Y. Zhao, R. Gani, X. Zhang, S. Zhang, Ionic liquid design and process simulation for decarbonization of shale gas. Ind. Eng. Chem. Res. 55 (2016), 5931-5944. https://doi.org/10.1021/acs.iecr.6b00029
[84] G. Cevasco, C. Chiappe, Are ionic liquids a proper solution to current environmental challenges? Green Chem. 16 (2014), 2375-2385. https://doi.org/10.1039/c3gc42096e
[85] Z. Z. Yang, Y. N. Zhao, L. N. He, CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC adv. 1 (2011), 545-567. https://doi.org/10.1039/c1ra00307k
[86] Giernoth, R. Task‐specific ionic liquids. Angewandte Chemie International Edition. 49 (2010), 2834-2839. https://doi.org/10.1002/anie.200905981
[87] E. I. Privalova, P. Mäki-Arvela, D. Y. Murzin, J. P. Mikkhola, Capturing CO2: conventional versus ionic-liquid based technologies. Russ. Chem. Rev. 81 (2012), 81(5), 435. https://doi.org/10.1070/RC2012v081n05ABEH004288
[88] J. F. Brennecke, B. E. Gurkan, Ionic liquids for CO2 capture and emission reduction. J. Phys. Chem. Lett. 1 (2010), 3459-3464. https://doi.org/10.1021/jz1014828
[89] L. Zhang, J. Chen, J.X. Lv, S.F. Wang, Y. Cui, Progress and development of capture for CO2 by ionic liquids-a review. Asian J. Chem. 25 (2013), 2355. https://doi.org/10.14233/ajchem.2013.13552
[90] C. Wang, X. Luo, X. Zhu, G. Cui, D. E. Jiang, Deng, D. S. Dai, The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids. Rsc Adv. 3 (2013), 15518-15527. https://doi.org/10.1039/c3ra42366b
[91] S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, S. Zhang, Ionic-liquid-based CO2 capture systems: structure, interaction and process. Chem. Rev. 117 (2017), 9625-9673. https://doi.org/10.1021/acs.chemrev.7b00072
[92] J. L. Anderson, J. K. Dixon, J. F. Brennecke, Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-Hexyl-3-methylpyridinium Bis (trifluoromethylsulfonyl) imide: Comparison to other ionic liquids. Acc. Chem. Res. 40 (2007), 1208-1216. https://doi.org/10.1021/ar7001649
[93] K. Huang, X. M. Zhang, Y. Xu, Y. T. Wu, X. B. Hu, Y. Xu, Protic ionic liquids for the selective absorption of H2S from CO2: thermodynamic analysis. AIChE Journal. 60 (2014), 4232-4240. https://doi.org/10.1002/aic.14634
[94] J. E. Bara, C. J. Gabriel, S. Lessmann, T. K. Carlisle, A. Finotello, D. L. Gin, R. D. Noble, Enhanced CO2 separation selectivity in oligo (ethylene glycol) functionalized room-temperature ionic liquids. Ind. Eng. Chem. Res. 46 (2007), 5380-5386. https://doi.org/10.1021/ie070437g
[95] T. K. Carlisle, J. E. Bara, C. J. Gabriel, R. D. Noble, D. L. Gin, Interpretation of CO2 solubility and selectivity in nitrile-functionalized room-temperature ionic liquids using a group contribution approach. Ind. Eng. Chem. Res. 47 (2008), 7005-7012. https://doi.org/10.1021/ie8001217
[96] A. Finotello, J. E. Bara, D. Camper, R. D. Noble, Room-temperature ionic liquids: temperature dependence of gas solubility selectivity. Ind. Eng. Chem. Res. 47 (2008), 3453-3459. https://doi.org/10.1021/ie0704142
[97] A. Finotello, J. E. Bara, S. Narayan, D. Camper, R. D. Noble, Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids. J. Phys. Chem. B. 112 (2008), 2335-2339. https://doi.org/10.1021/jp075572l
[98] X. Zhang, S. Zhang, D. Bao, Y. Huang, X. Zhang, Absorption degree analysis on biogas separation with ionic liquid systems. Bioresour. Technol. 175 (2015), 135-141. https://doi.org/10.1016/j.biortech.2014.10.048
[99] M. Ramdin, A. Amplianitis, S. Bazhenov, A. Volkov, V. Volkov, T. J. Vlugt, T. W. de Loos, Solubility of CO2 and CH4 in ionic liquids: ideal CO2/CH4 selectivity. Ind. Eng. Chem. Res. 53 (2014), 15427-15435. https://doi.org/10.1021/ie4042017
[100] M. Ramdin, T.W. de Loos, T. J. Vlugt, State-of-the-art of CO2 capture with ionic liquids. Ind. Eng. Chem. Res. 51 (2012), 8149-8177. https://doi.org/10.1021/ie3003705
[101] J. Jacquemin, P. Husson, V. Majer, M.F.C. Gomes, Low-pressure solubilities and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate. Fluid Phase Equilibria. 240 (2006), 87-95. https://doi.org/10.1016/j.fluid.2005.12.003
[102] J. Jacquemin, M. F. C. Gomes, P. Husson, V. Majer, Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric. J. Chem. Thermodyn. 38 (2006), 490-502. https://doi.org/10.1016/j.jct.2005.07.002
[103] W. Shi, D.C. Sorescu, D.R. Luebke, M.J. Keller, S. Wickramanayake, Molecular simulations and experimental studies of solubility and diffusivity for pure and mixed gases of H2, CO2, and Ar absorbed in the ionic liquid 1-n-Hexyl-3-methylimidazolium Bis(Trifluoromethylsulfonyl) amide ([hmim][Tf2N]). J. Phy. Chem. B. 114 (2010), 6531-6541. https://doi.org/10.1021/jp101897b
[104] L. Hillain, M. Eddaoudi, M. O’Keefe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402 (1999), 276-279. https://doi.org/10.1038/46248
[105] O. M. Yaghi, H. Li, Hydrothermal Synthesis of a Metal-organic framework containing large rectangular channels, J. Am. Chem. Soc. 117 (1995), 10401-10402. https://doi.org/10.1021/ja00146a033
[106] S. Qiu, M. Xue, G. Zhu, Metal–organic framework membranes: from synthesis to separation application, Chem. Soc. Rev. 43 (2014), 6116-6140. https://doi.org/10.1039/C4CS00159A
[107] M. Mohanned, N. Devjyoti, I. Hussameldin, H. Amr, Review of Recent Developments in CO2 Capture Using Solid Materials: Metal Organic Frameworks (MOFs), Greenhouse Gases Bernardo Llamas, IntechOpen, 2016, 115-154.
[108] S. M. Cohen, Postsynthetic methods for the functionalization of metal–organic frameworks, Chem. Rev. 112 (2011), 970-1000. https://doi.org/10.1021/cr200179u
[109] J. Sculley, D. Yuan, H.-C. Zhou, The current status of hydrogen storage in metal–organic frameworks—updated, Energy Environ Sci. 4 (2011), 2721-2735. https://doi.org/10.1039/c1ee01240a
[110] J. A. Mason, M. Veenstra, J. R. Long, Evaluating metal–organic frameworks for natural gas storage, Chem. Sci. 5 (2014), 32-51. https://doi.org/10.1039/C3SC52633J
[111] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae, J. R. Long, Carbon dioxide capture in metal–organic frameworks, Chem. Rev. 112 (2012), 724-781. https://doi.org/10.1021/cr2003272
[112] M. S. Denny, J. C. Moreton, L. Benz, S. M. Cohen, Metal–organic frameworks for membrane-based separations, Nat. Rev. Mater. 1 (2016), 16078. https://doi.org/10.1038/natrevmats.2016.78
[113] M. Ranocchiari, J. A. van Bokhoven, Catalysis by metal–organic frameworks: fundamentals and opportunities, Phys. Chem. Chem. Phys., 13 (2011), 6388-6396. https://doi.org/10.1039/c0cp02394a
[114] B. Liu, Metal–organic framework-based devices: separation and sensors, J. Mater. Chem., 22 (2012), 10094. https://doi.org/10.1039/c2jm15827b
[115] A. C. McKinlay, R. E. Morris, P. Horcajada, G. Férey, R. Gref, P. Couvreur, C. Serre, BioMOFs: Metal–organic frameworks for biological and medical applications, Angew. Chem. Int. Ed. 49 (2010), 6260-6266. https://doi.org/10.1002/anie.201000048
[116] C. G. Silva, A. Corma, H. Garcia, Metal–organic frameworks as semiconductors, J. Mater. Chem. 20 (2010), 3141-3156. https://doi.org/10.1039/b924937k
[117] P. Kumar, V. Bansal, A. Deep, K.-H. Kim, Synthesis and energy applications of metal organic frameworks, J. Porous Mater. 22 (2015), 413-424. https://doi.org/10.1007/s10934-015-9910-3
[118] M. Zhang, M. Bosch, I.T. Gentle, H.-C. Zhou, Rational design of metal–organic frameworks with anticipated porosities and functionalities, CrystEngComm. 16 (2014), 4069-4089. https://doi.org/10.1039/C4CE00321G
[119] J. P. Sculley, W. M. Verdegaal, W. Lu, M. Wriedt, H. C. Zhou, High-throughput analytical model to evaluate materials for temperature swing adsorption Processes, Adv. Mater. 25 (2013), 3957-3961. https://doi.org/10.1002/adma.201204695
[120] T. Watanabe, D. S. Sholl, Accelerating applications of metal–organic frameworks for gas adsorption and separation by computational screening of materials, Langmuir. 28 (2012), 14114-14128. https://doi.org/10.1021/la301915s
[121] Y. J. Colón, R. Q. Snurr, High-throughput computational screening of metal–organic frameworks, Chem. Soc. Rev. 43 (2014), 5735-5749. https://doi.org/10.1039/C4CS00070F
[122] D. A. Gomez-Gualdron, Y. J. Colon, X. Zhang, T. C. Wang, Y.-S. Chen, J. T. Hupp, T. Yildirim, O.K. Farha, J. Zhang, R. Q. Snurr, Understanding volumetric and gravimetric hydrogen adsorption trade-off in metal–organic frameworks, Energy Environ. Sci. 9 (2016), 33419-33428. https://doi.org/10.1039/C6EE02104B
[123] D. Feng, K. Wang, Z. Wei, Y.-P. Chen, C.M. Simon, R.K. Arvapally, R.L. Martin, M. Bosch, T.-F. Liu, S. Fordham, D. Yuan, M.A. Omary, M. Haranczyk, B. Smit, H.-C. Zhou, Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks, Nat. Commun. 5 (2014), 5723. https://doi.org/10.1038/ncomms6723
[124] D. Andirova, C.F. Cogswell, Y. Lei, S. Choi, Effect of the structural constituents of metal organic frameworks on carbon dioxide capture, Microporous Mesoporous Mater. 219 (2016), 276-305. https://doi.org/10.1016/j.micromeso.2015.07.029
[125] S. Han, Y. Huang, T. Watanabe, Y. Dai, K.S. Walton, S. Nair, D.S. Sholl, J. C. Meredith, High-throughput screening of metal–organic frameworks for CO2 separation, ACS Comb. Sci., 14 (2012), 263-267. https://doi.org/10.1021/co3000192
[126] J. A. Mason, T. M. McDonald, T.-H. Bae, J. E. Bachman, K. Sumida, J. J. Dutton, S. S. Kaye, J. R. Long, Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O, J. Am. Chem. Soc., 137 (2015), 4787-4803. https://doi.org/10.1021/jacs.5b00838
[127] I. Sreedhar, R. Vaidhiswaran, B. M. Kamani, A. Venugopal, Process and engineering trends in membrane-based carbon capture, Renewable Sustainable Energy Rev. 68 (2017), 659-684. https://doi.org/10.1016/j.rser.2016.10.025
[128] M. S. Denny, J. C. Moreton, L. Benz, S. M. Cohen, Metal–organic frameworks for membrane-based separations, Nat. Rev. Mater. 1 (2016), 16078. https://doi.org/10.1038/natrevmats.2016.78
[129] D. Zacher, O. Shekhah, C. Woll, R. A. Fischer, Thin films of metal–organic frameworks, Chem. Soc. Rev. 38 (2009), 1418-1429. https://doi.org/10.1039/b805038b
[130] N. C. Su, D. T. Sun, C. M. Beavers, D. K. Britt, W. L. Queen, J. J. Urban, Enhanced permeation arising from dual transport pathways in hybrid polymer–MOF membranes, Energy Environ. Sci. 9 (2016), 922-931. https://doi.org/10.1039/C5EE02660A
[131] A. Sabetghadam, B. Seoane, D. Keskin, N. Duim, T. Rodenas, S. Shahid, S. Sorribas, C.L. Guillouzer, G. Clet, C. Tellez, M. Daturi, J. Coronas, F. Kapteijn, J. Gascon, Metal-organic framework crystals in mixed-matrix membranes: impact of the filler morphology on the gas separation performance, Adv. Funct. Mater. 26 (2016), 3154-3163. https://doi.org/10.1002/adfm.201505352
[132] T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F.X. Llabrés i Xamena, J. Gascon, Metal–organic framework nanosheets in polymer composite materials for gas separation, Nat. Mater. 14 (2015), 48-55. https://doi.org/10.1038/nmat4113
[133] A. Marti, D. Tran, K. Jr. Balkus, Materials and processes for CO2 capture, conversion, and sequestration, J. Porous Mater. 1 (2015).
[134] M. S. Denny, S. M. Cohen, In situ modification of metal–organic frameworks in mixed-matrix membranes, Angew. Chem. Int. Ed. 54 (2015), 9029-9032. https://doi.org/10.1002/anie.201504077
[135] K. Huang, Q. Li, G. Liu, J. Shen, K. Guan, W. Jin, A ZIF-71 Hollow fiber membrane fabricated by contra-diffusion, ACS Appl. Mater. Interfaces. 7 (2015), 16157-16160. https://doi.org/10.1021/acsami.5b04991
[136] X. Liu, N. K. Demir, Z. Wu, K. Li, Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination, J. Am. Chem. Soc. 137 (2015), 6999-7002. https://doi.org/10.1021/jacs.5b02276
[137] M. N. Shah, M. A. Gonzalez, M. C. McCarthy, H.-K. Jeong, An unconventional rapid synthesis of high-performance metal–organic framework membranes, Langmuir, 29 (2013), 7896-7902. https://doi.org/10.1021/la4014637
[138] M. Tu, S. Wannapaiboon, R. A. Fischer, Programmed functionalization of SURMOFs via liquid phase heteroepitaxial growth and post-synthetic modification, Dalton Trans. 42 (2013), 16029-16035. https://doi.org/10.1039/c3dt51457a
[139] S. C. Hess, R. N. Grass, W. J. Stark, MOF channels within porous polymer film: flexible, self-supporting ZIF-8 Poly(ether sulfone) composite membrane, Chem. Mater. 28 (2016), 7638-7644. https://doi.org/10.1021/acs.chemmater.6b02499
[140] J. Hou, P.D. Sutrisna, Y. Zhang, V. Chen, Formation of ultrathin, continuous metal–organic framework membranes on flexible polymer substrates, Angew. Chem. Int. Ed. 55 (2016), 3947-3951. https://doi.org/10.1002/anie.201511340
[141] J. Dechnik, F. Mühlbach, D. Dietrich, T. Wehner, M. Gutmann, T. Lühmann, L. Meinel, C. Janiak, K. Müller-Buschbaum, Luminescent metal–organic framework mixed-matrix membranes from lanthanide metal–organic frameworks in polysulfone and matrimid, Eur. J. Inorg. Chem. 27 (2016), 4408-4415. https://doi.org/10.1002/ejic.201600235
[142] W. J. Li, S. Y. Gao, T. F. Liu, L. W. Han, Z. J. Lin, R. Cao, In Situ Growth of Metal–Organic Framework Thin Films with Gas Sensing and Molecule Storage Properties, Langmuir. 29 (2013), 8657-8664. https://doi.org/10.1021/la402012d
[143] C. R. Wade, M. Li, M. Dincă, Facile deposition of multicolored electrochromic metal–organic framework thin films, Angew. Chem. Int. Ed. 52 (2013), 13377-13381. https://doi.org/10.1002/anie.201306162
[144] T. C. Merkel, H. Lin, X. Wei, R. Baker, Power plant post-combustion carbon dioxide capture: An opportunity for membranes, J. Membr. Sci., 359 (2010), 126-139. https://doi.org/10.1016/j.memsci.2009.10.041
[145] B. Zornoza, C. Tellez, J. Coronas, J. Gascon, F. Kapteijn, Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential, Microporous Mesoporous Mater. 166 (2013), 67-78. https://doi.org/10.1016/j.micromeso.2012.03.012
[146] S. Kim, Y. M. Lee, High performance polymer membranes for CO2 separation, Curr. Opin. Chem. Eng. 2 (2013), 238-244. https://doi.org/10.1016/j.coche.2013.03.006
[147] D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robeson, J. E. McGrath, D. R. Paul, B. D. Freeman, Energy-efficient polymeric gas separation membranes for a sustainable future: A review, Polymer. 54 (2013), 4729-4761. https://doi.org/10.1016/j.polymer.2013.05.075
[148] B. Seoane, J. Coronas, I. Gascon, M. E. Benavides, O. Karvan, J. Caro, F. Kapteijn, J. Gascon, Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem. Soc. Rev. 44 (2015), 2421-2454. https://doi.org/10.1039/C4CS00437J
[149] L. S. White, X. Wei, S. Pande, T. Wu, T. C. Merkel, Extended flue gas trials with a membrane-based pilot plant at a one-ton-per-day carbon capture rate, J. Membr. Sci. 496 (2015), 48-57. https://doi.org/10.1016/j.memsci.2015.08.003
[150] R. Adams, C. Carson, J. Ward, R. Tannenbaum, W. Koros, Metal organic framework mixed matrix membranes for gas separations, Microporous Mesoporous Mater. 131 (2010), 13-20. https://doi.org/10.1016/j.micromeso.2009.11.035
[151] S. R. Venna, M. Lartey, T. Li, A. Spore, S. Kumar, H. B. Nulwala, D. R. Luebke, N. L. Rosi, E. Albenze, Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles, J. Mater. Chem. A. 3 (2015), 5014-5022. https://doi.org/10.1039/C4TA05225K
[152] S. Shahid, K. Nijmeijer, S. Nehache, I. Vankelecom, A. Deratani, D. Quemener, MOF-mixed matrix membranes: Precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties, J. Membr. Sci. 492 (2015), 21-31. https://doi.org/10.1016/j.memsci.2015.05.015
[153] J. Campbell, G. Szekely, R.P. Davies, D.C. Braddock, A.G. Livingston, Fabrication of hybrid polymer/metal organic framework membranes: mixed matrix membranes versus in situ growth, J. Mater. Chem. A. 2 (2014), 9260-9271. https://doi.org/10.1039/C4TA00628C
[154] T. T. Moore, W. J. Koros, Non-ideal effects in organic–inorganic materials for gas separation membranes, J. Mol. Struct. 739 (2005), 87-98. https://doi.org/10.1016/j.molstruc.2004.05.043
[155] R. Pal, Permeation models for mixed matrix membranes, J. Colloid Interface Sci. 317 (2008), 191-198. https://doi.org/10.1016/j.jcis.2007.09.032
[156] R. Semino, N.A. Ramsahye, A. Ghoufi, G. Maurin, Microscopic model of the metal–organic framework/polymer interface: A first step toward understanding the compatibility in mixed matrix membranes, ACS Appl. Mater. Interfaces. 8 (2016), 809-819. https://doi.org/10.1021/acsami.5b10150
[157] R. Lin, L. Ge, H. Diao, V. Rudolph, Z. Zhu, Ionic liquids as the MOFs/polymer interfacial binder for efficient membrane separation, ACS Appl. Mater. Interfaces. 8 (2016), 32041-32049. https://doi.org/10.1021/acsami.6b11074
[158] M. W. Anjum, F. Vermoortele, A. L. Khan, B. Bueken, D. E. De Vos, I. F. J. Vankelecom, Modulated UiO-66-based mixed-matrix membranes for CO2 separation, ACS Appl. Mater. Interfaces, 7 (2015), 25193-25201. https://doi.org/10.1021/acsami.5b08964
[159] E. Perez, C. Karunaweera, I. Musselman, K. Balkus, J. Ferraris, Origins and evolution of inorganic-based and MOF-based mixed-matrix membranes for gas separations, Processes, 4 (2016), 32. https://doi.org/10.3390/pr4030032
[160] F. Cacho-Bailo, G. Caro, M. Etxeberria-Benavides, O. Karvan, C. Tellez, J. Coronas, MOF–polymer enhanced compatibility: post-annealed zeolite imidazolate framework membranes inside polyimide hollow fibers, RSC Advances, 6 (2016), 5881-5889. https://doi.org/10.1039/C5RA26076K
[161] P. Su, W. Li, C. Zhang, Q. Meng, C. Shen, G. Zhang, Metal based gels as versatile precursors to synthesize stiff and integrated MOF/polymer composite membranes, J. Mater. Chem. A. 3 (2015), 20345-20351. https://doi.org/10.1039/C5TA04400F
[162] F. Cacho-Bailo, G. Caro, M. Etxeberria-Benavides, O. Karvan, C. Tellez, J. Coronas, High selectivity ZIF-93 hollow fiber membranes for gas separation, Chem. Commun. 51 (2015), 11283-11285. https://doi.org/10.1039/C5CC03937A
[163] W. Li, Z. Yang, G. Zhang, Z. Fan, Q. Meng, C. Shen, C. Gao, Stiff metal–organic framework–polyacrylonitrile hollow fiber composite membranes with high gas permeability, J. Mater. Chem. A. 2 (2014), 2110-2118. https://doi.org/10.1039/C3TA13781C
[164] T. Ben, C. Lu, C. Pei, S. Xu, S. Qiu, Polymer-supported and free-standing metal–organic framework membrane, Chem. Eur. J. 18 (2012), 10250-10253. https://doi.org/10.1002/chem.201201574
[165] Y. Hu, X. Dong, J. Nan, W. Jin, X. Ren, N. Xu, Y. M. Lee, Metal–organic framework membranes fabricated via reactive seeding, Chem. Commun. 47 (2011), 737-739. https://doi.org/10.1039/C0CC03927F
[166] P. A. Bayliss, I. A. Ibarra, E. Perez, S.Yang, C. C. Tang, M. Poliakoff, M. Schroder, Synthesis of metal–organic frameworks by continuous flow Green Chem. 16 (2014), 3796-3802. https://doi.org/10.1039/C4GC00313F
[167] M. P. Batten, M. Rubio-Martinez, T. Hadley, K.-C. Carey, K.-S. Lim, A. Polyzos, M. R. Hill, Continuous flow production of metal-organic frameworks, Curr. Opin. Chem. Eng. 8 (2015), 55-59. https://doi.org/10.1016/j.coche.2015.02.001
[168] M. Rubio-Martinez, T.D. Hadley, M.P. Batten, K. Constanti-Carey, T. Barton, Marley, D.; Mönch, A.; Lim, K.-S.; Hill, M. R. Scalability of continuous flow production of metal-organic frameworks, ChemSusChem. 9 (2016), 938. https://doi.org/10.1002/cssc.201501684
[169] A. J. Brown, N.A. Brunelli, K. Eum, F. Rashidi, J.R. Johnson, W.J. Koros, C.W. Jones, S. Nair, Interfacial microfluidic processing of metal-organic framework hollow fiber membranes, Science. 345 (2014), 72-75. https://doi.org/10.1126/science.1251181
[170] L. Kong, X. Zhang, Y. Liu, S. Li, H. Liu, J. Qiu, K. L. Yeung, In situ fabrication of high-permeance ZIF-8 tubular membranes in a continuous flow system, Mater. Chem. Phys. 148 (2014), 10-16. https://doi.org/10.1016/j.matchemphys.2014.07.036
[171] A. M. Marti, W. Wickramanayake, G. Dahe, A. Sekizkardes, T.L. Bank, D.P. Hopkinson, S.R. Venna, Continuous flow processing of ZIF-8 membranes on polymeric porous hollow fiber supports for CO2 capture, ACS Appl. Mater. Interfaces. 9 (2017), 5678-5682. https://doi.org/10.1021/acsami.6b16297
[172] F. Zhang, X. Zou, X. Gao, S. Fan, F. Sun, H. Ren, G. Zhu, Hydrogen selective NH2-MIL-53(Al) MOF membranes with high permeability, Adv. Funct. Mater. 22 (2012), 3583-3590. https://doi.org/10.1002/adfm.201200084
[173] A. Huang, J. Caro, Covalent post‐functionalization of zeolitic imidazolate framework ZIF‐90 membrane for enhanced hydrogen selectivity, Angew. Chem. Int. Ed. 50 (2011), 4979-4982. https://doi.org/10.1002/anie.201007861
[174] A. Huang, N. Wang, C. Kong, J. Caro, Organosilica‐functionalized zeolitic imidazolate framework ZIF‐90 membrane with high gas‐separation performance, Angew. Chem. Int. Ed. 51 (2012), 10551-10555. https://doi.org/10.1002/anie.201204621
[175] V. V. Guerrero, Y. Yoo, M. C. McCarthy, H. K. Jeong, HKUST-1 membranes on porous supports using secondary growth, J. Mater. Chem. 20 (2010), 3938-3943. https://doi.org/10.1039/b924536g
[176] W. Morris, C. J. Doonan, H. Furukawa, R. Banerjee, O. M. Yaghi, Crystals as molecules: Postsynthesis covalent functionalization of zeolitic imidazolate frameworks, J. Am. Chem. Soc. 130 (2008), 12626-12627. https://doi.org/10.1021/ja805222x
[177] H. Bux, F. Liang, Y. Li, J. Cravillon, M. Wiebcke, J. Caro, Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis, J. Am. Chem. Soc. 131 (2009), 16000-16001. https://doi.org/10.1021/ja907359t
[178] Z. Bao, L. Yu, Q. Ren, X. Lu, S. Deng, Adsorption of CO2 and CH4 on a magnesium-based metal organic framework, J. Colloid Interface Sci. 353 (2011), 549-556. https://doi.org/10.1016/j.jcis.2010.09.065
[179] Y.-S. Li, F.-Y. Liang, H. Bux, A. Feldhoff, W.-S. Yang, J. Caro, Molecular sieve membrane: supported metal–organic framework with high hydrogen selectivity, Angew. Chem., Int. Ed. 49 (2010), 548-551. https://doi.org/10.1002/anie.200905645
[180] Y. S. Li, H. Bux, A. Feldhoff, G. L. Li, W. S. Yang, J. Caro, Controllable synthesis of metal-organic frameworks: From MOF nanorods to oriented MOF membranes, Adv. Mater. 22 (2010), 3322-3326. https://doi.org/10.1002/adma.201000857
[181] Y. S. Li, F. Y. Liang, H. G. Bux, W. S. Yang, J. Caro, Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation, J. Membr. Sci. 354 (2010), 48-54. https://doi.org/10.1016/j.memsci.2010.02.074
[182] A. Huang, H. Bux, F. Steinbach, J. Caro, New progress of microporous metal-organic frameworks in CO2 capture and separation, Angew. Chem., Int. Ed. 49 (2010), 4958-4861. https://doi.org/10.1002/anie.201001919
[183] A. Huang, J. Caro, Covalent post‐functionalization of zeolitic imidazolate framework ZIF‐90 membrane for enhanced hydrogen selectivity, Angew. Chem. Int. Ed. 50 (2011), 4979-4982. https://doi.org/10.1002/anie.201007861
[184] A. Huang, N. Wang, C. Kong, J. Caro, Organosilica‐functionalized zeolitic imidazolate framework ZIF‐90 membrane with high gas‐separation performance, Angew. Chem. Int. Ed. 51 (2012), 10551-10555. https://doi.org/10.1002/anie.201204621
[185] A. J. Brown, J. R. Johnson, M. E. Lydon, W. J. Koros, C. W. Jones, S. Nair, Continuous polycrystalline zeolitic imidazolate framework‐90 membranes on polymeric hollow fibers, Angew. Chem. Int. Ed. 51 (2012), 10615-10618. https://doi.org/10.1002/anie.201206640
[186] M. J. C. Ordonez, K. J. Balkus Jr., J. P. Ferraris, I. H. Musselman, Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes, J. Membr. Sci. 361 (2010), 28-37. https://doi.org/10.1016/j.memsci.2010.06.017
[187] A. Car, C. Stropnik, K.-V. Peinemann, Hybrid membrane materials with different metal–organic frameworks (MOFs) for gas separation, Desalination. 200 (2006), 424-426. https://doi.org/10.1016/j.desal.2006.03.390
[188] R. D. Noble, Perspectives on mixed matrix membranes, J. Membr. Sci. 378 (2011), 393-397. https://doi.org/10.1016/j.memsci.2011.05.031
[189] R. Xing, W. S. W. Ho, Crosslinked polyvinylalcohol–polysiloxane/fumed silica mixed matrix membranes containing amines for CO2/H2 separation, J. Membr. Sci. 367 (2011), 91-102. https://doi.org/10.1016/j.memsci.2010.10.039
[190] Y. Zhao, B. T. Jung, L. Ansaloni, W. S. W. Ho, Multiwalled carbon nanotube mixed matrix membranes containing amines for high pressure CO2/H2 separation, J. Membr. Sci. 459 (2014), 233-243. https://doi.org/10.1016/j.memsci.2014.02.022
[191] L. Ansaloni, Y. Zhao, B. T. Jung, K. Ramasubramanian, M. G. Baschetti, W. S. W. Ho, Facilitated transport membranes containing amino-functionalized multi-walled carbon nanotubes for high-pressure CO2 separations, J. Membr. Sci. 490 (2015), 18-28. https://doi.org/10.1016/j.memsci.2015.03.097
[192] L. Deng, M.-B. Hägg, Carbon nanotube reinforced PVAm/PVA blend FSC nanocomposite membrane for CO2/CH4 separation, Int. J. Greenh. Gas Con. 26 (2014), 127-134. https://doi.org/10.1016/j.ijggc.2014.04.018
[193] T. C. Merkel, B. D. Freeman, R. J. Spontak, Z. He, I. Pinnau, P. Meakin, A. J. Hill, Ultrapermeable, reverse-selective nanocomposite membranes, Science. 296 (2002), 519-522. https://doi.org/10.1126/science.1069580
[194] C. H. Lau, P. Li, F. Li, T.-S. Chung, D. R. Paul, Reverse-selective polymeric membranes for gas separations, Prog. Polym. Sci. 38 (2013), 740-766. https://doi.org/10.1016/j.progpolymsci.2012.09.006
[195] Y. Liu, D. Peng, G. He, S. Wang, Y. Li, H. Wu, Z. Jiang, Enhanced CO2 permeability of membranes by incorporating polyzwitterion@CNT composite particles into polyimide matrix, ACS Appl. Mater. Interfaces, 6 (2014), 13051-13060. https://doi.org/10.1021/am502936x
[196] X. Li, M. Wang, S. Wang, Y. Li, Z. Jiang, R. Guo, H. Wu, X. Cao, J. Yang, B. Wang, Constructing CO2 transport passageways in Matrimid® membranes using nanohydrogels for efficient carbon capture, J. Membr. Sci., 474 (2015), 156-166. https://doi.org/10.1016/j.memsci.2014.10.003
[197] S. A. Hashemifard, A. F. Ismail and T. Matsuura, Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNTs) as filler for gas separation: morphological diagram, Chem. Eng. J. 172 (2011), 581-590. https://doi.org/10.1016/j.cej.2011.06.031
[198] Q. Xin, T. Liu, Z. Li, S. Wang, Y. Li, Z. Li, J. Ouyang, Z. Jiang, H. Wu, Mixed matrix membranes composed of sulfonated poly (ether ether ketone) and a sulfonated metal–organic framework for gas separation, J. Membr. Sci. 488 (2015), 67-78. https://doi.org/10.1016/j.memsci.2015.03.060
[199] Q. Xin, H. Wu, Z. Jiang, Y. Li, S. Wang, Q. Li, X. Li, X. Lu, X. Cao, J. Yang, SPEEK/amine-functionalized TiO2 submicrospheres mixed matrix membranes for CO2 separation, J. Membr. Sci. 467 (2014), 23-35. https://doi.org/10.1016/j.memsci.2014.04.048
[200] Q. Xin, H. Liu, Y. Zhang, H. Ye, S. Wang, L. Lin, X. Ding, B. Cheng, Y. Zhang, H. Wu, Z. Jiang, Widening CO2-facilitated transport passageways in SPEEK matrix using polymer brushes functionalized double-shelled organic sub-microcapsules for efficient gas separation, J. Membr. Sci. 525 (2017), 330-341. https://doi.org/10.1016/j.memsci.2016.12.007
[201] S. Zhao, Z. Wang, Z. Qiao, X. Wei, C. Zhang, J. Wang, S. Wang, Gas separation membrane with CO2-facilitated transport highway constructed from amino carrier containing nanorods and macromolecules, J. Mater. Chem. A. 1 (2013), 246-249. https://doi.org/10.1039/C2TA00247G
[202] J. Liao, Z. Wang, C. Gao, M. Wang, K. Yan, X. Xie, S. Zhao, J. Wang, S. Wang, A high performance PVAm–HT membrane containing high-speed facilitated transport channels for CO2 separation, J. Mater. Chem. A. 3 (2015), 16746-16761. https://doi.org/10.1039/C5TA03238E
[203] I. L. Alsvik, M.-B. Hägg, Pressure retarded osmosis and forward osmosis membranes: Materials and methods, Polymers. 5 (2013), 303-327. https://doi.org/10.3390/polym5010303
[204] R. Asmatulu, W. S. Khan, Chapter 1 – Introduction to electrospun nanofibers, Synthesis and Applications of Electrospun Nanofibers, Micro and Nano Technologies, 2019, Pages 1-15. https://doi.org/10.1016/B978-0-12-813914-1.00001-8
[205] H. Qu, M. Skorobogatiy, Conductive polymer yarns for electronic textile, Electronic Textiles Smart Fabrics and Wearable Technology, 2015, Pages 21-53. https://doi.org/10.1016/B978-0-08-100201-8.00003-5
[206] A. L. Ahmad, T. A. Otitoju, B. S. Ooi, Hollow fiber (HF) membrane fabrication: A review on the effects of solution spinning conditions on morphology and performance, J Ind Eng Chem. 70 (2019), 35-50. https://doi.org/10.1016/j.jiec.2018.10.005
[207] V. B. Gupta, Solution-spinning processes, Manufactured Fibre Technology, 1997, 124-138. https://doi.org/10.1007/978-94-011-5854-1_6
[208] T. A. Otitoju, M. Ahmadipour, S. Li, N. F. Shoparwe, L. X. Jie, A. L. Owolabi, Influence of nanoparticle type on the performance of nanocomposite membranes for wastewater treatment, J. Water Process. Eng. 36 (2020), 101356. https://doi.org/10.1016/j.jwpe.2020.101356
[209] O. A. Jimoh, P. U. Okoye, T. A. Otitoju, K. S. Ariffin, Aragonite precipitated calcium carbonate from magnesium rich carbonate rock for polyethersulfone hollow fibre membrane application, J. Clean. Prod. 195 (2018), 79-92. https://doi.org/10.1016/j.jclepro.2018.05.192
[210] T. A. Otitoju, A. L. Ahmad, B. S. Ooi, Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: A performance review, J. Water Process. Eng. 14 (2016), 41-59. https://doi.org/10.1016/j.jwpe.2016.10.011
[211] Z. Qi, Microporous hollow fibers for gas absorption, J. Membr. Sci. 23 (1985) 333-345. https://doi.org/10.1016/S0376-7388(00)83150-6
[212] A. Gabelmana, S.-T. Hwang, Hollow fiber membrane contactors, J. Membr. Sci. 159 (1999) 61-106. https://doi.org/10.1016/S0376-7388(99)00040-X
[213] G. A. Dibrov, V. V. Volkov, V.P. Vasilevsk, A. A. Shutova, S. D. Bazhenov, V. S. Khotimsky, A. van de Runstraat, E. L. V. Goetheer, A.V. Volkov, Robust high-permeance PTMSP composite membranes for CO2 membrane gas desorption at elevated temperatures and pressures, J. Membr. Sci. 470 (2014) 439-450. https://doi.org/10.1016/j.memsci.2014.07.056
[214] R. Wang, H. Y. Zhang, P. H. M. Feron, D. T. Liang, Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors, Sep. Purif. Technol. 46 (2005) 33-40. https://doi.org/10.1016/j.seppur.2005.04.007
[215] H. Kreulen, H. Kreulen, G. Versteeg, C. A. Smolders, C. A. Smolders, W. P. M. van Swaaij, Determination of mass transfer rates in wetted and non-wetted microporous membranes, Chem. Eng. Sci. 48 (1993), 2093-2102. https://doi.org/10.1016/0009-2509(93)80084-4
[216] A. Malek, K. Li, W. K. Teo, Modeling of microporous hollow fiber membrane modules operated under partially wetted conditions, Ind. Eng. Chem. Res. 36 (1997), 784-793. https://doi.org/10.1021/ie960529y
[217] A. Mansourizadeh, A. F. Ismail, Hollow fiber gas-liquid membrane contactors for acid gas capture: a review, J. Hazard. Mater. 171 (2009), 38-53. https://doi.org/10.1016/j.jhazmat.2009.06.026
[218] K. Li, W. K. Teo, An ultrathin skinned hollow fibre module for gas absorption at elevated pressures, Chem. Eng. Res. Des. 74 (1996), 856-862. https://doi.org/10.1205/026387696523157
[219] P. T. Nguyena, E. Lasseuguette, Y. M. Gonzalez, J. C. Remigy, D. Roizarda, E. Favrea, A dense membrane contactor for intensified CO2 gas/liquid absorption in post-combustion capture. J. Membr. Sci. 377 (2011), 261-272. https://doi.org/10.1016/j.memsci.2011.05.003
[220] C. A. Scholes, S. E. Kentish, G. W. Stevens, D. de Montigny, Comparison of thin film composite and microporous membrane contactors for CO2 absorption into monoethanolamine. Int. J. Greenh. Gas Control. 42 (2015), 66-74. https://doi.org/10.1016/j.ijggc.2015.07.032