A Newly Discovered Relation between the Critical Resolved Shear Stress and the Fatigue Endurance Limit for Metallic Materials

$25.00

A Newly Discovered Relation between the Critical Resolved Shear Stress and the Fatigue Endurance Limit for Metallic Materials

M. Mlikota, S. Schmauder

The chapter introduces a valuable new description of fatigue strength in relation to material properties and thus a new perspective on the overall understanding of the fatigue process. Namely, a relation between the endurance limits and the accompanying values of the critical resolved shear stress (CRSS) for various metallic materials has been discovered by means of a multiscale approach for fatigue simulation. Based on the uniqueness of the relation, there is a strong indication that it is feasible to relate the endurance limit to the CRSS and not to the ultimate strength, as often done in the past.

Keywords
Multiscale Simulation, Fatigue, Metals, CRSS, Endurance Limit

Published online , 17 pages

Citation: M. Mlikota, S. Schmauder, A Newly Discovered Relation between the Critical Resolved Shear Stress and the Fatigue Endurance Limit for Metallic Materials, Materials Research Foundations, Vol. 114, pp 66-82, 2022

DOI: https://doi.org/10.21741/9781644901656-4

Part of the book on Multiscale Fatigue Modelling of Metals

References
[1] Ferro A, Montalenti G, 1964, On the effect of the crystalline structure on the form of fatigue curves, Philos, Mag, 10, 1043. https://doi.org/10.1080/14786436408225410
[2] Ferro A, Mazzetti P, Montalenti G, 1965, On the effect of the crystalline structure on fatigue: Comparison between body-centred metals (Ta, Nb, Mo and W) and face-centred and hexagonal metals, Phil. Mag. J. Theor. Exp. Appl. Phys, 12, 867–875. https://doi.org/10.1080/14786436508218923
[3] Buck A, 1967, Fatigue properties of pure metals, Int. J. Fract. Mech., 3, 145–152. https://doi.org/10.1007/BF00182692
[4] Grosskreutz J.C, 1971, Fatigue mechanisms in the sub-creep range. ASTM, 495, 5–60. https://doi.org/10.1520/STP26684S
[5] Mlikota M, Schmauder S, 2018, On the critical resolved shear stress and its importance in the fatigue performance of steels and other metals with different crystallographic structures. Metals, 8, 883. https://doi.org/10.3390/met8110883
[6] Jennings A.T, Burek M.J, Greer J.R, 2010, Microstructure versus Size: Mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett., 104, 135503. https://doi.org/10.1103/PhysRevLett.104.135503
[7] Rogne B.R.S, Thaulow C, 2015, Strengthening mechanisms of iron micropillars. Philos. Mag, 95, 1814–1828. https://doi.org/10.1080/14786435.2014.984004
[8] Božić Ž, Schmauder S, Mlikota M, Hummel M, 2014, Multiscale fatigue crack growth modelling for welded stiffened panels. Fatigue Fract. Eng. Mater. Struct., 37, 1043–1054. https://doi.org/10.1111/ffe.12189
[9] Monnet G, Pouchon M.A, 2013, Determination of the critical resolved shear stress and the friction stress in austenitic stainless steels by compression of pillars extracted from single grains. Mater. Lett., 98, 128–130. https://doi.org/10.1016/j.matlet.2013.01.118
[10] Dietmann H, 1991, Einführung in die Elastizitäts- und Festigkeitslehre, Alfred Kröner Verlag: Stuttgart, Germany.
[11] Matweb.com. Matweb—The Online Materials Information Resource. Available online:https://www.matweb.com/search/DataSheet.aspx?MatGUID=db0307742df14c8f817bd8d62207368e.
[12] Islam M.A, Sato N, Tomota Y, 2011, Tensile and plane bending fatigue properties of pure iron and iron-phosphorus alloys at room temperature in the air. Trans. Indian Inst. Met., 64, 315–320. https://doi.org/10.1007/s12666-011-0064-y
[13] Fatemi A, Zeng Z, Plaseied A, 2004, Fatigue behavior and life predictions of notched specimens made of QT and forged microalloyed steels. Int. J. Fatigue, 26, 663–672. https://doi.org/10.1016/j.ijfatigue.2003.10.005
[14] Atzori B, Meneghetti G, Ricotta M, 2011, Analysis of the fatigue strength under two load levels of a stainless steel based on energy dissipation. Frattura Integr. Strutt., 17, 15–22. https://doi.org/10.3221/IGF-ESIS.17.02
[15] Budynas R.G, Nisbett J.K, 2015, Shigley’s Mechanical Engineering Design, 10th ed.; McGraw-Hill Education: New York, NY, USA,.
[16] Mlikota M, Schmauder S, Božić Ž, 2018, Calculation of the Wöhler (S-N) curve using a two-scale model. Int. J. Fatigue, 114, 289–297. https://doi.org/10.1016/j.ijfatigue.2018.03.018
[17] Mlikota M, Schmauder S, 2019, Virtual testing of plasticity effects on fatigue crack initiation. In Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications; Zingoni, A., Ed.; CRC Press: ‎London, GB, pp. 587–592. https://doi.org/10.1201/9780429426506-102
[18] Tanaka K, Mura T, 1981, A dislocation model for fatigue crack initiation. J. Appl. Mech., 48, 97–103. https://doi.org/10.1115/1.3157599
[19] Tanaka K, Mura T, 1982, A theory of fatigue crack initiation at inclusions. Metall. Trans. A, 13, 117–123. https://doi.org/10.1007/BF02642422
[20] Mlikota M, Staib S, Schmauder S, Božić Ž, 2017, Numerical determination of Paris law constants for carbon steel using a two-scale model. J. Phys. Conf. Ser., 843, 012042. https://doi.org/10.1088/1742-6596/843/1/012042
[21] Glodež S, Jezernik N, Kramberger J, Lassen T, 2010, Numerical modelling of fatigue crack initiation of martensitic steel. Adv. Eng. Softw, 41, 823–829. https://doi.org/10.1016/j.advengsoft.2010.01.002
[22] Jezernik N, Kramberger J, Lassen T, Glodež S, 2010, Numerical modelling of fatigue crack initiation and growth of martensitic steels. Fatigue Fract. Eng. Mater. Struct., 33, 714–723. https://doi.org/10.1111/j.1460-2695.2010.01482.x
[23] Mlikota M, Schmauder S, Božić Ž, Hummel M, 2017, Modelling of overload effects on fatigue crack initiation in case of carbon steel. Fatigue Fract. Eng. Mater. Struct., 40, 1182–1190. https://doi.org/10.1111/ffe.12598
[24] Mlikota M, Schmauder S, 2017, Numerical determination of component Wöhler curve. DVM Bericht, 1684, 111–124.
[25] Božić Ž, Schmauder S, Mlikota M, Hummel M, 2018, Multiscale fatigue crack growth modeling for welded stiffened panels. In Handbook of Mechanics of Materials, Springer: Singapore, pp. 1–21. https://doi.org/10.1007/978-981-10-6855-3_73-1
[26] Huang X, Brueckner-Foit A, Besel M, Motoyashiki Y, 2007, Simplified three-dimensional model for fatigue crack initiation. Eng. Fract. Mech., 74, 2981–2991. https://doi.org/10.1016/j.engfracmech.2006.05.027
[27] Briffod F, Shiraiwa T, Enoki M, 2016, Fatigue crack initiation simulation in pure iron polycrystalline aggregate. Mater. Trans., 57, 1741–1746. https://doi.org/10.2320/matertrans.M2016216
[28] Božić Ž, Mlikota M, Schmauder S, 2011, Application of the ΔK, ΔJ and ΔCTOD parameters in fatigue crack growth modelling. Tech. Gaz., 18, 459–466.
[29] Božić Ž, Schmauder S, Mlikota M, 2011, Fatigue growth models for multiple long cracks in plates under cyclic tension based on ΔKI, ΔJ-integral and ΔCTOD parameter. Key Eng. Mater, 488–489, 525–528. https://doi.org/10.4028/www.scientific.net/KEM.488-489.525
[30] Jin H, Ko E, Kwon J, Hwang S.S, Shin C, 2016, Evaluation of critical resolved shear strength and deformation mode in proton-irradiated austenitic stainless steel using micro-compression tests. J. Nucl. Mater., 470, 155–163. https://doi.org/10.1016/j.jnucmat.2015.12.029
[31] Krompholz K, Ullrich G, 1985, Investigations into the fatigue crack initiation and propagation behaviour in austenitic stainless steel X5 CrNi 18 9 (1.4301). Materialwiss. Werkstofftech., 16, 270–276. https://doi.org/10.1002/mawe.19850160806
[32] Bao W.P, Xiong Z.P, Ren X.P, Wang F.M, 2013, Effect of strain rate on mechanical properties of pure iron. Adv. Mater. Res., 705, 21–25. https://doi.org/10.4028/www.scientific.net/AMR.705.21
[33] Lorenzino P, Navarro A, Krupp U, 2013, Naked eye observations of microstructurally short fatigue cracks. Int. J. Fatigue, 56, 8–16. https://doi.org/10.1016/j.ijfatigue.2013.07.011
[34] Keil B, Devletian J, 2011, Comparison of the mechanical properties of steel and ductile iron pipe materials. In Pipelines; Jeong, D.H.S., Pecha, D., Eds., American Society of Civil Engineers: Reston, Virginia, USA,; pp. 1301–1312. https://doi.org/10.1061/41187(420)119
[35] Yang L, Fatem, A, 1996, Impact resistance and fracture toughness of vanadium-based microalloyed forging steel in the as-forged and Q&T conditions. J. Eng. Mater. Technol, 118, 71–79. https://doi.org/10.1115/1.2805936
[36] Schijve J, 2009, Fatigue of Structures and Materials, Springer Netherlands: Dordrecht, The Netherlands. https://doi.org/10.1007/978-1-4020-6808-9
[37] Bhaduri A, 2018, Mechanical Properties and Working of Metals and Alloys, Springer Nature: Singapore. https://doi.org/10.1007/978-981-10-7209-3
[38] Marin J, 1962, Mechanical Behavior of Engineering Materials, Prentice Hall: Englewood Cliffs, NJ, USA.