Polymer-Based Membranes

$30.00

Polymer-Based Membranes

Ashok Shrishail Maraddi and S.K. Nataraj

Membrane science and technology is increasingly playing an important role in maintaining environmental health. Polymer based membranes in particular show great potential in removing environmentally hazardous pollutants from the wastewater. Membrane technology has also been widely used for ground, surface and seawater desalination which is serving the humanity by providing high quality drinking water. Polymeric membranes have been categorized based on their pore size and their distribution which make them tailor made and innovative separation media namely, reverse osmosis, nanofiltration, ultrafiltration, microfiltration and forward osmosis. All these membrane process require high performing membranes as separation media. This chapter give detailed account of membrane preparation techniques, membrane modules and their applications in different fields. Further, the ideas covered in this chapter are fundamental to all membrane processes. Transport processes, membrane preparation, and flow separation effects are just few of the topics that have been studied.

Keywords
Membrane Technology, Polymer Membrane, Advanced Membranes, Functional Polymer

Published online 2/5/2022, 42 pages

Citation: Ashok Shrishail Maraddi and S.K. Nataraj, Polymer-Based Membranes, Materials Research Foundations, Vol. 120, pp 1-42, 2022

DOI: https://doi.org/10.21741/9781644901816-1

Part of the book on Advanced Functional Membranes

References
[1] V.T. Stannett, W.J. Koros, D.R. Paul, H.K. Lonsdale, R.W. Baker, Recent advances in membrane science and technology, 32 (1979) 69-121. https://doi.org/10.1007/3-540-09442-3_5
[2] T. Deblonde, C. Cossu-Leguille, P. Hartemann, Emerging pollutants in wastewater: A review of the literature, International Journal of Hygiene and Environmental Health, 214 (2011) 442-448. https://doi.org/10.1016/j.ijheh.2011.08.002
[3] P. Verlicchi, A. Galletti, M. Petrovic, D. Barceló, Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options, Journal of Hydrology, 389 (2010) 416-428. https://doi.org/10.1016/j.jhydrol.2010.06.005
[4] B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring, Water Research, 72 (2015) 3-27. https://doi.org/10.1016/j.watres.2014.08.053
[5] S. Sourirajan, Separation of Some Inorganic Salts in Aqueous Solution by Flow, under Pressure, through Porous Cellulose Acetate Membranes, Industrial & Engineering Chemistry Fundamentals, 3 (1964) 206-210. https://doi.org/10.1021/i160011a005
[6] J. Ditter, R.A. Morris, R. Zepf, Large pore synthetic polymer membranes, Google Patents, 2002.
[7] A.K. Hołda, B. Aernouts, W. Saeys, I.F. Vankelecom, Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes, Journal of membrane science, 442 (2013) 196-205. https://doi.org/10.1016/j.memsci.2013.04.017
[8] A.K. Hołda, I.F. Vankelecom, Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes, Journal of Applied Polymer Science, 132 (2015). https://doi.org/10.1002/app.42130
[9] H. Mariën, I.F. Vankelecom, Transformation of cross-linked polyimide UF membranes into highly permeable SRNF membranes via solvent annealing, Journal of Membrane Science, 541 (2017) 205-213. https://doi.org/10.1016/j.memsci.2017.06.080
[10] I. Soroko, M.P. Lopes, A. Livingston, The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN): Part A. Effect of polymer/solvent/non-solvent system choice, Journal of Membrane Science, 381 (2011) 152-162. https://doi.org/10.1016/j.memsci.2011.07.027
[11] D.R. Lloyd, K.E. Kinzer, H.S. Tseng, Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation, Journal of Membrane Science, 52 (1990) 239-261. https://doi.org/10.1016/S0376-7388(00)85130-3
[12] J.T. Jung, J.F. Kim, H.H. Wang, E. di Nicolo, E. Drioli, Y.M. Lee, Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS), Journal of Membrane Science, 514 (2016) 250-263. https://doi.org/10.1016/j.memsci.2016.04.069
[13] J.T. Jung, H.H. Wang, J.F. Kim, J. Lee, J.S. Kim, E. Drioli, Y.M. Lee, Tailoring nonsolvent-thermally induced phase separation (N-TIPS) effect using triple spinneret to fabricate high performance PVDF hollow fiber membranes, Journal of Membrane Science, 559 (2018) 117-126. https://doi.org/10.1016/j.memsci.2018.04.054
[14] S. Muthukumaran, S.E. Kentish, G.W. Stevens, M. Ashokkumar, Application of Ultrasound in Membrane Separation Processes: A Review, Reviews in Chemical Engineering, 22 (2006). https://doi.org/10.1515/REVCE.2006.22.3.155
[15] J.H. Jhaveri, Z.V.P. Murthy, A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes, Desalination, 379 (2016) 137-154. https://doi.org/10.1016/j.desal.2015.11.009
[16] E. Salehi, P. Daraei, A. Arabi Shamsabadi, A review on chitosan-based adsorptive membranes, Carbohydrate Polymers, 152 (2016) 419-432. https://doi.org/10.1016/j.carbpol.2016.07.033
[17] M. Zahid, A. Rashid, S. Akram, Z.A. Rehan, W. Razzaq, A Comprehensive Review on Polymeric Nano-Composite Membranes for Water Treatment, Journal of Membrane Science & Technology, 08 (2018). https://doi.org/10.4172/2155-9589.1000179
[18] Q. Liu, G.-R. Xu, Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes, Desalination, 394 (2016) 162-175. https://doi.org/10.1016/j.desal.2016.05.017
[19] S. Kuiper, C.J.M. van Rijn, W. Nijdam, M.C. Elwenspoek, Development and applications of very high flux microfiltration membranes, Journal of Membrane Science, 150 (1998) 1-8. https://doi.org/10.1016/S0376-7388(98)00197-5
[20] L. Fan, J.L. Harris, F.A. Roddick, N.A. Booker, Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes, Water Research, 35 (2001) 4455-4463. https://doi.org/10.1016/S0043-1354(01)00183-X
[21] A. Mehta, A.L. Zydney, Permeability and selectivity analysis for ultrafiltration membranes, Journal of Membrane Science, 249 (2005) 245-249. https://doi.org/10.1016/j.memsci.2004.09.040
[22] A.F. Ismail, M. Padaki, N. Hilal, T. Matsuura, W.J. Lau, Thin film composite membrane — Recent development and future potential, Desalination, 356 (2015) 140-148. https://doi.org/10.1016/j.desal.2014.10.042
[23] Y. Song, F. Liu, B. Sun, Preparation, characterization, and application of thin film composite nanofiltration membranes, Journal of Applied Polymer Science, 95 (2005) 1251-1261. https://doi.org/10.1002/app.21338
[24] X. Shi, G. Tal, N.P. Hankins, V. Gitis, Fouling and cleaning of ultrafiltration membranes: A review, Journal of Water Process Engineering, 1 (2014) 121-138. https://doi.org/10.1016/j.jwpe.2014.04.003
[25] J. Liu, Z. Xu, X. Li, Y. Zhang, Y. Zhou, Z. Wang, X. Wang, An improved process to prepare high separation performance PA/PVDF hollow fiber composite nanofiltration membranes, Separation and Purification Technology, 58 (2007) 53-60. https://doi.org/10.1016/j.seppur.2007.07.009
[26] X.Q. Cheng, Z.X. Wang, Y. Zhang, Y. Zhang, J. Ma, L. Shao, Bio-inspired loose nanofiltration membranes with optimized separation performance for antibiotics removals, Journal of Membrane Science, 554 (2018) 385-394. https://doi.org/10.1016/j.memsci.2018.03.005
[27] S. Lee, C. Boo, M. Elimelech, S. Hong, Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO), Journal of Membrane Science, 365 (2010) 34-39. https://doi.org/10.1016/j.memsci.2010.08.036
[28] M. Xie, L.D. Nghiem, W.E. Price, M. Elimelech, Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis, Water Research, 46 (2012) 2683-2692. https://doi.org/10.1016/j.watres.2012.02.023
[29] J.-H. Choi, J. Jegal, W.-N. Kim, Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes, Journal of Membrane Science, 284 (2006) 406-415. https://doi.org/10.1016/j.memsci.2006.08.013
[30] L. Deng, T.-J. Kim, M.-B. Hägg, Facilitated transport of CO2 in novel PVAm/PVA blend membrane, Journal of Membrane Science, 340 (2009) 154-163. https://doi.org/10.1016/j.memsci.2009.05.019
[31] X. Cao, J. Ma, X. Shi, Z. Ren, Effect of TiO 2 nanoparticle size on the performance of PVDF membrane, Applied Surface Science, 253 (2006) 2003-2010. https://doi.org/10.1016/j.apsusc.2006.03.090
[32] J.-Y. Lai, M.-J. Liu, K.-R. Lee, Polycarbonate membrane prepared via a wet phase inversion method for oxygen enrichment from air, Journal of Membrane Science, 86 (1994) 103-118. https://doi.org/10.1016/0376-7388(93)E0136-8
[33] J.-F. Li, Z.-L. Xu, H. Yang, L.-Y. Yu, M. Liu, Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane, Applied Surface Science, 255 (2009) 4725-4732. https://doi.org/10.1016/j.apsusc.2008.07.139
[34] M.B. Karimi, G. Khanbabaei, G.M.M. Sadeghi, Vegetable oil-based polyurethane membrane for gas separation, Journal of Membrane Science, 527 (2017) 198-206. https://doi.org/10.1016/j.memsci.2016.12.008
[35] J. Yin, G. Zhu, B. Deng, Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification, Desalination, 379 (2016) 93-101. https://doi.org/10.1016/j.desal.2015.11.001
[36] H.H. Yong, H.C. Park, Y.S. Kang, J. Won, W.N. Kim, Zeolite-filled polyimide membrane containing 2,4,6-triaminopyrimidine, Journal of Membrane Science, 188 (2001) 151-163. https://doi.org/10.1016/S0376-7388(00)00659-1
[37] M. Elimelech, Z. Xiaohua, A.E. Childress, H. Seungkwan, Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes, Journal of Membrane Science, 127 (1997) 101-109. https://doi.org/10.1016/S0376-7388(96)00351-1
[38] M. Han, Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane, Journal of Membrane Science, 202 (2002) 55-61. https://doi.org/10.1016/S0376-7388(01)00718-9
[39] Y. Xiuli, C. Hongbin, W. Xiu, Y. Yongxin, Morphology and properties of hollow-fiber membrane made by PAN mixing with small amount of PVDF, Journal of Membrane Science, 146 (1998) 179-184. https://doi.org/10.1016/S0376-7388(98)00107-0
[40] J.M. Luque-Alled, A.W. Ameen, M. Alberto, M. Tamaddondar, A.B. Foster, P.M. Budd, A. Vijayaraghavan, P. Gorgojo, Gas separation performance of MMMs containing (PIM-1)-functionalized GO derivatives, Journal of Membrane Science, 623 (2021). https://doi.org/10.1016/j.memsci.2020.118902
[41] S. Agarwal, A. Greiner, J.H. Wendorff, Functional materials by electrospinning of polymers, Progress in Polymer Science, 38 (2013) 963-991. https://doi.org/10.1016/j.progpolymsci.2013.02.001
[42] S. Dixit, S. Pal, Recent Advanced Technologies in the Processing of Hybrid Reinforced Polymers for Applications of Membranes, Polymers and Polymer Composites, 24 (2018) 289-305. https://doi.org/10.1177/096739111602400408
[43] T. Malik, H. Razzaq, S. Razzaque, H. Nawaz, A. Siddiqa, M. Siddiq, S. Qaisar, Design and synthesis of polymeric membranes using water-soluble pore formers: an overview, Polymer Bulletin, 76 (2018) 4879-4901. https://doi.org/10.1007/s00289-018-2616-3
[44] J.M. Skluzacek, M.I. Tejedor, M.A. Anderson, NaCl rejection by an inorganic nanofiltration membrane in relation to its central pore potential, Journal of Membrane Science, 289 (2007) 32-39. https://doi.org/10.1016/j.memsci.2006.11.034
[45] A. Lee, J.W. Elam, S.B. Darling, Membrane materials for water purification: design, development, and application, Environmental Science: Water Research & Technology, 2 (2016) 17-42. https://doi.org/10.1039/C5EW00159E
[46] S.N.W. Ikhsan, N. Yusof, A.F. Ismail, W.N.W. Salleh, F. Aziz, J. Jaafar, H. Hasbullah, Synthetic polymer-based membranes for treatment of oily wastewater, (2020) 3-22. https://doi.org/10.1016/B978-0-12-818485-1.00001-0
[47] A. Ghaee, M. Shariaty-Niassar, J. Barzin, T. Matsuura, Effects of chitosan membrane morphology on copper ion adsorption, Chemical Engineering Journal, 165 (2010) 46-55. https://doi.org/10.1016/j.cej.2010.08.051
[48] A. Moriya, T. Maruyama, Y. Ohmukai, T. Sotani, H. Matsuyama, Preparation of poly(lactic acid) hollow fiber membranes via phase separation methods, Journal of Membrane Science, 342 (2009) 307-312. https://doi.org/10.1016/j.memsci.2009.07.005
[49] R.Y.M. Huang, R. Pal, G.Y. Moon, Characteristics of sodium alginate membranes for the pervaporation dehydration of ethanol–water and isopropanol–water mixtures, Journal of Membrane Science, 160 (1999) 101-113. https://doi.org/10.1016/S0376-7388(99)00071-X
[50] P. Tomietto, P. Loulergue, L. Paugam, J.-L. Audic, Biobased polyhydroxyalkanoate (PHA) membranes: Structure/performances relationship, Separation and Purification Technology, 252 (2020). https://doi.org/10.1016/j.seppur.2020.117419
[51] D. Chen, M.A. Hickner, E. Agar, E.C. Kumbur, Optimizing membrane thickness for vanadium redox flow batteries, Journal of Membrane Science, 437 (2013) 108-113. https://doi.org/10.1016/j.memsci.2013.02.007
[52] J. Guo, Q. Zhang, Z. Cai, K. Zhao, Preparation and dye filtration property of electrospun polyhydroxybutyrate–calcium alginate/carbon nanotubes composite nanofibrous filtration membrane, Separation and Purification Technology, 161 (2016) 69-79. https://doi.org/10.1016/j.seppur.2016.01.036
[53] P.-J. Lin, M.-C. Yang, Y.-L. Li, J.-H. Chen, Prevention of surfactant wetting with agarose hydrogel layer for direct contact membrane distillation used in dyeing wastewater treatment, Journal of Membrane Science, 475 (2015) 511-520. https://doi.org/10.1016/j.memsci.2014.11.001
[54] H. Pang, K. Tian, Y. Li, C. Su, F. Duan, Y. Xu, Super-hydrophobic PTFE hollow fiber membrane fabricated by electrospinning of Pullulan/PTFE emulsion for membrane deamination, Separation and Purification Technology, 274 (2021). https://doi.org/10.1016/j.seppur.2020.118186
[55] P. Samoila, A.C. Humelnicu, M. Ignat, C. Cojocaru, V. Harabagiu, Chitin and Chitosan for Water Purification, Chitin and Chitosan2019, pp. 429-460. https://doi.org/10.1002/9781119450467.ch17
[56] Y. Yang, A. Raza, F. Banat, K. Wang, The separation of oil in water (O/W) emulsions using polyether sulfone & nitrocellulose microfiltration membranes, Journal of Water Process Engineering, 25 (2018) 113-117. https://doi.org/10.1016/j.jwpe.2018.07.007
[57] L. Manjarrez Nevárez, L. Ballinas Casarrubias, O.S. Canto, A. Celzard, V. Fierro, R. Ibarra Gómez, G. González Sánchez, Biopolymers-based nanocomposites: Membranes from propionated lignin and cellulose for water purification, Carbohydrate Polymers, 86 (2011) 732-741. https://doi.org/10.1016/j.carbpol.2011.05.014
[58] L.A. Goetz, B. Jalvo, R. Rosal, A.P. Mathew, Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration, Journal of Membrane Science, 510 (2016) 238-248. https://doi.org/10.1016/j.memsci.2016.02.069
[59] A. Prasannan, J. Udomsin, H.-C. Tsai, C.-F. Wang, J.-Y. Lai, Robust underwater superoleophobic membranes with bio-inspired carrageenan/laponite multilayers for the effective removal of emulsions, metal ions, and organic dyes from wastewater, Chemical Engineering Journal, 391 (2020). https://doi.org/10.1016/j.cej.2019.123585
[60] T.P.N. Nguyen, E.-T. Yun, I.-C. Kim, Y.-N. Kwon, Preparation of cellulose triacetate/cellulose acetate (CTA/CA)-based membranes for forward osmosis, Journal of Membrane Science, 433 (2013) 49-59. https://doi.org/10.1016/j.memsci.2013.01.027
[61] D.L. Kaplan, Introduction to Biopolymers from Renewable Resources, (1998) 1-29. https://doi.org/10.1007/978-3-662-03680-8_1
[62] M. Zeng, I. Echols, P. Wang, S. Lei, J. Luo, B. Peng, L. He, L. Zhang, D. Huang, C. Mejia, L. Wang, M.S. Mannan, Z. Cheng, Highly Biocompatible, Underwater Superhydrophilic and Multifunctional Biopolymer Membrane for Efficient Oil–Water Separation and Aqueous Pollutant Removal, ACS Sustainable Chemistry & Engineering, 6 (2018) 3879-3887. https://doi.org/10.1021/acssuschemeng.7b04219
[63] P. Budd, K. Msayib, C. Tattershall, B. Ghanem, K. Reynolds, N. McKeown, D. Fritsch, Gas separation membranes from polymers of intrinsic microporosity, Journal of Membrane Science, 251 (2005) 263-269. https://doi.org/10.1016/j.memsci.2005.01.009
[64] F. Russo, F. Galiano, A. Iulianelli, A. Basile, A. Figoli, Biopolymers for sustainable membranes in CO2 separation: a review, Fuel Processing Technology, (2020) 106643. https://doi.org/10.1016/j.fuproc.2020.106643
[65] B. Lian, G. Blandin, G. Leslie, P. Le-Clech, Impact of module design in forward osmosis and pressure assisted osmosis: An experimental and numerical study, Desalination, 426 (2018) 108-117. https://doi.org/10.1016/j.desal.2017.10.047
[66] B. Gu, D.Y. Kim, J.H. Kim, D.R. Yang, Mathematical model of flat sheet membrane modules for FO process: Plate-and-frame module and spiral-wound module, Journal of Membrane Science, 379 (2011) 403-415. https://doi.org/10.1016/j.memsci.2011.06.012
[67] F. Li, W. Meindersma, A.B. de Haan, T. Reith, Optimization of commercial net spacers in spiral wound membrane modules, Journal of Membrane Science, 208 (2002) 289-302. https://doi.org/10.1016/S0376-7388(02)00307-1
[68] J. Schwinge, P.R. Neal, D.E. Wiley, D.F. Fletcher, A.G. Fane, Spiral wound modules and spacers, Journal of Membrane Science, 242 (2004) 129-153. https://doi.org/10.1016/j.memsci.2003.09.031
[69] M. Pourbozorg, T. Li, A.W.K. Law, Effect of turbulence on fouling control of submerged hollow fibre membrane filtration, Water Research, 99 (2016) 101-111. https://doi.org/10.1016/j.watres.2016.04.045
[70] A. Altaee, A. Braytee, G.J. Millar, O. Naji, Energy efficiency of hollow fibre membrane module in the forward osmosis seawater desalination process, Journal of Membrane Science, 587 (2019) 117165. https://doi.org/10.1016/j.memsci.2019.06.005
[71] K.C. Khulbe, T. Matsuura, Recent progress in polymeric hollow-fibre membrane preparation and applications, Membrane Technology, 2016 (2016) 7-13. https://doi.org/10.1016/S0958-2118(16)30149-5
[72] M. Lee, Z. Wu, K. Li, Advances in ceramic membranes for water treatment, (2015) 43-82. https://doi.org/10.1016/B978-1-78242-121-4.00002-2
[73] S.K. Hubadillah, M.H.D. Othman, T. Matsuura, A.F. Ismail, M.A. Rahman, Z. Harun, J. Jaafar, M. Nomura, Fabrications and applications of low cost ceramic membrane from kaolin: A comprehensive review, Ceramics International, 44 (2018) 4538-4560. https://doi.org/10.1016/j.ceramint.2017.12.215
[74] S.K. Hubadillah, M.H.D. Othman, T. Matsuura, M.A. Rahman, J. Jaafar, A.F. Ismail, S.Z.M. Amin, Green silica-based ceramic hollow fiber membrane for seawater desalination via direct contact membrane distillation, Separation and Purification Technology, 205 (2018) 22-31. https://doi.org/10.1016/j.seppur.2018.04.089
[75] S.P. Nunes, A. Car, From Charge-Mosaic to Micelle Self-Assembly: Block Copolymer Membranes in the Last 40 Years, Industrial & Engineering Chemistry Research, 52 (2012) 993-1003. https://doi.org/10.1021/ie202870y
[76] J.R. Werber, C.O. Osuji, M. Elimelech, Materials for next-generation desalination and water purification membranes, Nature Reviews Materials, 1 (2016) 1-15. https://doi.org/10.1038/natrevmats.2016.18
[77] S.H. Chen, C. Willis, K.R. Shull, Water transport and mechanical response of block copolymer ion-exchange membranes for water purification, Journal of Membrane Science, 544 (2017) 388-396. https://doi.org/10.1016/j.memsci.2017.09.001
[78] A.-V. Ruzette, L. Leibler, Block copolymers in tomorrow’s plastics, Nature Materials, 4 (2005) 19-31. https://doi.org/10.1038/nmat1295
[79] H.A. Klok, S. Lecommandoux, Supramolecular materials via block copolymer self‐assembly, Advanced Materials, 13 (2001) 1217-1229. https://doi.org/10.1002/1521-4095(200108)13:16<1217::AID-ADMA1217>3.0.CO;2-D
[80] S.P. Nunes, K.V. Peinemann, Ultrafiltration membranes from PVDF/PMMA blends, Journal of Membrane Science, 73 (1992) 25-35. https://doi.org/10.1016/0376-7388(92)80183-K
[81] P.H.H. Duong, K. Daumann, P.-Y. Hong, M. Ulbricht, S.P. Nunes, Interfacial Polymerization of Zwitterionic Building Blocks for High-Flux Nanofiltration Membranes, Langmuir, 35 (2018) 1284-1293. https://doi.org/10.1021/acs.langmuir.8b00960
[82] K. Buruga, H. Song, J. Shang, N. Bolan, T.K. Jagannathan, K.-H. Kim, A review on functional polymer-clay based nanocomposite membranes for treatment of water, Journal of Hazardous Materials, 379 (2019) 120584. https://doi.org/10.1016/j.jhazmat.2019.04.067
[83] J. Yin, B. Deng, Polymer-matrix nanocomposite membranes for water treatment, Journal of Membrane Science, 479 (2015) 256-275. https://doi.org/10.1016/j.memsci.2014.11.019
[84] L. Shen, X. Zhang, L. Tian, Z. Li, C. Ding, M. Yi, C. Han, X. Yu, Y. Wang, Constructing substrate of low structural parameter by salt induction for high-performance TFC-FO membranes, Journal of Membrane Science, 600 (2020) 117866. https://doi.org/10.1016/j.memsci.2020.117866
[85] W. Xu, Q. Chen, Q. Ge, Recent advances in forward osmosis (FO) membrane: Chemical modifications on membranes for FO processes, Desalination, 419 (2017) 101-116. https://doi.org/10.1016/j.desal.2017.06.007
[86] N. Singh, I. Petrinic, C. Hélix-Nielsen, S. Basu, M. Balakrishnan, Concentrating molasses distillery wastewater using biomimetic forward osmosis (FO) membranes, Water Research, 130 (2018) 271-280. https://doi.org/10.1016/j.watres.2017.12.006
[87] T.-S. Chung, X. Li, R.C. Ong, Q. Ge, H. Wang, G. Han, Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications, Current Opinion in Chemical Engineering, 1 (2012) 246-257. https://doi.org/10.1016/j.coche.2012.07.004
[88] T. Cath, A. Childress, M. Elimelech, Forward osmosis: Principles, applications, and recent developments, Journal of Membrane Science, 281 (2006) 70-87. https://doi.org/10.1016/j.memsci.2006.05.048
[89] F.-Y. Zhao, Q.-F. An, Y.-L. Ji, C.-J. Gao, A novel type of polyelectrolyte complex/MWCNT hybrid nanofiltration membranes for water softening, Journal of Membrane Science, 492 (2015) 412-421. https://doi.org/10.1016/j.memsci.2015.05.041
[90] S. Nam, Pervaporation and properties of chitosan-poly(acrylic acid) complex membranes, Journal of Membrane Science, 135 (1997) 161-171. https://doi.org/10.1016/S0376-7388(97)00144-0
[91] Q. Zhao, Y.-L. Ji, J.-K. Wu, L.-L. Shao, Q.-F. An, C.-J. Gao, Polyelectrolyte complex nanofiltration membranes: performance modulation via casting solution pH, RSC Adv., 4 (2014) 52808-52814. https://doi.org/10.1039/C4RA09164G
[92] F.M. Lounis, J. Chamieh, P. Gonzalez, H. Cottet, L. Leclercq, Prediction of Polyelectrolyte Complex Stoichiometry for Highly Hydrophilic Polyelectrolytes, Macromolecules, 49 (2016) 3881-3888. https://doi.org/10.1021/acs.macromol.6b00463
[93] Y. Yang, Q. Zhang, S. Li, S. Zhang, Preparation and characterization of porous polyelectrolyte complex membranes for nanofiltration, RSC Advances, 5 (2015) 3567-3573. https://doi.org/10.1039/C4RA13699C
[94] P. Ahmadiannamini, X. Li, W. Goyens, N. Joseph, B. Meesschaert, I.F.J. Vankelecom, Multilayered polyelectrolyte complex based solvent resistant nanofiltration membranes prepared from weak polyacids, Journal of Membrane Science, 394-395 (2012) 98-106. https://doi.org/10.1016/j.memsci.2011.12.032
[95] A.C. Pierre, G.M. Pajonk, Chemistry of Aerogels and Their Applications, Chemical Reviews, 102 (2002) 4243-4266. https://doi.org/10.1021/cr0101306
[96] S. Zhao, W.J. Malfait, N. Guerrero-Alburquerque, M.M. Koebel, G. Nyström, Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications, Angewandte Chemie International Edition, 57 (2018) 7580-7608. https://doi.org/10.1002/anie.201709014
[97] M.H. Mruthunjayappa, V.T. Sharma, K. Dharmalingam, N. Sanna Kotrappanavar, D. Mondal, Engineering a Biopolymer-Based Ultrafast Permeable Aerogel Membrane Decorated with Task-Specific Fe–Al Nanocomposites for Robust Water Purification, ACS Applied Bio Materials, 3 (2020) 5233-5243.
[98] Y. Si, J. Yu, X. Tang, J. Ge, B. Ding, Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality, Nature Communications, 5 (2014). https://doi.org/10.1038/ncomms6802
[99] B. Van Der Bruggen, C. Vandecasteele, T. Van Gestel, W. Doyen, R. Leysen, A review of pressure-driven membrane processes in wastewater treatment and drinking water production, Environmental Progress, 22 (2003) 46-56. https://doi.org/10.1002/ep.670220116
[100] A.M. Nasir, P.S. Goh, M.S. Abdullah, B.C. Ng, A.F. Ismail, Adsorptive nanocomposite membranes for heavy metal remediation: Recent progresses and challenges, Chemosphere, 232 (2019) 96-112. https://doi.org/10.1016/j.chemosphere.2019.05.174
[101] M.A. Hashim, S. Mukhopadhyay, J.N. Sahu, B. Sengupta, Remediation technologies for heavy metal contaminated groundwater, Journal of Environmental Management, 92 (2011) 2355-2388. https://doi.org/10.1016/j.jenvman.2011.06.009