Advanced Functional Membranes for Microfiltration and Ultrafiltration
Ria Majumdar, Umesh Mishra, Biswanath Bhunia
In the era of freshwater scarcity, the world seeks to limit overexploitation of all accessible resource of freshwater and also to recover potable water by treating wastewater. Various domestic, agricultural and industrial activities lead in generating high amount of wastewater from which water can be recovered for human needs. Over many years, conventional filtration process has gained success to some extent in effluents treatment for disposal. Yet, improvement in filtration process is necessary for advanced wastewater treatment in order to make the whole process handy and cost-effective. The functionality of membrane can be enhanced by incorporating polymers with novel functions in advanced membrane separation methods like microfiltration (MF) and ultrafiltration (UF) for reclaiming potable water from wastewaters, catalysis and biomedical applications. This book chapter mostly focuses on the use of different polymeric substances for MF and UF membrane preparation and their application in various sectors. Basic principle, novel manufacturing techniques for polymeric membrane, process design i.e., synthesis of polymers as designed membrane feedstock, surface modifications, synergistic fabrication of different polymers for advanced functionality, antifouling and antibacterial properties of membrane are also discussed.
Keywords
Filtration, Membrane Technology, Polymer Membrane, Wastewater, Purification, Potable Water
Published online 2/5/2022, 30 pages
Citation: Ria Majumdar, Umesh Mishra, Biswanath Bhunia, Advanced Functional Membranes for Microfiltration and Ultrafiltration, Materials Research Foundations, Vol. 120, pp 43-71, 2022
DOI: https://doi.org/10.21741/9781644901816-2
Part of the book on Advanced Functional Membranes
References
[1] F. Yalcinkaya, E. Boyraz, J. Maryska, K. Kucerova, A review on membrane technology and chemical surface modification for the oily wastewater treatment, Materials 13 (2020) 493. https://doi.org/10.3390/ma13020493
[2] Central Pollution Control Board, Untreated sewage flow into river Yamuna, 2015.
[3] E. Obotey Ezugbe, S. Rathilal, Membrane technologies in wastewater treatment: a review, Membranes 10 (2020) 89. https://doi.org/10.3390/membranes10050089
[4] R.D.a.G.R. Ministry of Water Resources, DISCHARGE OF SEWAGE INTO GANGA RIVER, 2017.
[5] S. Muthukumaran, K. Baskaran, Comparison of the performance of ceramic microfiltration and ultrafiltration membranes in the reclamation and reuse of secondary wastewater, Desalin. Water Treat. 52 (2014) 670-677. https://doi.org/10.1080/19443994.2013.826333
[6] A. Cassano, A. Basile, Membranes for industrial microfiltration and ultrafiltration, Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications, Elsevier, 2011, pp. 647-679. https://doi.org/10.1533/9780857093790.5.647
[7] W. Ma, Q. Zhang, D. Hua, R. Xiong, J. Zhao, W. Rao, S. Huang, X. Zhan, F. Chen, C. Huang, Electrospun fibers for oil–water separation, Rsc Adv. 6 (2016) 12868-12884. https://doi.org/10.1039/C5RA27309A
[8] S.S. Madaeni, M.K. Yeganeh, Microfiltration of emulsified oil wastewater, J. Porous Mater. 10 (2003) 131-138. https://doi.org/10.1023/A:1026035830187
[9] C. Tien, Principles of filtration, Elsevier, 2012.
[10] M.T. Ravanchi, T. Kaghazchi, A. Kargari, Application of membrane separation processes in petrochemical industry: a review, Desalination 235 (2009) 199-244. https://doi.org/10.1016/j.desal.2007.10.042
[11] R.W. Baker, Membrane technology and applications, John Wiley & Sons, 2012. https://doi.org/10.1002/9781118359686
[12] M. El-Ghaffar, H.A. Tieama, A review of membranes classifications, configurations, surface modifications, characteristics and Its applications in water purification, Chem. Biomol. Eng. 2 (2017) 57-82.
[13] G. Srikanth, Membrane separation processes: Technology and business opportunities, Chem. Eng. World 34 (1999) 55-66.
[14] A. Sagle, B. Freeman, Fundamentals of membranes for water treatment, The future of desalination in Texas 2 (2004) 137.
[15] M. Padaki, R.S. Murali, M.S. Abdullah, N. Misdan, A. Moslehyani, M. Kassim, N. Hilal, A. Ismail, Membrane technology enhancement in oil–water separation. A review, Desalination 357 (2015) 197-207. https://doi.org/10.1016/j.desal.2014.11.023
[16] F. Yalcinkaya, A review on advanced nanofiber technology for membrane distillation, J. Eng. Fibers Fabr. 14 (2019) 1558925018824901. https://doi.org/10.1177/1558925018824901
[17] A. Zirehpour, A. Rahimpour, Membranes for wastewater treatment, Nanostructured Polymer Membranes; John Wiley & Sons Ltd.: London, UK 2 (2016) 159-207. https://doi.org/10.1002/9781118831823.ch4
[18] R. Grant, Membrane separations, Mater. Manuf. Process 4 (1989) 483-503. https://doi.org/10.1080/10426918908956311
[19] J.Z. Leos, A.L. Zydney, Microfiltration and ultrafiltration: principles and applications, Routledge, 2017. https://doi.org/10.1201/9780203747223
[20] H.T. Madsen, Membrane filtration in water treatment–removal of micropollutants, Chemistry of Advanced Environmental Purification Processes of Water, Elsevier, 2014, pp. 199-248. https://doi.org/10.1016/B978-0-444-53178-0.00006-7
[21] N.F. Gray, Filtration methods, Microbiology of Waterborne Diseases, Elsevier, 2014, pp. 631-650. https://doi.org/10.1016/B978-0-12-415846-7.00035-4
[22] T. Furukawa, K. Kokubo, K. Nakamura, K. Matsumoto, Modeling of the permeate flux decline during MF and UF cross-flow filtration of soy sauce lees, J. Membr. Sci. 322 (2008) 491-502. https://doi.org/10.1016/j.memsci.2008.05.068
[23] S. Ripperger, J. Altmann, Crossflow microfiltration–state of the art, Sep. Purif. Technol. 26 (2002) 19-31. https://doi.org/10.1016/S1383-5866(01)00113-7
[24] A. Massé, H.N. Thi, P. Legentilhomme, P. Jaouen, Dead-end and tangential ultrafiltration of natural salted water: Influence of operating parameters on specific energy consumption, J. Membr. Sci. 380 (2011) 192-198. https://doi.org/10.1016/j.memsci.2011.07.002
[25] S. Lee, A. Fane, R. Amal, T. Waite, The effect of floc size and structure on specific cake resistance and compressibility in dead-end microfiltration, Sep. Sci. Technol. 38 (2003) 869-887. https://doi.org/10.1081/SS-120017631
[26] K.J. Howe, A. Marwah, K.-P. Chiu, S.S. Adham, Effect of coagulation on the size of MF and UF membrane foulants, Environ. Sci. Technol. 40 (2006) 7908-7913. https://doi.org/10.1021/es0616480
[27] S.A.A. Tabatabai, M.D. Kennedy, G.L. Amy, J.C. Schippers, Optimizing inline coagulation to reduce chemical consumption in MF/UF systems, Desalin. Water Treat. 6 (2009) 94-101. https://doi.org/10.5004/dwt.2009.653
[28] B. Bolto, J. Zhang, X. Wu, Z. Xie, A review on current development of membranes for oil removal from wastewaters, Membranes 10 (2020) 65. https://doi.org/10.3390/membranes10040065
[29] M. Ulbricht, Design and synthesis of organic polymers for molecular separation membranes, Curr. Opin. Chem. Eng. 28 (2020) 60-65. https://doi.org/10.1016/j.coche.2020.02.002
[30] A. Mautner, K.-Y. Lee, P. Lahtinen, M. Hakalahti, T. Tammelin, K. Li, A. Bismarck, Nanopapers for organic solvent nanofiltration, Chem. Commun. 50 (2014) 5778-5781. https://doi.org/10.1039/C4CC00467A
[31] S.H. Mohamad, M. Idris, H.Z. Abdullah, A.F. Ismail, Short review of ultrafiltration of polymer membrane as a self-cleaning and antifouling in the wastewater system, Adv. Mat. Res., Trans Tech Publ, 2013, pp. 318-323. https://doi.org/10.4028/www.scientific.net/AMR.795.318
[32] A.T. Fane, R. Wang, Y. Jia, Membrane technology: past, present and future, Membrane and Desalination Technologies, Springer, 2011, pp. 1-45. https://doi.org/10.1007/978-1-59745-278-6_1
[33] S.C. George, S. Thomas, Transport phenomena through polymeric systems, Prog. Polym. Sci. 26 (2001) 985-1017. https://doi.org/10.1016/S0079-6700(00)00036-8
[34] R. Singh, J. Tembrock, Effectively control reverse osmosis systems, Chem. Eng. Prog. 95 (1999) 57-64.
[35] T. Bilstad, E. Espedal, Membrane separation of produced water, Water Sci. Technol. 34 (1996) 239-246. https://doi.org/10.2166/wst.1996.0221
[36] J. Kong, K. Li, Oil removal from oil-in-water emulsions using PVDF membranes, Sep. Purif. Technol. 16 (1999) 83-93. https://doi.org/10.1016/S1383-5866(98)00114-2
[37] S.R.H. Abadi, M.R. Sebzari, M. Hemati, F. Rekabdar, T. Mohammadi, Ceramic membrane performance in microfiltration of oily wastewater, Desalination 265 (2011) 222-228. https://doi.org/10.1016/j.desal.2010.07.055
[38] V. Singh, M. Purkait, C. Das, Cross-flow microfiltration of industrial oily wastewater: experimental and theoretical consideration, Sep. Sci. Technol. 46 (2011) 1213-1223. https://doi.org/10.1080/01496395.2011.560917
[39] A. Ezzati, E. Gorouhi, T. Mohammadi, Separation of water in oil emulsions using microfiltration, Desalination 185 (2005) 371-382. https://doi.org/10.1016/j.desal.2005.03.086
[40] B. Mrayyan, M.N. Battikhi, Biodegradation of total organic carbons (TOC) in Jordanian petroleum sludge, J. Hazard. Mater. 120 (2005) 127-134. https://doi.org/10.1016/j.jhazmat.2004.12.033
[41] M.V. Reddy, M.P. Devi, K. Chandrasekhar, R.K. Goud, S.V. Mohan, Aerobic remediation of petroleum sludge through soil supplementation: microbial community analysis, J. Hazard. Mater. 197 (2011) 80-87. https://doi.org/10.1016/j.jhazmat.2011.09.061
[42] M. Kriipsalu, M. Marques, A. Maastik, Characterization of oily sludge from a wastewater treatment plant flocculation-flotation unit in a petroleum refinery and its treatment implications, J. Mater. Cycles Waste Manag. 10 (2008) 79-86. https://doi.org/10.1007/s10163-007-0188-7
[43] G. Hong, W. Xiong, Application of membrane separation technology in food industry of China [J], Membr. Sci. Technol. 4 (2003).
[44] D. Yordanov, Preliminary study of the efficiency of ultrafiltration treatment of poultry slaughterhouse wastewater, Bulg. J. Agric. Sci. 16 (2010) 700-704.
[45] T.F. Speth, R.S. Summers, A.M. Gusses, Nanofiltration foulants from a treated surface water, Environ. Sci. Technol. 32 (1998) 3612-3617. https://doi.org/10.1021/es9800434
[46] Q. She, C.Y. Tang, Y.-N. Wang, Z. Zhang, The role of hydrodynamic conditions and solution chemistry on protein fouling during ultrafiltration, Desalination 24 (2009) 1079-1087. https://doi.org/10.1016/j.desal.2009.05.015
[47] H. Shon, S. Vigneswaran, I.S. Kim, J. Cho, H. Ngo, Fouling of ultrafiltration membrane by effluent organic matter: A detailed characterization using different organic fractions in wastewater, J. Membr. Sci. 278 (2006) 232-238. https://doi.org/10.1016/j.memsci.2005.11.006
[48] A.W. Mohammad, C.Y. Ng, Y.P. Lim, G.H. Ng, Ultrafiltration in food processing industry: review on application, membrane fouling, and fouling control, Food Bioproc. Tech. 5 (2012) 1143-1156. https://doi.org/10.1007/s11947-012-0806-9
[49] G. Amy, Fundamental understanding of organic matter fouling of membranes, Desalination 231 (2008) 44-51. https://doi.org/10.1016/j.desal.2007.11.037
[50] D. Sioutopoulos, A. Karabelas, V. Mappas, Membrane fouling due to protein—Polysaccharide mixtures in dead-end ultrafiltration; the effect of permeation flux on fouling resistance, Membranes 9 (2019) 21. https://doi.org/10.3390/membranes9020021
[51] M. Devanadera, M. Dalida, Fouling of Ceramic Microfiltration Membrane by Soluble Algal Organic Matter (Saom) from Chlorella Sp. and Aeruginosa M. and its Mitigation Using Feed-Pretreatment, Proceedings of the 14 th International Conference on Environmental Science and Technology, Rhodes, Greece, 2015, pp. 3-5. https://doi.org/10.1016/j.jcis.2016.10.013
[52] J.M. Dickhout, J. Moreno, P. Biesheuvel, L. Boels, R. Lammertink, W. De Vos, Produced water treatment by membranes: a review from a colloidal perspective, J. Colloid Interface Sci. 487 (2017) 523-534.
[53] P. Li, S. Zhang, Y. Lv, G. Ma, X. Zuo, Fouling mechanism and control strategy of inorganic membrane, E3S Web of Conferences, EDP Sciences, 2020, p. 04047. https://doi.org/10.1051/e3sconf/202019404047
[54] S. Huang, R.H. Ras, X. Tian, Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling, Curr. Opin. Colloid Interface Sci. 36 (2018) 90-109. https://doi.org/10.1016/j.cocis.2018.02.002
[55] M.M. Bazin, Y. Nakamura, N. Ahmad, Chemical Cleaning of Microfiltration Ceramic Membrane Fouled by Nom, J. Teknol 80 (2018). https://doi.org/10.11113/jt.v80.12156
[56] S. Béquet, J.-C. Remigy, J.-C. Rouch, J.-M. Espenan, M. Clifton, P. Aptel, From ultrafiltration to nanofiltration hollow fiber membranes: a continuous UV-photografting process, Desalination 144 (2002) 9-14. https://doi.org/10.1016/S0011-9164(02)00281-3
[57] Z.-P. Zhao, J. Li, D. Wang, C.-X. Chen, Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma: 4. Grafting of N-vinylpyrrolidone in aqueous solution, Desalination 184 (2005) 37-44. https://doi.org/10.1016/j.desal.2005.04.036
[58] C. Qiu, F. Xu, Q.T. Nguyen, Z. Ping, Nanofiltration membrane prepared from cardo polyetherketone ultrafiltration membrane by UV-induced grafting method, J. Membr. Sci. 255 (2005) 107-115. https://doi.org/10.1016/j.memsci.2005.01.027
[59] A. Asatekin, A. Menniti, S. Kang, M. Elimelech, E. Morgenroth, A.M. Mayes, Antifouling nanofiltration membranes for membrane bioreactors from self-assembling graft copolymers, J. Membr. Sci. 85 (2006) 81-89. https://doi.org/10.1016/j.memsci.2006.07.042
[60] A. Rahimpour, S.S. Madaeni, Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: preparation, morphology, performance and antifouling properties, J. Membr. Sci. 305 (2007) 299-312. https://doi.org/10.1016/j.memsci.2007.08.030
[61] C. Liu, S. Caothien, J. Hayes, T. Caothuy, T. Otoyo, T. Ogawa, Membrane chemical cleaning: from art to science, Pall Corporation, Port Washington, NY 11050 (2001).
[62] J.C.-T. Lin, D.-J. Lee, C. Huang, Membrane fouling mitigation: Membrane cleaning, Sep. Sci. Technol. 45 (2010) 858-872. https://doi.org/10.1080/01496391003666940
[63] N. Porcelli, S. Judd, Chemical cleaning of potable water membranes: A review, Sep. Purif. Technol. 71 (2010) 137-143. https://doi.org/10.1016/j.seppur.2009.12.007
[64] Y.-j. Zhao, K.-f. Wu, Z.-j. Wang, L. Zhao, S.-s. Li, Fouling and cleaning of membrane-a literature review, J. Environ. Sci. 2 (2000) 241-251.
[65] N. Yigit, G. Civelekoglu, I. Harman, H. Koseoglu, M. Kitis, Effects of various backwash scenarios on membrane fouling in a membrane bioreactor, Survival and Sustainability, Springer, 2010, pp. 917-929. https://doi.org/10.1007/978-3-540-95991-5_87
[66] J. Li, R. Sanderson, E. Jacobs, Ultrasonic cleaning of nylon microfiltration membranes fouled by Kraft paper mill effluent, J. Membr. Sci. 205 (2002) 247-257. https://doi.org/10.1016/S0376-7388(02)00121-7
[67] M.-W. Wan, F. Reguyal, C. Futalan, H.-L. Yang, C.-C. Kan, Ultrasound irradiation combined with hydraulic cleaning on fouled polyethersulfone and polyvinylidene fluoride membranes, Environ. Technol. 34 (2013) 2929-2937. https://doi.org/10.1080/09593330.2012.701235
[68] H. Kyllönen, P. Pirkonen, M. Nyström, Membrane filtration enhanced by ultrasound: a review, Desalination 181 (2005) 319-335. https://doi.org/10.1016/j.desal.2005.06.003
[69] S. Popović, M. Djurić, S. Milanović, M.N. Tekić, N. Lukić, Application of an ultrasound field in chemical cleaning of ceramic tubular membrane fouled with whey proteins, J. Food Eng. 101 (2010) 296-302. https://doi.org/10.1016/j.jfoodeng.2010.07.012
[70] A. Maskooki, S.A. Mortazavi, A. Maskooki, Cleaning of spiralwound ultrafiltration membranes using ultrasound and alkaline solution of EDTA, Desalination 264 (2010) 63-69. https://doi.org/10.1016/j.desal.2010.07.005
[71] A. Maartens, P. Swart, E. Jacobs, An enzymatic approach to the cleaning of ultrafiltration membranes fouled in abattoir effluent, J. Membr. Sci. 119 (1996) 9-16. https://doi.org/10.1016/0376-7388(96)00015-4
[72] A. Maartens, P. Swart, E. Jacobs, Enzymatic cleaning of ultrafiltration membranes fouled in wool-scouring effluent, pancreas 7 (1998) 35.5.
[73] Z. Wang, J. Ma, C.Y. Tang, K. Kimura, Q. Wang, X. Han, Membrane cleaning in membrane bioreactors: a review, J. Membr. Sci. 468 (2014) 276-307. https://doi.org/10.1016/j.memsci.2014.05.060
[74] Z. Allie, E. Jacobs, A. Maartens, P. Swart, Enzymatic cleaning of ultrafiltration membranes fouled by abattoir effluent, J. Membr. Sci. 218 (2003) 107-116. https://doi.org/10.1016/S0376-7388(03)00145-5
[75] R. Wakeman, C. Williams, Additional techniques to improve microfiltration, Sep. Purif. Technol. 26 (2002) 3-18. https://doi.org/10.1016/S1383-5866(01)00112-5
[76] X. Shi, G. Tal, N.P. Hankins, V. Gitis, Fouling and cleaning of ultrafiltration membranes: A review, J. Water Process Eng. 1 (2014) 121-138. https://doi.org/10.1016/j.jwpe.2014.04.003
[77] A.W. Mohammad, Y. Teow, W. Ang, Y. Chung, D. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review: Recent advances and future prospects, Desalination 356 (2015) 226-254. https://doi.org/10.1016/j.desal.2014.10.043
[78] A. Schäfer, A.G. Fane, T.D. Waite, Nanofiltration: principles and applications, Elsevier, 2005.
[79] B. Van der Bruggen, C. Vandecasteele, Modelling of the retention of uncharged molecules with nanofiltration, Water Res. 36 (2002) 1360-1368. https://doi.org/10.1016/S0043-1354(01)00318-9
[80] D.L. Oatley-Radcliffe, M. Walters, T.J. Ainscough, P.M. Williams, A.W. Mohammad, N. Hilal, Nanofiltration membranes and processes: A review of research trends over the past decade, J. Water Process Eng. 19 (2017) 164-171. https://doi.org/10.1016/j.jwpe.2017.07.026
[81] J. Schaep, B. Van der Bruggen, C. Vandecasteele, D. Wilms, Influence of ion size and charge in nanofiltration, Sep. Purif. Technol. 14 (1998) 155-162. https://doi.org/10.1016/S1383-5866(98)00070-7
[82] C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, State-of-the-art of reverse osmosis desalination, Desalination 216 (2007) 1-76. https://doi.org/10.1016/j.desal.2006.12.009
[83] L. Malaeb, G.M. Ayoub, Reverse osmosis technology for water treatment: state of the art review, Desalination 267 (2011) 1-8. https://doi.org/10.1016/j.desal.2010.09.001
[84] A. Gul, J. Hruza, F. Yalcinkaya, Fouling and Chemical Cleaning of Microfiltration Membranes: A Mini-Review, Polymers 13 (2021) 846. https://doi.org/10.3390/polym13060846
[85] J.C. Crittenden, R.R. Trussell, D.W. Hand, K. Howe, G. Tchobanoglous, MWH’s water treatment: principles and design, John Wiley & Sons, 2012. https://doi.org/10.1002/9781118131473
[86] M. Ulbricht, Advanced functional polymer membranes, Polymer 47 (2006) 2217-2262. https://doi.org/10.1016/j.polymer.2006.01.084
[87] Y. Wang, X. Chen, J. Zhang, J. Yin, H. Wang, Investigation of microfiltration for treatment of emulsified oily wastewater from the processing of petroleum products, Desalination 249 (2009) 1223-1227. https://doi.org/10.1016/j.desal.2009.06.033
[88] T. Mohammadi, A. Esmaeelifar, Wastewater treatment using ultrafiltration at a vegetable oil factory, Desalination 166 (2004) 329-337. https://doi.org/10.1016/j.desal.2004.06.087
[89] R. Gnirss, J. Dittrich, Microfiltration of Municipal Wastewater for Disinfection and Advanced Phosphorus Removal: Results from Trials with Different Small‐Scale Pilot Plants, Water Environ. Res. 72 (2000) 602-609. https://doi.org/10.2175/106143000X138184
[90] V. Buscio, M.J. Marín, M. Crespi, C. Gutiérrez-Bouzán, Reuse of textile wastewater after homogenization–decantation treatment coupled to PVDF ultrafiltration membranes, Chem. Eng. J. 265 (2015) 122-128. https://doi.org/10.1016/j.cej.2014.12.057
[91] A. Salahi, R. Badrnezhad, M. Abbasi, T. Mohammadi, F. Rekabdar, Oily wastewater treatment using a hybrid UF/RO system, Desalin. Water Treat. 28 (2011) 75-82. https://doi.org/10.5004/dwt.2011.2204
[92] S. Rodriguez-Mozaz, M. Ricart, M. Köck-Schulmeyer, H. Guasch, C. Bonnineau, L. Proia, M.L. de Alda, S. Sabater, D. Barceló, Pharmaceuticals and pesticides in reclaimed water: efficiency assessment of a microfiltration–reverse osmosis (MF–RO) pilot plant, J. Hazard. Mater. 282 (2015) 165-173. https://doi.org/10.1016/j.jhazmat.2014.09.015
[93] C.F. Couto, W.G. Moravia, M.C.S. Amaral, Integration of microfiltration and nanofiltration to promote textile effluent reuse, Clean Technol. Environ. Policy 19 (2017) 2057-2073. https://doi.org/10.1007/s10098-017-1388-z
[94] S.R. Reijerkerk, M.H. Knoef, K. Nijmeijer, M. Wessling, Poly (ethylene glycol) and poly (dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes, J. Membr. Sci. 352 (2010) 126-135. https://doi.org/10.1016/j.memsci.2010.02.008
[95] D. Wang, F. Tong, P. Aerts, Application of the combined ultrafiltration and reverse osmosis for refinery wastewater reuse in Sinopec Yanshan Plant, Desalin Water Treat. 25 (2011) 133-142. https://doi.org/10.5004/dwt.2011.1137
[96] I. Petrinic, J. Korenak, D. Povodnik, C. Hélix-Nielsen, A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industry, J. Clean. Prod. 101 (2015) 292-300. https://doi.org/10.1016/j.jclepro.2015.04.022