Sustainable Membranes and its Applications

$30.00

Sustainable Membranes and its Applications

L. Oliveira, A.N. Módenes, C.C. Triques, M.L. Fiorese, L.C. Silva, V. Slusarski-Santana, L.D. Fiorentin-Ferrari

The utilization of sustainable and high-performance technologies is a growing tendency in industrial processes. The membrane separation process is a clean technology alternative that can be used to separate, concentrate, and/or purify substances. But there is still a great interest in turning this process increasingly sustainable by the structural modification of the membranes using biopolymers and green solvents, and the functionalization with organic and inorganic materials, also improving their performance and anti-fouling characteristics. Thus, this review chapter brings the main concepts about membranes and their main structural modifications to obtain a process that meets the concepts involved in Green Technology.

Keywords
Membrane Separation Process, Polymers, Biopolymers, Green Solvents, Membrane Functionalization, Green Technology

Published online 2/5/2022, 40 pages

Citation: L. Oliveira, A.N. Módenes, C.C. Triques, M.L. Fiorese, L.C. Silva, V. Slusarski-Santana, L.D. Fiorentin-Ferrari, Sustainable Membranes and its Applications, Materials Research Foundations, Vol. 120, pp 111-150, 2022

DOI: https://doi.org/10.21741/9781644901816-4

Part of the book on Advanced Functional Membranes

References
[1] J.G. Crespo, K.W. Boddeker, Membrane Processes in Separation and Purification, Vol 272, Springer Science+Business Media Dordrecht, 1994.
[2] A.Y. Tamime, Membrane Processing: Dairy and Beverage Applications, first ed., 2013. https://doi.org/10.1002/9781118457009
[3] K. Hu, J.M. Dickson, Membrane Processing for Dairy Ingredient Separation, first ed., Wiley Blackwell, 2015.
[4] M. Omidvar, M. Soltanieh, S.M. Mousavi, E. Saljoughi, A. Moarefian, H. Saffaran, Preparation of hydrophilic nanofiltration membranes for removal of pharmaceuticals from water, J. Environ. Heal. Sci. Eng. 13 (2015) 1–9. https://doi.org/10.1186/s40201-015-0157-3
[5] I. Damar Huner, H.A. Gulec, Fouling behavior of poly(ether)sulfone ultrafiltration membrane during concentration of whey proteins: Effect of hydrophilic modification using atmospheric pressure argon jet plasma, Colloids Surfaces B: Biointerfaces. 160 (2017) 510–519. https://doi.org/10.1016/j.colsurfb.2017.10.003
[6] S.F. Zakeritabar, M. Jahanshahi, M. Peyravi, Photocatalytic Behavior of Induced Membrane by ZrO2–SnO2 Nanocomposite for Pharmaceutical Wastewater Treatment, Catal. Letters. 148 (2018) 882–893. https://doi.org/10.1007/s10562-018-2303-x
[7] M. Shakak, R. Rezaee, A. Maleki, A. Jafari, M. Safari, B. Shahmoradi, H. Daraei, S.M. Lee, Synthesis and characterization of nanocomposite ultrafiltration membrane (PSF/PVP/SiO2) and performance evaluation for the removal of amoxicillin from aqueous solutions, Environ. Technol. Innov. 17 (2020). https://doi.org/10.1016/j.eti.2019.100529
[8] N.C. Homem, N. de C.L. Beluci, S. Amorim, R. Reis, A.M.S. Vieira, M.F. Vieira, R. Bergamasco, M.T.P. Amorim, Surface modification of a polyethersulfone microfiltration membrane with graphene oxide for reactive dyes removal, Appl. Surf. Sci. 486 (2019) 499–507. https://doi.org/10.1016/j.apsusc.2019.04.276
[9] A. Modi, J. Bellare, Amoxicillin removal using polyethersulfone hollow fiber membranes blended with ZIF-L nanoflakes and cGO nanosheets: Improved flux and fouling-resistance, J. Environ. Chem. Eng. 8 (2020) 103973. https://doi.org/10.1016/j.jece.2020.103973
[10] R. Wang, Z.X. Low, S. Liu, Y. Wang, S. Murthy, W. Shen, H. Wang, Thin-film composite polyamide membrane modified by embedding functionalized boron nitride nanosheets for reverse osmosis, J. Memb. Sci. 611 (2020). https://doi.org/10.1016/j.memsci.2020.118389
[11] S.A. Gokulakrishnan, G. Arthanareeswaran, Z. László, G. Veréb, S. Kertész, J. Kweon, Recent development of photocatalytic nanomaterials in mixed matrix membrane for emerging pollutants and fouling control, membrane cleaning process, Chemosphere. 281 (2021). https://doi.org/10.1016/j.chemosphere.2021.130891
[12] M.R. Ganjali, M.A. Al-Naqshabandi, B. Larijani, A. Badiei, V. Vatanpour, H.R. Rajabi, H. Rezania, S. Paziresh, G. Mahmodi, S.J. Kim, M.R. Saeb, Improvement of dye and protein filtration efficiency using modified PES membrane with 2-mercaptoethanol capped zinc sulfide quantum dots, Chem. Eng. Res. Des. 168 (2021) 109–121. https://doi.org/10.1016/j.cherd.2020.12.026
[13] A. Morelos-Gomez, S. Terashima, A. Yamanaka, R. Cruz-Silva, J. Ortiz-Medina, R. Sánchez-Salas, J.L. Fajardo-Díaz, E. Muñoz-Sandoval, F. López-Urías, K. Takeuchi, S. Tejima, M. Terrones, M. Endo, Graphene oxide membranes for lactose-free milk, Carbon. 181 (2021) 118–129. https://doi.org/10.1016/j.carbon.2021.05.005
[14] A.T.N. Fajar, T. Hanada, M. Goto, Recovery of platinum group metals from a spent automotive catalyst using polymer inclusion membranes containing an ionic liquid carrier, J. Memb. Sci. 629 (2021). https://doi.org/10.1016/j.memsci.2021.119296
[15] W.S. Wan Ngah, L.C. Teong, M.A.K.M. Hanafiah, Adsorption of dyes and heavy metal ions by chitosan composites: A review, Carbohydr. Polym. 83 (2011) 1446–1456. https://doi.org/10.1016/j.carbpol.2010.11.004
[16] E. Drioli, A.I. Stankiewicz, F. Macedonio, Membrane engineering in process intensification-An overview, J. Memb. Sci. 380 (2011) 1–8. https://doi.org/10.1016/j.memsci.2011.06.043
[17] Y. Medina-Gonzalez, P. Aimar, J.F. Lahitte, J.C. Remigy, Towards green membranes: Preparation of cellulose acetate ultrafiltration membranes using methyl lactate as a biosolvent, Int. J. Sustain. Eng. 4 (2011) 75–83. https://doi.org/10.1080/19397038.2010.497230
[18] M. Padaki, R. Surya Murali, M.S. Abdullah, N. Misdan, A. Moslehyani, M.A. Kassim, N. Hilal, A.F. Ismail, Membrane technology enhancement in oil-water separation. A review, Desalination. 357 (2015) 197–207. https://doi.org/10.1016/j.desal.2014.11.023
[19] J.H. Jhaveri, Z.V.P. Murthy, A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes, Desalination. 379 (2016) 137–154. https://doi.org/10.1016/j.desal.2015.11.009
[20] C. Santhosh, V. Velmurugan, G. Jacob, S.K. Jeong, A.N. Grace, A. Bhatnagar, Role of nanomaterials in water treatment applications: A review, Chem. Eng. J 306 (2016) 1116–1137. https://doi.org/10.1016/j.cej.2016.08.053
[21] N. Li, Y. Tian, J. Zhang, Z. Sun, J. Zhao, J. Zhang, W. Zuo, Precisely-controlled modification of PVDF membranes with 3D TiO2/ZnO nanolayer: enhanced anti-fouling performance by changing hydrophilicity and photocatalysis under visible light irradiation, J. Memb. Sci. 528 (2017) 359–368. https://doi.org/10.1016/j.memsci.2017.01.048
[22] S. Beisl, S. Monteiro, R. Santos, A.S. Figueiredo, M.G. Sánchez-Loredo, M.A. Lemos, F. Lemos, M. Minhalma, M.N. de Pinho, Synthesis and bactericide activity of nanofiltration composite membranes – Cellulose acetate/silver nanoparticles and cellulose acetate/silver ion exchanged zeolites, Water Res. 149 (2019) 225–231. https://doi.org/10.1016/j.watres.2018.10.096
[23] Z. Huang, B. Gong, C. Huang, S. Pan, P. Wu, Z. Dang, Performance evaluation of integrated adsorption-nanofiltration system for emerging compounds removal: Exemplified by caffeine, diclofenac and octylphenol, J. Environ. Manage., 231 (2019) 121–128. https://doi.org/10.1016/j.jenvman.2018.09.092
[24] T. Marino, F. Galiano, A. Molino, A. Figoli, New frontiers in sustainable membrane preparation : CyreneTM as green bioderived solvent, J. Membr. Sci., 580 (2019) 224–234. https://doi.org/10.1016/j.memsci.2019.03.034
[25] S. Samsami, M. Mohamadizaniani, M. Sarrafzadeh, E.R. Rene, M. Firoozbahr, Recent advances in the treatment of dye-containing wastewater from textile industries : Overview and perspectives, Process Saf. Environ. Prot. 143 (2020) 138–163. https://doi.org/10.1016/j.psep.2020.05.034
[26] W.M. Nielen, J.D. Willott, Z.M. Esguerra, W.M. de Vos, Ion specific effects on aqueous phase separation of responsive copolymers for sustainable membranes, J. Colloid Interface Sci. 576 (2020) 186–194. https://doi.org/10.1016/j.jcis.2020.04.125
[27] W.M. Nielen, J.D. Willott, W.M. De Vos, Aqueous Phase Separation of Responsive Copolymers for Sustainable and Mechanically Stable Membranes, Appl. Polym. Mater. 2 (2020) 1702–1710. https://doi.org/10.1021/acsapm.0c00119
[28] M.A. Rasool, C. Van Goethem, I.F.J. Vankelecom, Green preparation process using methyl lactate for cellulose-acetate-based nanofiltration membranes, Sep. Purif. Technol. 232 (2020). https://doi.org/10.1016/j.seppur.2019.115903
[29] T. Shindhal, P. Rakholiya, S. Varjani, A. Pandey, H.H. Ngo, W. Guo, H.Y. Ng, M.J. Taherzadeh, A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater, Bioengineered. 12 (2021) 70–87. https://doi.org/10.1080/21655979.2020.1863034
[30] E.K. Tetteh, S. Rathilal, D. Asante-Sackey, M.N. Chollom, Prospects of synthesized magnetic TiO2-based membranes for wastewater treatment: A review, Materials. 14 (2021) 11–15. https://doi.org/10.3390/ma14133524
[31] A. Gul, J. Hruza, F. Yalcinkaya, Fouling and chemical cleaning of microfiltration membranes: A mini-review, Polymers. 13 (2021). https://doi.org/10.3390/polym13060846
[32] W. Kujawski, J. Kujawa, E. Wierzbowska, S. Cerneaux, M. Bryjak, J. Kujawski, Influence of hydrophobization conditions and ceramic membranes pore size on their properties in vacuum membrane distillation of water-organic solvent mixtures, J. Memb. Sci. 499 (2016) 442–451. https://doi.org/10.1016/j.memsci.2015.10.067
[33] E. Bet-moushoul, Y. Mansourpanah, K. Farhadi, M. Tabatabaei, TiO2 nanocomposite based polymeric membranes : A review on performance improvement for various applications in chemical engineering processes, Chem. Eng. J. 283 (2016) 29–46. https://doi.org/10.1016/j.cej.2015.06.124
[34] C. Li, W. Sun, Z. Lu, X. Ao, S. Li, Ceramic nanocomposite membranes and membrane fouling: A review, Water Res. 175 (2020). https://doi.org/10.1016/j.watres.2020.115674
[35] M. Aider, Chitosan application for active bio-based films production and potential in the food industry: Review, LWT – Food Sci. Technol. 43 (2010) 837–842. https://doi.org/10.1016/j.lwt.2010.01.021
[36] F. Galiano, K. Briceño, T. Marino, A. Molino, K.V. Christensen, A. Figoli, Advances in biopolymer-based membrane preparation and applications, J. Memb. Sci. 564 (2018) 562–586. https://doi.org/10.1016/j.memsci.2018.07.059
[37] L.A. Goetz, B. Jalvo, R. Rosal, A.P. Mathew, Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration, J. Memb. Sci. 510 (2016) 238–248. https://doi.org/10.1016/j.memsci.2016.02.069
[38] J. Zhou, J. Chen, M. He, J. Yao, Cellulose acetate ultrafiltration membranes reinforced by cellulose nanocrystals: Preparation and characterization, J. Appl. Polym. Sci. 133 (2016) 1–7. https://doi.org/10.1002/app.43946
[39] F. Russo, F. Galiano, A. Iulianelli, A. Basile, A. Figoli, Biopolymers for sustainable membranes in CO2 separation: a review, Fuel Process. Technol. 213 (2021). https://doi.org/10.1016/j.fuproc.2020.106643
[40] M. Mulder, Basic Principles of Membrane Technology, second ed., Kluwer Academic Publisher, 1996. https://doi.org/10.1007/978-94-009-1766-8
[41] M. Safarpour, V. Vatanpour, A. Khataee, H. Zarrabi. P. Gholami, M. E. High flux and fouling resistant reverse osmosis membrane modified with plasma treated natural zeolite, Desalination. 411 (2017) 89–100. https://doi.org/10.1016/j.desal.2017.02.012
[42] M.T. Alresheedi, B. Barbeau, O.D. Basu, Comparisons of NOM fouling and cleaning of ceramic and polymeric membranes during water treatment, Sep. Purif. Technol. 209 (2019) 452–460. https://doi.org/10.1016/j.seppur.2018.07.070
[43] L. Bai, Y. Liu, A. Ding, N. Ren, G. Li, H. Liang, Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nano fibrils (CNFs), Chemosphere. 217 (2019) 76–84. https://doi.org/10.1016/j.chemosphere.2018.10.219
[44] A. Rahimpour, S.S. Madaeni, Polyethersulfone (PES)/ cellulose acetate phthalate (CAP ) blend ultrafiltration membranes: Preparation, morphology, performance and antifouling properties, J. Memb. Sci. 305 (2007) 299–312. https://doi.org/10.1016/j.memsci.2007.08.030
[45] M.Z. Yunos, Z. Harun, H. Basri, A.F. Ismail, Studies on fouling by natural organic matter (NOM) on polysulfone membranes: Effect of polyethylene glycol (PEG), Desalination. 333 (2014) 36–44. https://doi.org/10.1016/j.desal.2013.11.019
[46] R. Krishnamoorthy, V. Sagadevan, Polyethylene glycol and iron oxide nanoparticles blended polyethersulfone ultrafiltration membrane for enhanced performance in dye removal studies, E-Polymers. 15 (2015) 151–159. https://doi.org/10.1515/epoly-2014-0214
[47] L.D. Fiorentin-Ferrari, K.M. Celant, B.C. Gonçalves, S.M. Teixeira, V. Slusarski-Santana, A.N. Módenes, Fabrication and characterization of polysulfone and polyethersulfone membranes applied in the treatment of fish skin tanning effluent, J. Clean. Prod. 294 (2021). https://doi.org/10.1016/j.jclepro.2021.126127
[48] N. Nady, M.C.R. Franssen, H. Zuilhof, M.S.M. Eldin, R. Boom, K. Schroën, Modification methods for poly(arylsulfone) membranes: A mini-review focusing on surface modification, Desalination. 275 (2011) 1–9. https://doi.org/10.1016/j.desal.2011.03.010
[49] L. Zhang, B. Chen, A. Ghaffar, X. Zhu, Nanocomposite Membrane with Polyethylenimine-Grafted Graphene Oxide as a Novel Additive to Enhance Pollutant Filtration Performance, Environ. Sci. Technol. 52 (2018) 5920–5930. https://doi.org/10.1021/acs.est.8b00524
[50] G.D. Değermenci, N. Değermenci, V. Ayvaoğlu, E. Durmaz, D. Çakır, E. Akan, Adsorption of reactive dyes on lignocellulosic waste; characterization, equilibrium, kinetic and thermodynamic studies, J. Clean. Prod. 225 (2019) 1220–1229. https://doi.org/10.1016/j.jclepro.2019.03.260
[51] F. Yalcinkaya, E. Boyraz, J. Maryska, K. Kucerova, A review on membrane technology and chemical surface modification for the oily wastewater treatment, Materials. 13 (2020). https://doi.org/10.3390/ma13020493
[52] H. Saleem, S.J. Zaidi, Nanoparticles in reverse osmosis membranes for desalination: A state of the art review, Desalination. 475 (2020). https://doi.org/10.1016/j.desal.2019.114171
[53] M. Jani, J.A. Arcos-Pareja, M. Ni, Engineered Zero-Dimensional Fullerene/Carbon Dots-Polymer Based Nanocomposite Membranes for Wastewater Treatment, Molecules. 25 (2020) 1–28. https://doi.org/10.3390/molecules25214934
[54] A.A. Amusa, A.L. Ahmad, J.K. Adewole, Study on lignin-free lignocellulosic biomass and PSF-PEG membrane compatibility, BioResources. 16 (2020) 1063–1075. https://doi.org/10.15376/biores.16.1.1063-1075
[55] O.S. Serbanescu, S.I. Voicu, V.K. Thakur, Polysulfone functionalized membranes: Properties and challenges, Mater. Today Chem. 17 (2020). https://doi.org/10.1016/j.mtchem.2020.100302
[56] J. Ayyavoo, T.P.N. Nguyen, B.M. Jun, I.C. Kim, Y.N. Kwon, Protection of polymeric membranes with antifouling surfacing via surface modifications, Colloids Surfaces A Physicochem. Eng. Asp. 506 (2016) 190–201. https://doi.org/10.1016/j.colsurfa.2016.06.026
[57] H.K. Lonsdale, The growth of membrane technology, J. Memb. Sci. 10 (1982) 81–181. https://doi.org/10.1016/S0376-7388(00)81408-8
[58] K.W. Böddeker, Commentary: Tracing membrane science, J. Memb. Sci. 100 (1995) 65–68. https://doi.org/10.1016/0376-7388(94)00223-L
[59] R.W. Baker, Membrane technologies and applications, second ed., John Wiley & Sons Ltd, 2004.
[60] R. Field, E. Bekassy-Molnar, F. Lipnizki, G. Vatai, Engineering aspects of membrane separation and application in food processing, first ed., Taylor & Francis Group, 2017. https://doi.org/10.4324/9781315374901
[61] M. Cheryan, Ultrafiltration and Microfiltration Handbook, second ed., Taylor & Francis Routledge, 1998. https://doi.org/10.1201/9781482278743
[62] Z.F. Cui, H.S. Muralidhara, Membrane technology – A Practical Guide to Membrane Technology and Applications in Food and Bioprocessing, first ed., Elsevier Ltd, 2010.
[63] G. Lofrano, M. Carotenuto, G. Libralato, R.F. Domingos, A. Markus, L. Dini, R.K. Gautam, D. Baldantoni, M. Rossi, S.K. Sharma, M.C. Chattopadhyaya, M. Giugni, S. Meric, Polymer functionalized nanocomposites for metals removal from water and wastewater: An overview, Water Res. 92 (2016) 22–37. https://doi.org/10.1016/j.watres.2016.01.033
[64] H. Strathmann, Ion-Exchange membrane separation processes, first ed., Elsevier B.V., 2004. https://doi.org/10.1002/14356007.a16_187.pub2
[65] H. Strathmann, Membrane separation processes, J. Memb. Sci. 9 (1981) 121–189. https://doi.org/10.1016/S0376-7388(00)85121-2
[66] K. Mohanty, M.K. Purkait, Membrane technologies and applications, first ed., Taylor & Francis Group, 2012. https://doi.org/10.1201/b11416
[67] L.W. Jye, A.F. Ismail, Nanofiltration membranes – Synthesis, Characterization, and Applications, first ed., Taylor & Francis Group, 2016. https://doi.org/10.1201/9781315181479
[68] S. Mei, C. Xiao, X. Hu, Preparation of Porous PVC Membrane via a Phase Inversion Method from PVC/DMAc/Water/Additives, J. Appl. Polym. Sci. 120 (2010) 557–562. https://doi.org/10.1002/app.33219
[69] K. Scott, Handbook of Industrial Membranes, second ed., Elsevier Science, 1995.
[70] M. Kumar, Z. Gholamvand, A. Morrissey, K. Nolan, M. Ulbricht, J. Lawler, Preparation and characterization of low fouling novel hybrid ultrafiltration membranes based on the blends of GO-TiO2 nanocomposite and polysulfone for humic acid removal, J. Memb. Sci. 506 (2016) 38–49. https://doi.org/10.1016/j.memsci.2016.02.005
[71] S. Benkhaya, S. M’rabet, R. Hsissou, A. El Harfi, Synthesis of new low-cost organic ultrafiltration membrane made from Polysulfone/Polyetherimide blends and its application for soluble azoic dyes removal, J. Mater. Res. Technol. 9 (2020) 4763–4772. https://doi.org/10.1016/j.jmrt.2020.02.102
[72] M.T. Ravanchi, T. Kaghazchi, A. Kargari, Application of membrane separation processes in petrochemical industry: a review, Desalination. 235 (2009) 199–244. https://doi.org/10.1016/j.desal.2007.10.042
[73] M. Ulbricht, Advanced functional polymer membranes, Polymer. 47 (2006) 2217–2262. https://doi.org/10.1016/j.polymer.2006.01.084
[74] J.K. Shethji, S.M.C. Ritchie, Microfiltration membranes functionalized with multiple styrenic homopolymer and block copolymer grafts, J. Appl. Polym. Sci. 132 (2015) 1–11. https://doi.org/10.1002/app.42501
[75] W. Ho, K.K. Sirkar, Membrane Handbook, Springer Science Business Media New York, 1992. https://doi.org/10.1007/978-1-4615-3548-5
[76] A.K. Pabby, S.S.H. Rizvi, A.M. Sastre, Handbook of Membrane Separations – Chemical, Pharmaceutical, Food, and Biotechnological Applications, first ed., Taylor & Francis Group, 2008. https://doi.org/10.1201/9781420009484
[77] T.J. Britz, R.K. Robinson, Advanced Dairy Science and Technology, first ed., Blackwell Publishing Ltd, 2008. https://doi.org/10.1002/9780470697634
[78] C. Charcosset, Membrane Processes in Biotechnology and Pharmaceutics, first ed., Elsevier B.V., 2012. https://doi.org/10.1016/B978-0-444-56334-7.00007-1
[79] A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review: Recent advances and future prospects, Desalination. 356 (2015) 226–254. https://doi.org/10.1016/j.desal.2014.10.043
[80] M. Paul, S.D. Jons, Chemistry and fabrication of polymeric nanofiltration membranes: A review, Polymer. 103 (2016) 417–456. https://doi.org/10.1016/j.polymer.2016.07.085
[81] M.K. Selatile, S.S. Ray, V. Ojijo, R. Sadiku, Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination, RSC Adv. 8 (2018) 37915–37938. https://doi.org/10.1039/C8RA07489E
[82] N.N. Li, A.G. Fane, W.S.W. Ho, T. Matsuura, Advanced membrane technology and applications, John Wiley & Sons, 2008.
[83] S.K. Hubadillah, M.H.D. Othman, T. Matsuura, A.F. Ismail, M.A. Rahman, Z. Harun, J. Jaafar, M. Nomura, Fabrications and applications of low cost ceramic membrane from kaolin: A comprehensive review, Ceram. Int. 44 (2018) 4538–4560. https://doi.org/10.1016/j.ceramint.2017.12.215
[84] W. Zhang, L. Ding, J. Luo, M.Y. Jaffrin, B. Tang, Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment: A critical review, Chem. Eng. J. 302 (2016) 446–458. https://doi.org/10.1016/j.cej.2016.05.071
[85] S. Meng, W. Fan, X. Li, Y. Liu, D. Liang, X. Liu, Intermolecular interactions of polysaccharides in membrane fouling during microfiltration, Water Res. 143 (2018) 38–46. https://doi.org/10.1016/j.watres.2018.06.027
[86] A. Basile, A. Cassano, N. Rastogi, Advances in Membrane Technologies for Water Treatment – Materials, Processes and applications, Elsevier Ltd, 2015.
[87] B. Huang, Z. Wu, H. Zhou, J. Li, C. Zhou, Z. Xiong, Z. Pan, G. Yao, B. Lai, Recent advances in single-atom catalysts for advanced oxidation processes in water purification, J. Hazard. Mater. 412 (2021). https://doi.org/10.1016/j.jhazmat.2021.125253
[88] A.W. Zularisam, A.F. Ismail, R. Salim, Behaviours of natural organic matter in membrane filtration for surface water treatment – a review, Desalination. 194 (2006) 211–231. https://doi.org/10.1016/j.desal.2005.10.030
[89] Y. Subasi, B. Cicek, Recent advances in hydrophilic modification of PVDF ultrafiltration membranes – a review: part I, Membr. Technol. (2017) 7–12. https://doi.org/10.1016/S0958-2118(17)30191-X
[90] F. Zhao, K. Xu, H. Ren, L. Ding, J. Geng, Y. Zhang, Combined effects of organic matter and calcium on biofouling of nanofiltration membranes, J. Memb. Sci. 486 (2015) 177–188. https://doi.org/10.1016/j.memsci.2015.03.032
[91] L. Weinrich, M. Lechevallier, C.N. Haas, Contribution of assimilable organic carbon to biological fouling in seawater reverse osmosis membrane treatment, Water Res. 101 (2016) 203–213. https://doi.org/10.1016/j.watres.2016.05.075
[92] J.N. Hakizimana, B. Gourich, C. Vial, P. Drogui, A. Oumani, J. Naja, L. Hilali, Assessment of hardness, microorganism and organic matter removal from seawater by electrocoagulation as a pretreatment of desalination by reverse osmosis, Desalination. 393 (2016) 90–101. https://doi.org/10.1016/j.desal.2015.12.025
[93] S. Jiang, Y. Li, B.P. Ladewig, A review of reverse osmosis membrane fouling and control strategies, Sci. Total Environ. 595 (2017) 567–583. https://doi.org/10.1016/j.scitotenv.2017.03.235
[94] H. Chang, H. Liang, F. Qu, B. Liu, H. Yu, X. Du, G. Li, S.A. Snyder, Hydraulic backwashing for low-pressure membranes in drinking water treatment : A review, J. Memb. Sci. 540 (2017) 362–380. https://doi.org/10.1016/j.memsci.2017.06.077
[95] N. V Thombre, A.P. Gadhekar, A. V Patwardhan, P.R. Gogate, Ultrasound induced cleaning of polymeric nanofiltration membranes, J. Ultrason. Sonochemistry. 62 (2020). https://doi.org/10.1016/j.ultsonch.2019.104891
[96] K. De Sitter, C. Dotremont, I. Genné, L. Stoops, The use of nanoparticles as alternative pore former for the production of more sustainable polyethersulfone ultrafiltration membranes, J. Memb. Sci. 471 (2014) 168–178. https://doi.org/10.1016/j.memsci.2014.06.061
[97] P.S. Goh, A.F. Ismail, N. Hilal, Nano-enabled membranes technology: Sustainable and revolutionary solutions for membrane desalination?, Desalination. 380 (2016) 100–104. https://doi.org/10.1016/j.desal.2015.06.002
[98] X. Zhu, K. Yang, B. Chen, Membranes prepared from graphene-based nanomaterials for sustainable applications: a review, Environ. Sci. Nano. 4 (2017) 2267–2285. https://doi.org/10.1039/C7EN00548B
[99] M.I. Baig, E.N. Durmaz, J.D. Willott, W.M. De Vos, Sustainable Membrane Production through Polyelectrolyte Complexation Induced Aqueous Phase Separation, Adv. Funct. Mater. 30 (2020). https://doi.org/10.1002/adfm.201907344
[100] J.D. Willott, W.M. Nielen, W.M. De Vos, Stimuli-Responsive Membranes through Sustainable Aqueous Phase Separation, ACS Appl. Polym. Mater. 2 (2020) 659–667. https://doi.org/10.1021/acsapm.9b01006
[101] M. Mondal, S. De, Characterization and antifouling properties of polyethylene glycol doped PAN-CAP blend membrane, RSC Adv. (2015). https://doi.org/10.1039/C5RA02889B
[102] A. Said, T.J. Daou, L. Limousy, J. Bikai, J. Halwani, J. Toufaily, T. Hamieh, P. Dutournié, Surface energy modification of a Na-mordenite thin layer treated by an alkaline solution, Mater. Express. 5 (2015) 451–456. https://doi.org/10.1166/mex.2015.1253
[103] V.K. Thakur, S.I. Voicu, Recent Advances in Cellulose and Chitosan Based Membranes for Water Purification: A Concise Review, Carbohydr. Polym. (2016) 148-165. https://doi.org/10.1016/j.carbpol.2016.03.030
[104] S. Mondal, Carbon Nanomaterials Based Membranes, J. Membr. Sci. Technol. 6 (2017) 18–20.
[105] Y.G.A. El-reash, A.M. Abdelghany, A.A. Elrazak, Removal and separation of Cu (II) from aqueous solutions using nano-silver chitosan/polyacrylamide membranes, Int. J. Biol. Macromol. 86 (2016) 789–798. https://doi.org/10.1016/j.ijbiomac.2016.01.101
[106] T. Marino, E. Blasi, S. Tornaghi, E. Di Nicolo, A. Figoli, Polyethersulfone membranes prepared with Rhodiasolv® Polarclean as water soluble green solvent, J. Membr. Sci. J. 549 (2018) 192–204. https://doi.org/10.1016/j.memsci.2017.12.007
[107] K. Szymanski, D. Darowna, P. Sienkiewicz, M. Jose, K. Szymanska, M. Zgrzebnicki, S. Mozia, Novel polyethersulfone ultrafiltration membranes modified with Cu/titanate nanotubes, J. Water Process Eng. 33 (2020). https://doi.org/10.1016/j.jwpe.2019.101098
[108] M.N. Subramanian, Polymer Blends and Composites: Chemistry and Technology, John Wiley & Sons, 2017. https://doi.org/10.1002/9781119383581
[109] Y. Ji, Q. An, F. Zhao, C. Gao, Fabrication of chitosan / PDMCHEA blend positively charged membranes with improved mechanical properties and high nanofiltration performances, Desalination. 357 (2015) 8–15. https://doi.org/10.1016/j.desal.2014.11.005
[110] Z. Xu, G. Liu, H. Ye, W. Jin, Z. Cui, Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration, J. Membr. Sci. 563 (2018) 625–632. https://doi.org/10.1016/j.memsci.2018.05.044
[111] C.C. De Faria, M. Favero, M.M.M. Caetano, A.H. Rosa, P.S. Tonello, Application of chitosan film as a binding phase in the diffusive gradients in thin films technique (DGT) for measurement of metal ions in aqueous solution, Anal. Bioanal. Chem. 412 (2020) 703–714. https://doi.org/10.1007/s00216-019-02281-4
[112] S. Al-gharabli, B. Al-omari, W. Kujawski, J. Kujawa, Biomimetic hybrid membranes with covalently anchored chitosan – Material design, transport and separation, Desalination. 491 (2020). https://doi.org/10.1016/j.desal.2020.114550
[113] H. Mahdavi, T. Shahalizade, Preparation, characterization and performance study of cellulose acetate membranes modified by aliphatic hyperbranched polyester, J. Membr. Sci. 473 (2015) 256–266. https://doi.org/10.1016/j.memsci.2014.09.013
[114] A. Ghaee, M. Shariaty-niassar, J. Barzin, T. Matsuura, Effects of chitosan membrane morphology on copper ion adsorption, J. Chem. Eng. 165 (2010) 46–55. https://doi.org/10.1016/j.cej.2010.08.051
[115] S.T. Koev, P.H. Dykstra, X. Luo, G.W. Rubloff, W.E. Bentley, G.F. Payne, R. Ghodssi, Chitosan : an integrative biomaterial for lab-on-a-chip devices, Lab Chip. 10 (2010) 3026–3042. https://doi.org/10.1039/c0lc00047g
[116] J. Wang, B. Wu, S. Yang, Y. Liu, A.G. Fane, J.W. Chew, Characterizing the scouring efficiency of Granular Activated Carbon (GAC) particles in membrane fouling mitigation via wavelet decomposition of accelerometer signals, J. Memb. Sci. 498 (2016) 105–115. https://doi.org/10.1016/j.memsci.2015.09.061
[117] R. Kumar, A.M. Isloor, A.F. Ismail, T. Matsuura, Performance improvement of polysulfone ultrafiltration membrane using N-succinyl chitosan as additive, Desalination. 318 (2013) 1–8. https://doi.org/10.1016/j.desal.2013.03.003
[118] A. Akbari, Z. Derikvandi, S. M. M. Rostami, Influence of chitosan coating on the separation performance, morphology and anti-fouling properties of the polyamide nanofiltration membranes, J. Ind. Eng. Chem. 28 (2015) 268–273. https://doi.org/10.1016/j.jiec.2015.03.002
[119] E. Salehi, P. Daraei, A.A. Shamsabadi, A review on chitosan-based adsorptive membranes, Carbohydr. Polym. 152 (2016) 419–432. https://doi.org/10.1016/j.carbpol.2016.07.033
[120] P.O. Osifo, H.W.J.P. Neomagus, H. Van Der Merwe, D.J. Branken, Transport properties of chitosan membranes for zinc (II) removal from aqueous systems, Sep. Purif. Technol. 179 (2017) 428–437. https://doi.org/10.1016/j.seppur.2017.02.030
[121] C.N.B. Elizalde, S. Al-Gharabli, J. Kujawa, M. Mavukkandy, S.W. Hasan, H.A. Arafat, Fabrication of Blend Polyvinylidene fluoride/Chitosan Membranes for Enhanced Flux and Fouling Resistance, Sep. Purif. Technol. 190 (2018) 68–76. https://doi.org/10.1016/j.seppur.2017.08.053
[122] A. Shakeri, H. Salehi, M. Rastgar, Chitosan-based thin active layer membrane for forward osmosis desalination, Carbohydr. Polym. 174 (2017) 658–668. https://doi.org/10.1016/j.carbpol.2017.06.104
[123] F.F. Ghiggi, L.D. Pollo, N.S.M. Cardozo, I.C. Tessaro, Preparation and characterization of polyethersulfone/N-phthaloyl-chitosan ultrafiltration membrane with antifouling property, Eur. Polym. J. 92 (2017) 61–70. https://doi.org/10.1016/j.eurpolymj.2017.04.030
[124] E. Bagheripour, A.R. Moghadassi, S.M. Hosseini, M.B. Ray, F. Parvizian, B. Van Der Bruggen, Highly hydrophilic and antifouling nanofiltration membrane incorporated with water-dispersible composite activated carbon/chitosan nanoparticles, Chem. Eng. Res. Des. 132 (2018) 812–821. https://doi.org/10.1016/j.cherd.2018.02.027
[125] N. Li, Y. Tian, J. Zhao, J. Zhang, L. Kong, J. Zhang, W. Zuo, Static adsorption of protein-polysaccharide hybrids on hydrophilic modified membranes based on atomic layer: Anti-fouling performance and mechanism insight, J. Memb. Sci. 548 (2018) 470–480. https://doi.org/10.1016/j.memsci.2017.11.063
[126] A. Figoli, T. Marino, S. Simone, E. Di Nicolò, X.M. Li, T. He, S. Tornaghi, E. Drioli, Towards non-toxic solvents for membrane: a review, Green Chem. 16 (2014) 4034–4059. https://doi.org/10.1039/C4GC00613E
[127] M. Razali, J.F. Kim, M. Attfield, P.M. Budd, E. Drioli, Y.M. Lee, G. Szekely, Sustainable wastewater treatment and recycling in membrane manufacturing, Green Chem. 17 (2015) 5196–5205. https://doi.org/10.1039/C5GC01937K
[128] K. Sadman, D.E. Delgado, Y. Won, Q. Wang, K.A. Gray, K.R. Shull, Versatile and High-Throughput Polyelectrolyte Complex Membranes via Phase Inversion, ACS Appl. Mater. Interfaces. 11 (2019) 16018–16026. https://doi.org/10.1021/acsami.9b02115
[129] A. Bera, J.S. Trivedi, S. Binod, A.K. Singh, S. Haldar, S.K. Jewrajka, Anti-organic fouling and anti-biofouling poly(piperazineamide) thin film nanocomposite membranes for low pressure removal of heavy metal ions, J. Hazard. Mater. 343 (2018) 86–97. https://doi.org/10.1016/j.jhazmat.2017.09.016
[130] H. Susanto, M. Ulbricht, Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives, J. Membr. Sci. 327 (2009) 125–135. https://doi.org/10.1016/j.memsci.2008.11.025
[131] D. Zhao, S. Yu, A review of recent advance in fouling mitigation of NF/RO membranes in water treatment: pretreatment, membrane modification, and chemical cleaning, Desalin. Water Treat. 55 (2015) 870–891. https://doi.org/10.1080/19443994.2014.928804
[132] J. Sun, L. Zhu, Z. Wang, F. Hu, P. Zhang, B. Zhu, Improved chlorine resistance of polyamide thin-film composite membranes with a terpolymer coating, Sep. Purif. Technol. 157 (2016) 112–119. https://doi.org/10.1016/j.seppur.2015.11.034
[133] D.J. Miller, D.R. Dreyer, C.W. Bielawski, D.R. Paul, B.D. Freeman, Surface Modification of Water Purification Membranes: a review, Angew. Chemie. Int. Ed. 56 (2017) 4662–4711. https://doi.org/10.1002/anie.201601509
[134] M. Asadollahi, D. Bastani, S.A. Musavi, Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: A review, Desalination. 420 (2017) 330–383. https://doi.org/10.1016/j.desal.2017.05.027
[135] M.A.A. El-ghaffar, H.A. Tieama, A Review of Membranes Classifications, Configurations, Surface Modifications, Characteristics and Its Applications in Water Purification, Chem. Biomol. Eng. 2 (2017) 57–82.
[136] N.D. Suzaimi, P.S. Goh, A.F. Ismail, S.C. Mamah, N.A.N.N. Malek, J.W. Lim, K.C. Wong, N. Hilal, Strategies in Forward Osmosis Membrane Substrate Fabrication and Modification: A Review, Membranes. 10 (2020) 332. https://doi.org/10.3390/membranes10110332
[137] Y. Zhou, S. Yu, C. Gao, X. Feng, Surface modification of thin film composite polyamide membranes by electrostatic self deposition of polycations for improved fouling resistance, Sep. Purif. Technol. 66 (2009) 287–294. https://doi.org/10.1016/j.seppur.2008.12.021
[138] M. Rezakazemi, A. Dashti, H.R. Harami, N. Hajilari, Inamuddin, Fouling ‑ resistant membranes for water reuse, Environ. Chem. Lett. 16 (2018) 715–763. https://doi.org/10.1007/s10311-018-0717-8
[139] R.H. Hailemariam, Y.C. Woo, M.M. Damtie, B.C. Kim, K. Park, J. Choi, Reverse osmosis membrane fabrication and modification technologies and future trends: A review, Adv. Colloid Interface Sci. 276 (2020) 102100. https://doi.org/10.1016/j.cis.2019.102100
[140] A. Soleimany, S.S. Hosseini, F. Gallucci, Recent progress in developments of membrane materials and modification techniques for high performance helium separation and recovery: A review, Chem. Eng. Process.: Process Intensificatio. 122 (2017) 296–318. https://doi.org/10.1016/j.cep.2017.06.001
[141] D. Li, Y. Yan, H. Wang, Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes, Prog. Polym. Sci. 61 (2016) 104–155. https://doi.org/10.1016/j.progpolymsci.2016.03.003
[142] R. Reis, L.F. Dumée, L. He, F. She, J.D. Orbell, B. Winther-jensen, M.C. Duke, Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion, ACS Appl. Mater. Interfaces. 7 (2015) 14644–14653. https://doi.org/10.1021/acsami.5b01603
[143] J. Wang, X. Chen, R. Reis, Z. Chen, N. Milne, B. Winther-jensen, L. Kong, L.F. Dumée, Plasma Modification and Synthesis of Membrane Materials – A Mechanistic Review, Membranes. 8 (2018) 56. https://doi.org/10.3390/membranes8030056
[144] B.K. Chaturvedi, A.K. Ghosh, V. Ramachandhran, M.K. Trivedi, M.S. Hanra, B.M. Misra, Preparation, characterization and performance of polyethersulfone ultrafiltration membranes, Desalination. 133 (2001) 31–40. https://doi.org/10.1016/S0011-9164(01)00080-7
[145] E.M. V Hoek, A.K. Ghosh, X. Huang, M. Liong, J.I. Zink, Physical–chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes, Desalination. 283 (2011) 89–99. https://doi.org/10.1016/j.desal.2011.04.008
[146] A. Bhattacharya, B.N. Misra, Grafting: a versatile means to modify polymers: techniques, factors and applications, Prog. Polym. Sci. 29 (2004) 767–814. https://doi.org/10.1016/j.progpolymsci.2004.05.002
[147] R. Bergamasco, P.F. Coldebella, F.P. Camacho, D. Rezende, N.U. Yamaguchi, M.R.F. Klen, C.J.M. Tavares, M.T.S.P. Amorim, Self-assembly modification of polyamide membrane by coating titanium dioxide nanoparticles for water treatment applications, Rev. Ambient. Água. 14 (2019). https://doi.org/10.4136/ambi-agua.2297
[148] T. Sun, Y. Liu, L. Shen, Y. Xu, R. Li, L. Huang, H. Lin, Magnetic field assisted arrangement of photocatalytic TiO2 particles on membrane surface to enhance membrane antifouling performance for water treatment, J. Colloid Interface Sci. 570 (2020) 273–285. https://doi.org/10.1016/j.jcis.2020.03.008
[149] O.A. Williams, Nanodiamond, Royal Society of Chemistry, 2014. https://doi.org/10.1039/9781849737616
[150] B.S. Al-anzi, O.C. Siang, Recent developments of carbon based nanomaterials and membranes for oily wastewater treatment, RSC Adv. 7 (2017) 20981–20994. https://doi.org/10.1039/C7RA02501G
[151] C.D. Williams, P. Carbone, Selective Removal of Technetium from Water Using Graphene Oxide Membranes, Environ. Sci. Technol. 50 (2016) 3875–3881. https://doi.org/10.1021/acs.est.5b06032
[152] D.H. Seo, S. Pineda, Y.C. Woo, M. Xie, A.T. Murdock, E.Y.M. Ang, Y. Jiao, M.J. Park, S. Il Lim, M. Lawn, F.F. Borghi, Z.J. Han, S. Gray, G. Millar, A. Du, H.K. Shon, T.Y. Ng, K.K. Ostrikov, Anti-fouling graphene-based membranes for effective water desalination, Nat. Commun. 9 (2018). https://doi.org/10.1038/s41467-018-02871-3
[153] H. Yang, R.Z. Waldman, Z. Chen, S.B. Darling, Atomic layer deposition for membrane interface engineering, Nanoscale. 10 (2018) 20505–20513. https://doi.org/10.1039/C8NR08114J
[154] E.F.D. Januário, N. de C.L. Beluci, T.B. Vidovix, M.F. Vieira, R. Bergamasco, A.M.S. Vieira, Functionalization of membrane surface by layer-by-layer self-assembly method for dyes removal, Process Saf. Environ. Prot. 134 (2020) 140–148. https://doi.org/10.1016/j.psep.2019.11.030
[155] J.H. Lora, W.G. Glasser, Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials, J. Polym. Environ. 10 (2002) 39-48. https://doi.org/10.1023/A:1021070006895
[156] J.F. Kadla, S. Kubo, R.A. Venditti, R.D. Gilbert, A.L. Compere, W. Griffith, Lignin-based carbon fibers for composite fiber applications, Carbon. 40 (2002) 2913–2920. https://doi.org/10.1016/S0008-6223(02)00248-8
[157] S. Yang, T. Wang, R. Tang, Q. Yan, W. Tian, L. Zhang, Enhanced permeability, mechanical and antibacterial properties of cellulose acetate ultrafiltration membranes incorporated with lignocellulose nanofibrils, Int. J. Biol. Macromol. 151 (2020) 159–167. https://doi.org/10.1016/j.ijbiomac.2020.02.124
[158] M. Nasrollahzadeh, S.M. Sajadi, A. Hatamifard, Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites, Appl. Catal. B: Environ. 191 (2016) 209–227. https://doi.org/10.1016/j.apcatb.2016.02.042
[159] X. Meng, D. Deng, Trash to Treasure: Waste Eggshells as Chemical Reactors for the Synthesis of Amorphous Co(OH)2 Nanorod Arrays on Various Substrates for Applications in Rechargeable Alkaline Batteries and Electrocatalysis, ACS Appl. Mater. Interfaces. 9 (2017) 5244–5253. https://doi.org/10.1021/acsami.6b14053
[160] X. Zhang, X. He, Z. Kang, M. Cui, D.-P. Yang, R. Luque, Waste eggshell-derived dual-functional CuO/ZnO/Eggshell nanocomposites: Photocatalytic reduction and bacterial inactivation, ACS Sustain. Chem. Eng. 7 (2019) 15762–15771. https://doi.org/10.1021/acssuschemeng.9b04083
[161] C. Senthil, K. Vediappan, M. Nanthagopal, H. S. Kang, P. Santhoshkumara, R. Gnanamuthub, C. W. Lee, Thermochemical conversion of eggshell as biological waste and its application as a functional material for lithium-ion batteries, Chem. Eng. J. 372 (2019) 765–773. https://doi.org/10.1016/j.cej.2019.04.171
[162] K. V. Peinemann, S.P. Nunes, L. Giorno, Membrane Technology: Membrane for Food Applications, Vol. 3, Wiley-VCH, 2010. https://doi.org/10.1002/9783527631384
[163] S.R. Panda, M. Mukherjee, S. De, Preparation, characterization and humic acid removal capacity of chitosan coated iron-oxide-polyacrylonitrile mixed matrix membrane, J. Water Process Eng. 6 (2015) 93–104. https://doi.org/10.1016/j.jwpe.2015.03.007
[164] Z. Alhalili, C. Romdhani, H. Chemingui, M. Smiri, Removal of dithioterethiol (DTT) from water by membranes of cellulose acetate (AC) and AC doped ZnO and TiO2 nanoparticles, J. Saudi Chem. Soc. 25 (2021) 101282. https://doi.org/10.1016/j.jscs.2021.101282
[165] M. Chaudhary, A. Maiti, Fe–Al–Mn@chitosan based metal oxides blended cellulose acetate mixed matrix membrane for fluoride decontamination from water: Removal mechanisms and antibacterial behavior, J. Membr. Sci. 611 (2020) 118372. https://doi.org/10.1016/j.memsci.2020.118372
[166] A.M. Avram, P. Ahmadiannamini, A. Vu, X. Qian, A. Sengupta, S.R. Wickramasinghe, Polyelectrolyte multilayer modified nanofiltration membranes for the recovery of ionic liquid from dilute aqueous solutions, J. Appl. Polym. Sci. 134 (2017) 45349. https://doi.org/10.1002/app.45349
[167] P. Wen, Y. Chen, X. Hu, B. Cheng, D. Liu, Y. Zhang, S. Nair, Polyamide thin film composite nanofiltration membrane modified with acyl chlorided graphene oxide. J. Memb. Sci. 535 (2017) 208–220. https://doi.org/10.1016/j.memsci.2017.04.043
[168] P.O. Bagci, M. Akbas, H.A. Gulec, U. Bagci, Coupling reverse osmosis and osmotic distillation for clarified pomegranate juice concentration: Use of plasma modified reverse osmosis membranes for improved performance, Innov. Food Sci. Emerg. Technol. 52 (2019) 213–220. https://doi.org/10.1016/j.ifset.2018.12.013