Numerical Determination of Paris Law Constants for Carbon Steel Using a Two-Scale Model

$25.00

Numerical Determination of Paris Law Constants for Carbon Steel Using a Two-Scale Model

M. Mlikota, S. Staib, S. Schmauder, Ž. Božić

For most engineering alloys, the long fatigue crack growth under a certain stress level can be described by the Paris law. The law provides a correlation between the fatigue crack growth rate (FCGR or da/dN), the range of stress intensity factor (ΔK), and the material constants C and m. A well-established test procedure is typically used to determine the Paris law constants C and m, considering standard specimens, notched and pre-cracked. Definition of all the details necessary to obtain feasible and comparable Paris law constants are covered by standards. However, these cost-expensive tests can be replaced by appropriate numerical calculations. In this respect, this paper deals with the numerical determination of Paris law constants for carbon steel using a two-scale model. A micro-model containing the microstructure of a material is generated using the Finite Element Method (FEM) to calculate the fatigue crack growth rate at a crack tip. The model is based on the Tanaka-Mura equation. On the other side, a macro-model serves for the calculation of the stress intensity factor. The analysis yields a relationship between the crack growth rates and the stress intensity factors for defined crack lengths which is then used to determine the Paris law constants.

Keywords
Paris Law, Fatigue Crack Growth Rate (FCGR), Stress Intensity Factor (ΔK), Finite Element Method (FEM), Tanaka-Mura Equation

Published online , 15 pages

Citation: M. Mlikota, S. Staib, S. Schmauder, Ž. Božić, Numerical Determination of Paris Law Constants for Carbon Steel Using a Two-Scale Model, Materials Research Foundations, Vol. 114, pp 1-15, 2022

DOI: https://doi.org/10.21741/9781644901656-1

Part of the book on Multiscale Fatigue Modelling of Metals

References
[1] Esslinger V, Kieselbach R, Koller R and Weisse B, 2004. Eng. Fail. Anal. 11(4) 515-35. https://doi.org/10.1016/j.engfailanal.2003.11.001
[2] Paris P and Erdogan F, 1963. J. Basic Eng. 85(4) 528-33. https://doi.org/10.1115/1.3656900
[3] Božić Ž, Mlikota M and Schmauder S, 2011, The. Vjesn. 18(3) 459-66
[4] Broek D, 1988, The Pratical Use of Fracture Mechanics (Dordrecht: Kluwer Academic Publishers)
[5] Branco R, Antunes F, Ferreira JM and Silva M, 2009, Eng. Fail. Anal. 16 631-38. https://doi.org/10.1016/j.engfailanal.2008.02.004
[6] Branco R, Antunes F, Costa D, Yang FP and Kuang ZB, 2012. Eng. Fract. Mech. 96 96-106. https://doi.org/10.1016/j.engfracmech.2012.07.009
[7] Carrascal I, Casado J, Diego S, Lacalle R, Cicero S and Alvarez J, 2014. Polym. Test. 40 39-45. https://doi.org/10.1016/j.polymertesting.2014.08.005
[8] Chauhan S, Pawar AK, Chattopadhyay J and Dutta BK, 2016 T. Indian I. Metals 69(2) 609-15. https://doi.org/10.1007/s12666-015-0796-1
[9] Ancona F, Palumbo D, Finis RD, Demelio G and Galietti U, 2016. Eng. Fract. Mech. 163 206-19. https://doi.org/10.1016/j.engfracmech.2016.06.016
[10] Szata M and Lesiuk G, 2009, Arch. Civ. Mech. Eng. 9(1), 119-34. https://doi.org/10.1016/S1644-9665(12)60045-4
[11] Tanaka K and Mura T, 1981, J. Appl. Mech. 48(1) 97-103. https://doi.org/10.1115/1.3157599
[12] Tanaka K and Mura T, 1982, Metall. Trans. A 13(1) 117-23. https://doi.org/10.1007/BF02642422
[13] Jezernik N, Kramberger J, Lassen T and Glodez S, 2010, Fatigue Fract. Eng. M. 33(11) 714-23
[14] Glodez S, Jezernik N, Kramberger J and Lassen T, 2010, Adv. Eng. Softw. 41(5) 823-29. https://doi.org/10.1016/j.advengsoft.2010.01.002
[15] Božić Ž, Schmauder S, Mlikota M and Hummel M, 2014, Fatigue Fract. Eng. M. 37(9) 1043-54. https://doi.org/10.1111/ffe.12189
[16] Mlikota M, Schmauder S, Božić Ž and Hummel M, 2017, Fatigue Fract. Eng. M. (accepted)
[17] SIMULIA ABAQUS Documentation
[18] Roos E and Eisele U ,1988, J. Test. Eval. 16(1) 1-11. https://doi.org/10.1520/JTE11045J
[19] Božić Ž, Schmauder S and Mlikota M, 2011, Key Eng. Mater. 488-489 525-28. https://doi.org/10.4028/www.scientific.net/KEM.488-489.525