Surface Morphology Investigations of Nanocrystalline R2Fe14B (R = Y, Nd, Gd, Er) by Atomic Force Microscopy

Surface Morphology Investigations of Nanocrystalline R2Fe14B (R = Y, Nd, Gd, Er) by Atomic Force Microscopy

Ivan Pelevin, Dmitriy Ozherelkov, Tatiana Kaminskaya, Irina Tereshina

download PDF

Abstract. The study was aimed at microstructure investigations of melt-spun rare-earth intermetallic compounds using atomic force microscopy. Surface morphology of R2Fe14B (R = Y, Nd, Gd, Er) was studied with nanometric resolution. Grain structure features were discovered depending on the rare-earth element composition and quenching regime. Grain size dependence on rare earth elements’ composition decreased with the metal’s serial number and atomic weight. Wherein structural size dependence on quenching wheel speed had non-linear character: increase the speed from 20 to 30 m/s led to 3 times decrease of the grain size and significant surface roughness reduction.

Keywords
Atomic Force Microscopy, Hard Magnetic Materials, Nanostructured Materials, Rapid Quenching, Melt Spinning, Additive Manufacturing

Published online 1/5/2022, 7 pages
Copyright © 2022 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Ivan Pelevin, Dmitriy Ozherelkov, Tatiana Kaminskaya, Irina Tereshina, Surface Morphology Investigations of Nanocrystalline R2Fe14B (R = Y, Nd, Gd, Er) by Atomic Force Microscopy, Materials Research Proceedings, Vol. 21, pp 81-87, 2022

DOI: https://doi.org/10.21741/9781644901755-15

The article was published as article 15 of the book Modern Trends in Manufacturing Technologies and Equipment

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] J. Mohapatra, J.P. Liu, Rare-Earth-Free Permanent Magnets: The Past and Future, in: Handb. Magn. Mater., 2018: pp. 1–57. https://doi.org/10.1016/bs.hmm.2018.08.001
[2] D. Li, Y. Li, D. Pan, Z. Zhang, C.J. Choi, Prospect and status of iron-based rare-earth-free permanent magnetic materials, J. Magn. Magn. Mater. (2019). https://doi.org/10.1016/j.jmmm.2018.09.032
[3] O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient, Adv. Mater. 23 (2011) 821–842. https://doi.org/10.1002/adma.201002180
[4] I.S. Tereshina, I.A. Pelevin, E.A. Tereshina, G.S. Burkhanov, K. Rogacki, M. Miller, N. V. Kudrevatykh, P.E. Markin, A.S. Volegov, R.M. Grechishkin, S. V. Dobatkin, L. Schultz, Magnetic hysteresis properties of nanocrystalline (Nd,Ho)-(Fe,Co)-B alloy after melt spinning, severe plastic deformation and subsequent heat treatment, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.04.228
[5] I.C. Nlebedim, H. Ucar, C.B. Hatter, R.W. McCallum, S.K. McCall, M.J. Kramer, M.P. Paranthaman, Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders, J. Magn. Magn. Mater. (2017). https://doi.org/10.1016/j.jmmm.2016.08.090
[6] B.M. Ma, J.W. Herchenroeder, B. Smith, M. Suda, D. Brown, Z. Chen, Recent development in bonded NdFeB magnets, J. Magn. Magn. Mater. (2002). https://doi.org/10.1016/S0304-8853(01)00609-6
[7] K. Mungale, T.N. Lamichhane, H. Wang, B.C. Sales, M.P. Paranthaman, U.K. Vaidya, Compression molding of anisotropic NdFeB bonded magnets in a polycarbonate matrix, Materialia. (2021). https://doi.org/10.1016/j.mtla.2021.101167
[8] B.G. Compton, J.W. Kemp, T. V. Novikov, R.C. Pack, C.I. Nlebedim, C.E. Duty, O. Rios, M.P. Paranthaman, Direct-write 3D printing of NdFeB bonded magnets, Mater. Manuf. Process. (2018). https://doi.org/10.1080/10426914.2016.1221097
[9] F. Bittner, J. Thielsch, W.G. Drossel, Laser powder bed fusion of Nd–Fe–B permanent magnets, Prog. Addit. Manuf. (2020). https://doi.org/10.1007/s40964-020-00117-7
[10] C. Huber, H. Sepehri-Amin, M. Goertler, M. Groenefeld, I. Teliban, K. Hono, D. Suess, Coercivity enhancement of selective laser sintered NdFeB magnets by grain boundary infiltration, Acta Mater. (2019). https://doi.org/10.1016/j.actamat.2019.04.037
[11] A.S. Volegov, S. V. Andreev, N. V. Selezneva, I.A. Ryzhikhin, N. V. Kudrevatykh, L. Mädler, I. V. Okulov, Additive manufacturing of heavy rare earth free high-coercivity permanent magnets, Acta Mater. (2020). https://doi.org/10.1016/j.actamat.2020.02.058
[12] F. Bittner, J. Thielsch, W.G. Drossel, Microstructure and magnetic properties of Nd-Fe-B permanent magnets produced by laser powder bed fusion, Scr. Mater. (2021). https://doi.org/10.1016/j.scriptamat.2021.113921
[13] L. Li, A. Tirado, B.S. Conner, M. Chi, A.M. Elliott, O. Rios, H. Zhou, M.P. Paranthaman, A novel method combining additive manufacturing and alloy infiltration for NdFeB bonded magnet fabrication, J. Magn. Magn. Mater. (2017). https://doi.org/10.1016/j.jmmm.2017.04.066
[14] I. Yadroitsev, I. Smurov, Surface morphology in selective laser melting of metal powders, in: Phys. Procedia, 2011. https://doi.org/10.1016/j.phpro.2011.03.034
[15] G. Strano, L. Hao, R.M. Everson, K.E. Evans, Surface roughness analysis, modelling and prediction in selective laser melting, J. Mater. Process. Technol. (2013). https://doi.org/10.1016/j.jmatprotec.2012.11.011
[16] S. Gao, X. Yan, C. Chang, Eric Aubry, M. Liu, H. Liao, N. Fenineche, Effect of Laser Energy Density on Surface Morphology, Microstructure, and Magnetic Properties of Selective Laser Melted Fe-3wt.% Si Alloys, J. Mater. Eng. Perform. (2021). https://doi.org/10.1007/s11665-021-05591-w
[17] M. Zheng, L. Wei, J. Chen, Q. Zhang, J. Li, S. Sui, G. Wang, W. Huang, Surface morphology evolution during pulsed selective laser melting: Numerical and experimental investigations, Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.143649
[18] P.A. Hooper, Melt pool temperature and cooling rates in laser powder bed fusion, Addit. Manuf. (2018). https://doi.org/10.1016/j.addma.2018.05.032
[19] Y. Li, D. Gu, Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder, Mater. Des. 63 (2014) 856–867. https://doi.org/10.1016/j.matdes.2014.07.006
[20] M. Majeed, H.M. Khan, I. Rasheed, Finite element analysis of melt pool thermal characteristics with passing laser in SLM process, Optik (Stuttg). (2019). https://doi.org/10.1016/j.ijleo.2019.163068
[21] J.J. Croat, Manufacture of NdFeB permanent magnets by rapid solidification, J. Less-Common Met. (1989). https://doi.org/10.1016/0022-5088(89)90006-4
[22] A. Zaluzka, Y. Xu, Z. Altounian, J.O. Strom-Olsen, Effects of quench rate on the texture in melt-spun NdFeB alloys, Mater. Sci. Eng. A. (1991). https://doi.org/10.1016/0921-5093(91)90193-Q
[23] H.C. Hua, G.Y. Wang, C.H. Zheng, G.X. Huang, Q.Z. Xu, L.H. Wu, S.Y. Shi, Microstructure of melt-spun NdFeB magnet, Mater. Lett. (1988). https://doi.org/10.1016/0167-577X(88)90085-7
[24] N. V. Andreeva, A. V. Filimonov, A.I. Rudskoi, G.S. Burkhanov, I.S. Tereshina, G.A. Politova, I.A. Pelevin, A study of nanostructure magnetosolid Nd–Ho–Fe–Co–B materials via atomic force microscopy and magnetic force microscopy, Phys. Solid State. (2016). https://doi.org/10.1134/S1063783416090079
[25] J. Jakubowicz, Application of atomic force microscopy in microstructure analysis of mechanically alloyed Nd2Fe14B/α-Fe-type nanocomposites, J. Alloys Compd. (2003). https://doi.org/10.1016/S0925-8388(02)01075-7
[26] J. Jakubowicz, Application of AFM to study functional nanomaterials prepared by mechanical alloying, in: J. Mater. Sci., 2004. https://doi.org/10.1023/B:JMSC.0000039249.21167.a5
[27] K. Men, K. Li, Y. Luo, D. Yu, K. Zhang, J. Jin, Y. Mao, The crystallization behavior of as-quenched Nd9Fe85Nb0.5B5.5 alloys, J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.02.046