Polymeric Membranes for H2 and N2 Separation
J. Wu, S. Japip, T.S. Chung
H2 and N2 separations are of paramount importance to the global development of clean energy and environment. While the traditional thermal-driven processes are often deemed overly energy-intensive, the polymeric membrane technology presents an energy-efficient and potentially cost-effective alternative that comes with many operational and environmental advantages to offer. However, a variety of key challenges revolving around the membrane performance and stability issues require new material innovations in order to be eventually overcome. This chapter provides the background for polymeric gas separation membranes and also a detailed evaluation on state-of-the-art polymeric membrane materials for H2 and N2 separations. Performance enhancement strategies will also be discussed in the later parts.
Keywords
Membrane Gas Separation, Polymeric Membranes, Glassy Polymers, Hydrogen Recovery, CO2 Capture, N2/CH4 Separation, Polymers of Intrinsic Microporosity, Mixed-Matrix Membranes
Published online , 92 pages
Citation: J. Wu, S. Japip, T.S. Chung, Polymeric Membranes for H2 and N2 Separation, Materials Research Foundations, Vol. 113, pp 243-334, 2021
DOI: https://doi.org/10.21741/9781644901632-8
Part of the book on Polymeric Membranes for Water Purification and Gas Separation
References
[1] J.D. Perry, K. Nagai, W.J. Koros, Polymer membranes for hydrogen separations, MRS Bull., 31 (2006) 745-749. https://doi.org/10.1557/mrs2006.187
[2] N.W. Ockwig, T.M. Nenoff, Membranes for hydrogen separation, Chem. Rev., 107 (2007) 4078-4110. https://doi.org/10.1021/cr0501792
[3] X. Huang, H. Yao, Z. Cheng, Hydrogen separation membranes of polymeric materials, in: Y.-P. Chen, S. Bashir, J.L. Liu (Eds.) Nanostructured Materials for Next-Generation Energy Storage and Conversion: Hydrogen Production, Storage, and Utilization, Springer Berlin Heidelberg, Berlin, Heidelberg, 2017, pp. 85-116. https://doi.org/10.1007/978-3-662-53514-1_3
[4] C.E. Powell, G.G. Qiao, Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases, J. Membr. Sci., 279 (2006) 1-49. https://doi.org/10.1016/j.memsci.2005.12.062
[5] M.A. Carreon, Molecular sieve membranes for N2/CH4 separation, J. Mater. Res., 33 (2018) 32-43. https://doi.org/10.1557/jmr.2017.297
[6] L. Liu, A. Chakma, X. Feng, D. Lawless, Separation of VOCs from N2 using poly(ether block amide) membranes, Can. J. Chem. Eng., 87 (2009) 456-465. https://doi.org/10.1002/cjce.20181
[7] M. Galizia, W.S. Chi, Z.P. Smith, T.C. Merkel, R.W. Baker, B.D. Freeman, 50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities, Macromolecules, 50 (2017) 7809-7843. https://doi.org/10.1021/acs.macromol.7b01718
[8] P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: A review/state of the art, Ind. Eng. Chem. Res., 48 (2009) 4638-4663. https://doi.org/10.1021/ie8019032
[9] (a) S. Loeb, S. Sourirajan, Sea water demineralization by means of an osmotic membrane, in: R.F. Gould (Ed.) Saline Water Conversion—II, American Chemical Society, Washington, D.C., 1963, pp. 117-132; https://doi.org/10.1021/ba-1963-0038.ch009 (b) A. Giwa, M. Ahmed, S.W. Hasan, Polymers for membrane filtration in water purification, in: R. Das (Ed.), Polymeric Materials for Clean Water, Springer, Cham, 2019, pp. 167-190. https://doi.org/10.1007/978-3-030-00743-0_8
[10] Y. Wang, X. Ma, B.S. Ghanem, F. Alghunaimi, I. Pinnau, Y. Han, Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations, Mater. Today Nano, 3 (2018) 69-95. https://doi.org/10.1016/j.mtnano.2018.11.003
[11] A.F. Ismail, K.C. Khulbe, T. Matsuura, Fundamentals of gas permeation through membranes, in: Gas Separation Membranes: Polymeric and Inorganic, Springer International Publishing, Cham, 2015, pp. 11-35. https://doi.org/10.1007/978-3-319-01095-3_2
[12] R.J. Gardner, R.A. Crane, J.F. Hannan, Hollow fiber permeator for separating gases, Chem. Eng. Prog., 73 (1977) 76-78.
[13] R.R. Zolandz, G.K. Fleming, Gas permeation applications, in: W.S.W. Ho, K.K. Sirkar (Eds.) Membrane Handbook, Chapman and Hall, New York, 1992, pp. 78. https://doi.org/10.1007/978-1-4615-3548-5_5
[14] J.M.S. Henis, M.K. Tripodi, Multicomponent membranes for gas separations, U.S. Patent 4,230,463A, 1980
[15] W.J. Schell, C.D. Houston, Spiral-wound permeators for purifications and recovery, Chem. Eng. Prog., 78 (1982).
[16] B. Zornoza, C. Casado, A. Navajas, Advances in hydrogen separation and purification with membrane technology, in: L.M. Gandía, G. Arzamendi, P.M. Diéguez (Eds.) Renewable Hydrogen Technologies, Elsevier, Amsterdam, 2013, pp. 245-268. https://doi.org/10.1016/B978-0-444-56352-1.00011-8
[17] H. Makino, Y. Kusuki, H. Yoshida, A. Nakamaura, Process for preparing aromatic polyimide semipermeable membranes, U.S. Patent 4,378,324, 1983
[18] P. Luis, T. Van Gerven, B. Van der Bruggen, Recent developments in membrane-based technologies for CO2 capture, Prog. Energy Combust. Sci., 38 (2012) 419-448. https://doi.org/10.1016/j.pecs.2012.01.004
[19] S. Adhikari, S. Fernando, Hydrogen membrane separation techniques, Ind. Eng. Chem. Res., 45 (2006) 875-881. https://doi.org/10.1021/ie050644l
[20] M. Mulder, Membrane processes, in: M. Mulder (Ed.) Basic Principles of Membrane Technology, Springer Netherlands, Dordrecht, 1991, pp. 198-280. https://doi.org/10.1007/978-94-017-0835-7_6
[21] J.G. Wijmans, R.W. Baker, The solution-diffusion model: A review, J. Membr. Sci., 107 (1995) 1-21. https://doi.org/10.1016/0376-7388(95)00102-I
[22] S. Matteucci, Y. Yampolskii, B.D. Freeman, I. Pinnau, Transport of gases and vapors in glassy and rubbery polymers, in: Y. Yampolskii, B.D. Freeman, I. Pinnau (Eds.) Materials Science of Membranes for Gas and Vapor Separation, John Wiley & Sons, Chichester, 2006, pp. 1-47. https://doi.org/10.1002/047002903X.ch1
[23] C.H. Lau, P. Li, F.Y. Li, T.S. Chung, D.R. Paul, Reverse-selective polymeric membranes for gas separations, Prog. Polym. Sci., 38 (2013) 740-766. https://doi.org/10.1016/j.progpolymsci.2012.09.006
[24] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci., 62 (1991) 165-185. https://doi.org/10.1016/0376-7388(91)80060-J
[25] B.D. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules, 32 (1999) 375-380. https://doi.org/10.1021/ma9814548
[26] C.F. Tien, A.C. Savoca, A.D. Surnamer, M. Langsam, Chemical structure/permeation relationship for polysilylpropynes, Polym. Mater. Sci. Eng. Prepr., 61 (1989) 507-511.
[27] Y. Alqaheem, A. Alomair, M. Vinoba, A. Pérez, Polymeric gas-separation membranes for petroleum refining, Int. J. Polym. Sci., 2017 (2017). Https://doi.org/10.1155/2017/4250927
[28] S.A. Stern, Polymers for gas separations: The next decade, J. Membr. Sci., 94 (1994) 1-65. https://doi.org/10.1016/0376-7388(94)00141-3
[29] D.F. Sanders, Z.P. Smith, R. Guo, L.M. Robeson, J.E. McGrath, D.R. Paul, B.D. Freeman, Energy-efficient polymeric gas separation membranes for a sustainable future: A review, Polymer, 54 (2013) 4729-4761. https://doi.org/10.1016/j.polymer.2013.05.075
[30] R.W. Baker, Gas separation, in: Membrane Technology and Applications, Third Edition, John Wiley & Sons, United Kingdom, 2012, pp. 325-378. https://doi.org/10.1002/9781118359686.ch8
[31] C.L. Aitken, W.J. Koros, D.R. Paul, Gas transport properties of biphenol polysulfones, Macromolecules, 25 (1992) 3651-3658. https://doi.org/10.1021/ma00040a008
[32] C.L. Aitken, W.J. Koros, D.R. Paul, Effect of structural symmetry on gas transport properties of polysulfones, Macromolecules, 25 (1992) 3424-3434. https://doi.org/10.1021/ma00039a018
[33] M.W. Hellums, W.J. Koros, J.C. Schmidhauser, Gas separation properties of spirobiindane polycarbonate, J. Membr. Sci., 67 (1992) 75-81. https://doi.org/10.1016/0376-7388(92)87041-U
[34] W.J. Koros, G.K. Fleming, Membrane-based gas separation, J. Membr. Sci., 83 (1993) 1-80. https://doi.org/10.1016/0376-7388(93)80013-N
[35] T. Heinze, T. Liebert, Chemical characteristics of cellulose acetate, Macromol. Symp., 208 (2004) 167-238. https://doi.org/10.1002/masy.200450408
[36] A.C. Puleo, D.R. Paul, S.S. Kelley, The effect of degree of acetylation on gas sorption and transport behavior in cellulose acetate, J. Membr. Sci., 47 (1989) 301-332. https://doi.org/10.1016/S0376-7388(00)83083-5
[37] R. Swaidan, B. Ghanem, I. Pinnau, Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations, ACS Macro Lett., 4 (2015) 947-951. https://doi.org/10.1021/acsmacrolett.5b00512
[38] K. Toi, G. Morel, D.R. Paul, Gas sorption and transport in poly(phenylene oxide) and comparisons with other glassy polymers, J. Appl. Polym. Sci., 27 (1982) 2997-3005. https://doi.org/10.1002/app.1982.070270823
[39] A.S. Hay, Oxidation of phenols and resulting products, U.S. Patent 3,306,875A, 1967
[40] G.A. Polotskaya, A.V. Penkova, A.M. Toikka, Z. Pientka, L. Brozova, M. Bleha, Transport of small molecules through polyphenylene oxide membranes modified by fullerene, Sep. Sci. Technol., 42 (2007) 333-347. https://doi.org/10.1080/01496390600997963
[41] B.J. Story, W.J. Koros, Sorption and transport of CO2 and CH4 in chemically modified poly(phenylene oxide), J. Membr. Sci., 67 (1992) 191-210. https://doi.org/10.1016/0376-7388(92)80025-F
[42] O.M. Ekiner, G. Vassilatos, Polyaramide hollow fibers for H2/CH4 separation: II. Spinning and properties, J. Membr. Sci., 186 (2001) 71-84. https://doi.org/10.1016/S0376-7388(00)00665-7
[43] J.M. García, F.C. García, F. Serna, J.L. de la Peña, High-performance aromatic polyamides, Prog. Polym. Sci., 35 (2010) 623-686. https://doi.org/10.1016/j.progpolymsci.2009.09.002
[44] O.M. Ekiner, G. Vassilatos, Polyaramide hollow fibers for hydrogen/methane separation — spinning and properties, J. Membr. Sci., 53 (1990) 259-273. https://doi.org/10.1016/0376-7388(90)80018-H
[45] P. Falcigno, M. Masola, D. Williams, S. Jasne, Comparison of properties of polyimides containing DAPI isomers and various dianhydrides, in: C. Feger, M.M. Khohasteh, J.E. McGrath (Eds.) Polyimides: Materials, Chemistry and Characterization, Elsevier, New York, 1989, pp. 497-512.
[46] Y. Sasaki, H. Inoue, H. Itatani, M. Kashima, Process for preparing polyimide solution, U.S. Patent 4,290,936A, 1981
[47] Z. Xu, C. Dannenberg, J. Springer, S. Banerjee, G. Maier, Gas separation properties of polymers containing fluorene moieties, Chem. Mater., 14 (2002) 3271-3276. https://doi.org/10.1021/cm0112789
[48] M. Aguilar-Vega, D.R. Paul, Gas transport properties of polycarbonates and polysulfones with aromatic substitutions on the bisphenol connector group, J. Polym. Sci. Part B: Polym. Phys., 31 (1993) 1599-1610. https://doi.org/10.1002/polb.1993.090311116
[49] Y. Yampolskii, Polymeric gas separation membranes, Macromolecules, 45 (2012) 3298-3311. https://doi.org/10.1021/ma300213b
[50] I. Pinnau, L.G. Toy, Gas and vapor transport properties of amorphous perfluorinated copolymer membranes based on 2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole/tetrafluoroethylene, J. Membr. Sci., 109 (1996) 125-133. https://doi.org/10.1016/0376-7388(95)00193-X
[51] M. Macchione, J.C. Jansen, G. De Luca, E. Tocci, M. Longeri, E. Drioli, Experimental analysis and simulation of the gas transport in dense Hyflon® AD60X membranes: Influence of residual solvent, Polymer, 48 (2007) 2619-2635. https://doi.org/10.1016/j.polymer.2007.02.068
[52] L.M. Robeson, The upper bound revisited, J. Membr. Sci., 320 (2008) 390-400. https://doi.org/10.1016/j.memsci.2008.04.030
[53] K. Nagai, T. Masuda, T. Nakagawa, B.D. Freeman, I. Pinnau, Poly[1-(trimethylsilyl)-1-propyne] and related polymers: synthesis, properties and functions, Prog. Polym. Sci., 26 (2001) 721-798. https://doi.org/10.1016/S0079-6700(01)00008-9
[54] T. Masuda, E. Isobe, T. Higashimura, K. Takada, Poly[1-(trimethylsilyl)-1-propyne]: A new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability, J. Am. Chem. Soc., 105 (1983) 7473-7474. https://doi.org/10.1021/ja00363a061
[55] Y. Ichiraku, S.A. Stern, T. Nakagawa, An investigation of the high gas permeability of poly (1-trimethylsilyl-1-propyne), J. Membr. Sci., 34 (1987) 5-18. https://doi.org/10.1016/S0376-7388(00)80017-4
[56] I. Pinnau, L.G. Toy, Transport of organic vapors through poly(1-trimethylsilyl-1-propyne), J. Membr. Sci., 116 (1996) 199-209. https://doi.org/10.1016/0376-7388(96)00041-5
[57] P.M. Budd, E.S. Elabas, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, D. Wang, Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity, Adv. Mater., 16 (2004) 456-459. https://doi.org/10.1002/adma.200306053
[58] P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Polymers of intrinsic microporosity (PIMs): Robust, solution-processable, organic nanoporous materials, Chem. Commun., (2004) 230-231. https://doi.org/10.1039/b311764b
[59] P.M. Budd, Polymer with intrinsic microporosity (PIM), in: E. Drioli, L. Giorno (Eds.) Encyclopedia of Membranes, Springer Berlin Heidelberg, Berlin, Heidelberg, 2016, pp. 1606-1607.
[60] B.S. Ghanem, N.B. McKeown, P.M. Budd, J.D. Selbie, D. Fritsch, High-performance membranes from polyimides with intrinsic microporosity, Adv. Mater., 20 (2008) 2766-2771. https://doi.org/10.1002/adma.200702400
[61] Z.X. Low, P.M. Budd, N.B. McKeown, D.A. Patterson, Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers, Chem. Rev., 118 (2018) 5871-5911. https://doi.org/10.1021/acs.chemrev.7b00629
[62] I. Rose, C.G. Bezzu, M. Carta, B. Comesaña-Gándara, E. Lasseuguette, M.C. Ferrari, P. Bernardo, G. Clarizia, A. Fuoco, J.C. Jansen, Kyle E. Hart, T.P. Liyana-Arachchi, C.M. Colina, N.B. McKeown, Polymer ultrapermeability from the inefficient packing of 2D chains, Nat. Mater., 16 (2017) 932-937. https://doi.org/10.1038/nmat4939
[63] P.M. Budd, K.J. Msayib, C.E. Tattershall, B.S. Ghanem, K.J. Reynolds, N.B. McKeown, D. Fritsch, Gas separation membranes from polymers of intrinsic microporosity, J. Membr. Sci., 251 (2005) 263-269. https://doi.org/10.1016/j.memsci.2005.01.009
[64] B.S. Ghanem, R. Swaidan, X. Ma, E. Litwiller, I. Pinnau, Energy-efficient hydrogen separation by AB-type ladder-polymer molecular sieves, Adv. Mater., 26 (2014) 6696-6700. https://doi.org/10.1002/adma.201401328
[65] B. Ghanem, F. Alghunaimi, N. Alaslai, X. Ma, I. Pinnau, New phenazine-containing ladder polymer of intrinsic microporosity from a spirobisindane-based AB-type monomer, RSC Adv., 6 (2016) 79625-79630. https://doi.org/10.1039/C6RA16393A
[66] M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J.C. Jansen, P. Bernardo, F. Bazzarelli, N.B. McKeown, An efficient polymer molecular sieve for membrane gas separations, Science, 339 (2013) 303-307. https://doi.org/10.1126/science.1228032
[67] C.G. Bezzu, M. Carta, A. Tonkins, J.C. Jansen, P. Bernardo, F. Bazzarelli, N.B. McKeown, A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation, Adv. Mater., 24 (2012) 5930-5933. https://doi.org/10.1002/adma.201202393
[68] B.S. Ghanem, N.B. McKeown, P.M. Budd, N.M. Al-Harbi, D. Fritsch, K. Heinrich, L. Starannikova, A. Tokarev, Y. Yampolskii, Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides, Macromolecules, 42 (2009) 7881-7888. https://doi.org/10.1021/ma901430q
[69] Y. Rogan, L. Starannikova, V. Ryzhikh, Y. Yampolskii, P. Bernardo, F. Bazzarelli, J.C. Jansen, N.B. McKeown, Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity, Polym. Chem., 4 (2013) 3813-3820. https://doi.org/10.1039/c3py00451a
[70] Y. Rogan, R. Malpass-Evans, M. Carta, M. Lee, J.C. Jansen, P. Bernardo, G. Clarizia, E. Tocci, K. Friess, M. Lanč, N.B. McKeown, A highly permeable polyimide with enhanced selectivity for membrane gas separations, J. Mater. Chem. A, 2 (2014) 4874-4877. https://doi.org/10.1039/C4TA00564C
[71] X. Ma, M.A. Abdulhamid, I. Pinnau, Design and synthesis of polyimides based on carbocyclic pseudo-Tröger’s Base-derived dianhydrides for membrane gas separation applications, Macromolecules, 50 (2017) 5850-5857. https://doi.org/10.1021/acs.macromol.7b01054
[72] B.S. Ghanem, R. Swaidan, E. Litwiller, I. Pinnau, Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation, Adv. Mater., 26 (2014) 3688-3692. https://doi.org/10.1002/adma.201306229
[73] R. Swaidan, M. Al-Saeedi, B. Ghanem, E. Litwiller, I. Pinnau, Rational design of intrinsically ultramicroporous polyimides containing bridgehead-substituted triptycene for highly selective and permeable gas separation membranes, Macromolecules, 47 (2014) 5104-5114. https://doi.org/10.1021/ma5009226
[74] X. Ma, O. Salinas, E. Litwiller, I. Pinnau, Novel spirobifluorene- and dibromospirobifluorene-based polyimides of intrinsic microporosity for gas separation applications, Macromolecules, 46 (2013) 9618-9624. https://doi.org/10.1021/ma402033z
[75] Y. Zhuang, J.G. Seong, Y.S. Do, H.J. Jo, Z. Cui, J. Lee, Y.M. Lee, M.D. Guiver, Intrinsically microporous soluble polyimides incorporating Tröger’s base for membrane gas separation, Macromolecules, 47 (2014) 3254-3262. https://doi.org/10.1021/ma5007073
[76] Y. Zhuang, J.G. Seong, Y.S. Do, W.H. Lee, M.J. Lee, M.D. Guiver, Y.M. Lee, High-strength, soluble polyimide membranes incorporating Tröger’s Base for gas separation, J. Membr. Sci., 504 (2016) 55-65. https://doi.org/10.1016/j.memsci.2015.12.057
[77] B. Ghanem, N. Alaslai, X. Miao, I. Pinnau, Novel 6FDA-based polyimides derived from sterically hindered Tröger’s base diamines: Synthesis and gas permeation properties, Polymer, 96 (2016) 13-19. https://doi.org/10.1016/j.polymer.2016.04.068
[78] M. Lee, C.G. Bezzu, M. Carta, P. Bernardo, G. Clarizia, J.C. Jansen, N.B. McKeown, Enhancing the gas permeability of Tröger’s Base derived polyimides of intrinsic microporosity, Macromolecules, 49 (2016) 4147-4154. https://doi.org/10.1021/acs.macromol.6b00351
[79] Z. Wang, D. Wang, J. Jin, Microporous polyimides with rationally designed chain structure achieving high performance for gas separation, Macromolecules, 47 (2014) 7477-7483. https://doi.org/10.1021/ma5017506
[80] F. Alghunaimi, B. Ghanem, N. Alaslai, R. Swaidan, E. Litwiller, I. Pinnau, Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides, J. Membr. Sci., 490 (2015) 321-327. https://doi.org/10.1016/j.memsci.2015.05.010
[81] J.R. Wiegand, Z.P. Smith, Q. Liu, C.T. Patterson, B.D. Freeman, R. Guo, Synthesis and characterization of triptycene-based polyimides with tunable high fractional free volume for gas separation membranes, J. Mater. Chem. A, 2 (2014) 13309-13320. https://doi.org/10.1039/C4TA02303J
[82] S. Luo, Q. Liu, B. Zhang, J.R. Wiegand, B.D. Freeman, R. Guo, Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation, J. Membr. Sci., 480 (2015) 20-30. https://doi.org/10.1016/j.memsci.2015.01.043
[83] R. Swaidan, B.S. Ghanem, E. Litwiller, I. Pinnau, Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1, J. Membr. Sci., 457 (2014) 95-102. https://doi.org/10.1016/j.memsci.2014.01.055
[84] N. Du, G.P. Robertson, J. Song, I. Pinnau, M.D. Guiver, High-performance carboxylated polymers of intrinsic microporosity (PIMs) with tunable gas transport properties, Macromolecules, 42 (2009) 6038-6043. https://doi.org/10.1021/ma9009017
[85] N. Du, H.B. Park, G.P. Robertson, M.M. Dal-Cin, T. Visser, L. Scoles, M.D. Guiver, Polymer nanosieve membranes for CO2-capture applications, Nat. Mater., 10 (2011) 372-375. https://doi.org/10.1038/nmat2989
[86] C.R. Mason, L. Maynard-Atem, N.M. Al-Harbi, P.M. Budd, P. Bernardo, F. Bazzarelli, G. Clarizia, J.C. Jansen, Polymer of intrinsic microporosity incorporating thioamide functionality: Preparation and gas transport properties, Macromolecules, 44 (2011) 6471-6479. https://doi.org/10.1021/ma200918h
[87] X. Ma, R. Swaidan, Y. Belmabkhout, Y. Zhu, E. Litwiller, M. Jouiad, I. Pinnau, Y. Han, Synthesis and gas transport properties of hydroxyl-functionalized polyimides with intrinsic microporosity, Macromolecules, 45 (2012) 3841-3849. https://doi.org/10.1021/ma300549m
[88] B. Comesaña-Gándara, J. Chen, C.G. Bezzu, M. Carta, I. Rose, M.-C. Ferrari, E. Esposito, A. Fuoco, J.C. Jansen, N.B. McKeown, Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity, Energy Environ. Sci., 12 (2019) 2733-2740. https://doi.org/10.1039/C9EE01384A
[89] J.R. Klaehn, C.J. Orme, E.S. Peterson, F.F. Stewart, J.M. Urban-Klaehn, High temperature gas separations using high performance polymers, in: S.T. Oyama, S.M. Stagg-Williams (Eds.) Membrane Science and Technology, Elsevier, Great Britain, 2011, pp. 295-307. https://doi.org/10.1016/B978-0-444-53728-7.00013-6
[90] H. Vogel, C.S. Marvel, Polybenzimidazoles, new thermally stable polymers, J. Polym. Sci., 50 (1961) 511-539. https://doi.org/10.1002/pol.1961.1205015419
[91] Y. Wang, T.X. Yang, K. Fishel, B. Benicewicz, T.S. Chung, Polybenzimidazoles, in: O. Olabisi, K. Adewale (Eds.) Handbook of Thermoplastics Second Edition, CRC Press, Boca Raton, 2015, pp. 617-667.
[92] S.C. Kumbharkar, P.B. Karadkar, U.K. Kharul, Enhancement of gas permeation properties of polybenzimidazoles by systematic structure architecture, J. Membr. Sci., 286 (2006) 161-169. https://doi.org/10.1016/j.memsci.2006.09.030
[93] S.D. Kenarsari, D. Yang, G. Jiang, S. Zhang, J. Wang, A.G. Russell, Q. Wei, M. Fan, Review of recent advances in carbon dioxide separation and capture, RSC Adv., 3 (2013) 22739-22773. https://doi.org/10.1039/c3ra43965h
[94] H. Borjigin, K.A. Stevens, R. Liu, J.D. Moon, A.T. Shaver, S. Swinnea, B.D. Freeman, J.S. Riffle, J.E. McGrath, Synthesis and characterization of polybenzimidazoles derived from tetraaminodiphenylsulfone for high temperature gas separation membranes, Polymer, 71 (2015) 135-142. https://doi.org/10.1016/j.polymer.2015.06.021
[95] X. Li, R.P. Singh, K.W. Dudeck, K.A. Berchtold, B.C. Benicewicz, Influence of polybenzimidazole main chain structure on H2/CO2 separation at elevated temperatures, J. Membr. Sci., 461 (2014) 59-68. https://doi.org/10.1016/j.memsci.2014.03.008
[96] S.C. Kumbharkar, Y. Liu, K. Li, High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation, J. Membr. Sci., 375 (2011) 231-240. https://doi.org/10.1016/j.memsci.2011.03.049
[97] L. Zhu, M.T. Swihart, H. Lin, Unprecedented size-sieving ability in polybenzimidazole doped with polyprotic acids for membrane H2/CO2 separation, Energy Environ. Sci., 11 (2018) 94-100. https://doi.org/10.1039/C7EE02865B
[98] J.R. Klaehn, C.J. Orme, E.S. Peterson, T.A. Luther, M.G. Jones, A.K. Wertsching, J.M. Urban-Klaehn: CO2 separation using thermally optimized membranes: A comprehensive project report (2000 – 2007) (Idaho National Laboratory, Idaho 2008). Https://doi.org/10.2172/928082
[99] W.J. Koros, R.T. Chern, V. Stannett, H.B. Hopfenberg, A model for permeation of mixed gases and vapors in glassy polymers, J. Polym. Sci. Polym. Phys. Ed., 19 (1981) 1513-1530. https://doi.org/10.1002/pol.1981.180191004
[100] I. Pinnau, C.G. Casillas, A. Morisato, B.D. Freeman, Hydrocarbon/hydrogen mixed gas permeation in poly(1-trimethylsilyl-1-propyne) (PTMSP), poly(1-phenyl-1-propyne) (PPP), and PTMSP/PPP blends, J. Polym. Sci. Part B: Polym. Phys., 34 (1996) 2613-2621. https://doi.org/10.1002/(SICI)1099-0488(19961115)34:15<2613::AID-POLB9>3.0.CO;2-T
[101] H. Lin, B.D. Freeman, Gas solubility, diffusivity and permeability in poly(ethylene oxide), J. Membr. Sci., 239 (2004) 105-117. https://doi.org/10.1016/j.memsci.2003.08.031
[102] S.B. Aziz, R.M. Abdullah, Crystalline and amorphous phase identification from the tanδ relaxation peaks and impedance plots in polymer blend electrolytes based on [CS:AgNt]x:PEO(x-1) (10 ≤ x ≤ 50), Electrochim. Acta, 285 (2018) 30-46. https://doi.org/10.1016/j.electacta.2018.07.233
[103] Y. Hirayama, Y. Kase, N. Tanihara, Y. Sumiyama, Y. Kusuki, K. Haraya, Permeation properties to CO2 and N2 of poly(ethylene oxide)-containing and crosslinked polymer films, J. Membr. Sci., 160 (1999) 87-99. https://doi.org/10.1016/S0376-7388(99)00080-0
[104] N.P. Patel, A.C. Miller, R.J. Spontak, Highly CO2-permeable and selective polymer nanocomposite membranes, Adv. Mater., 15 (2003) 729-733. https://doi.org/10.1002/adma.200304712
[105] H. Lin, E. Van Wagner, B.D. Freeman, L.G. Toy, R.P. Gupta, Plasticization-enhanced hydrogen purification using polymeric membranes, Science, 311 (2006) 639-642. https://doi.org/10.1126/science.1118079
[106] M. Wessling, S. Schoeman, T. van der Boomgaard, C.A. Smolders, Plasticization of gas separation membranes, Gas Sep. Purif., 5 (1991) 222-228. https://doi.org/10.1016/0950-4214(91)80028-4
[107] I. Pinnau, Z. He, Pure- and mixed-gas permeation properties of polydimethylsiloxane for hydrocarbon/methane and hydrocarbon/hydrogen separation, J. Membr. Sci., 244 (2004) 227-233. https://doi.org/10.1016/j.memsci.2004.06.055
[108] V.I. Bondar, B.D. Freeman, I. Pinnau, Gas sorption and characterization of poly(ether-b-amide) segmented block copolymers, J. Polym. Sci. Part B: Polym. Phys., 37 (1999) 2463-2475. https://doi.org/10.1002/(SICI)1099-0488(19990901)37:17<2463::AID-POLB18>3.0.CO;2-H
[109] H.Z. Chen, Y.C. Xiao, T.S. Chung, Synthesis and characterization of poly (ethylene oxide) containing copolyimides for hydrogen purification, Polymer, 51 (2010) 4077-4086. https://doi.org/10.1016/j.polymer.2010.06.046
[110] S.H. Choi, J.H. Kim, S.B. Lee, Sorption and permeation behaviors of a series of olefins and nitrogen through PDMS membranes, J. Membr. Sci., 299 (2007) 54-62. https://doi.org/10.1016/j.memsci.2007.04.022
[111] J. Liu, X. Hou, H.B. Park, H. Lin, High-performance polymers for membrane CO2/N2 Separation, Chem. Eur. J., 22 (2016) 15980-15990. https://doi.org/10.1002/chem.201603002
[112] X. Jiang, S. Li, L. Shao, Pushing CO2-philic membrane performance to the limit by designing semi-interpenetrating networks (SIPN) for sustainable CO2 separations, Energy Environ. Sci., 10 (2017) 1339-1344. https://doi.org/10.1039/C6EE03566C
[113] S.L. Liu, R. Wang, T.S. Chung, M.L. Chng, Y. Liu, R.H. Vora, Effect of diamine composition on the gas transport properties in 6FDA-durene/3,3′-diaminodiphenyl sulfone copolyimides, J. Membr. Sci., 202 (2002) 165-176. https://doi.org/10.1016/S0376-7388(01)00754-2
[114] H.B. Park, C.H. Jung, Y.M. Lee, A.J. Hill, S.J. Pas, S.T. Mudie, E. Van Wagner, B.D. Freeman, D.J. Cookson, Polymers with cavities tuned for fast selective transport of small molecules and ions, Science, 318 (2007) 254-258. https://doi.org/10.1126/science.1146744
[115] N.B. McKeown, P.M. Budd, K.J. Msayib, B.S. Ghanem, H.J. Kingston, C.E. Tattershall, S. Makhseed, K.J. Reynolds, D. Fritsch, Polymers of intrinsic microporosity (PIMs): Bridging the void between microporous and polymeric materials, Chem. Eur. J., 11 (2005) 2610-2620. https://doi.org/10.1002/chem.200400860
[116] S. Kim, Y.M. Lee, Rigid and microporous polymers for gas separation membranes, Prog. Polym. Sci., 43 (2015) 1-32. https://doi.org/10.1016/j.progpolymsci.2014.10.005
[117] H.B. Park, S.H. Han, C.H. Jung, Y.M. Lee, A.J. Hill, Thermally rearranged (TR) polymer membranes for CO2 separation, J. Membr. Sci., 359 (2010) 11-24. https://doi.org/10.1016/j.memsci.2009.09.037
[118] R. Guo, D.F. Sanders, Z.P. Smith, B.D. Freeman, D.R. Paul, J.E. McGrath, Synthesis and characterization of thermally rearranged (TR) polymers: Influence of ortho-positioned functional groups of polyimide precursors on TR process and gas transport properties, J. Mater. Chem. A, 1 (2013) 262-272. https://doi.org/10.1039/C2TA00799A
[119] A. Tena, S. Rangou, S. Shishatskiy, V. Filiz, V. Abetz, Claisen thermally rearranged (CTR) polymers, Sci. Adv., 2 (2016) e1501859. https://doi.org/10.1126/sciadv.1501859
[120] M.R. de la Viuda, A. Tena, S. Neumann, S. Willruth, V. Filiz, V. Abetz, Novel functionalized polyamides prone to undergo thermal Claisen rearrangement in the solid state, Polym. Chem., 9 (2018) 4007-4016. https://doi.org/10.1039/C8PY00467F
[121] R.W. Baker, K. Lokhandwala, Natural gas processing with membranes: An overview, Ind. Eng. Chem. Res., 47 (2008) 2109-2121. https://doi.org/10.1021/ie071083w
[122] A. Tena, A. Marcos-Fernández, A.E. Lozano, J.G. de la Campa, J. de Abajo, L. Palacio, P. Prádanos, A. Hernández, Thermally segregated copolymers with PPO blocks for nitrogen removal from natural gas, Ind. Eng. Chem. Res., 52 (2013) 4312-4322. https://doi.org/10.1021/ie303378k
[123] Z. Cui, E. Drioli, Y.M. Lee, Recent progress in fluoropolymers for membranes, Prog. Polym. Sci., 39 (2014) 164-198. https://doi.org/10.1016/j.progpolymsci.2013.07.008
[124] Y. Yampolskii, N. Belov, A. Alentiev, Perfluorinated polymers as materials of membranes for gas and vapor separation, J. Membr. Sci., 598 (2020) 117779. https://doi.org/10.1016/j.memsci.2019.117779
[125] M. Yavari, M. Fang, H. Nguyen, T.C. Merkel, H. Lin, Y. Okamoto, Dioxolane-based perfluoropolymers with superior membrane gas separation properties, Macromolecules, 51 (2018) 2489-2497. https://doi.org/10.1021/acs.macromol.8b00273
[126] M. Fang, Z. He, T.C. Merkel, Y. Okamoto, High-performance perfluorodioxolane copolymer membranes for gas separation with tailored selectivity enhancement, J. Mater. Chem. A, 6 (2018) 652-658. https://doi.org/10.1039/C7TA09047A
[127] N.A. Belov, A.A. Zharov, A.V. Shashkin, M.Q. Shaikh, K. Raetzke, Y.P. Yampolskii, Gas transport and free volume in hexafluoropropylene polymers, J. Membr. Sci., 383 (2011) 70-77. https://doi.org/10.1016/j.memsci.2011.08.029
[128] A.X. Wu, J.A. Drayton, Z.P. Smith, The perfluoropolymer upper bound, AIChE J., 65 (2019) e16700. https://doi.org/10.1002/aic.16700
[129] F. Suzuki, K. Nakane, Y. Hata, Grafting of siloxane on poly (styrene-co-maleic acid) and application of this grafting technique to a porous membrane for gas separation, J. Membr. Sci., 104 (1995) 283-290. https://doi.org/10.1016/0376-7388(95)00043-C
[130] Y.C. Xiao, T.S. Chung, Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and CO2 capture, Energy Environ. Sci., 4 (2011) 201-208. https://doi.org/10.1039/C0EE00278J
[131] M.L. Chua, Y.C. Xiao, T.S. Chung, Effects of thermally labile saccharide units on the gas separation performance of highly permeable polyimide membranes, J. Membr. Sci., 415 (2012) 375-382. https://doi.org/10.1016/j.memsci.2012.05.022
[132] M. Askari, Y.C. Xiao, P. Li, T.S. Chung, Natural gas purification and olefin/paraffin separation using cross-linkable 6FDA-Durene/DABA co-polyimides grafted with α, β, and γ-cyclodextrin, J. Membr. Sci., 390–391 (2012) 141-151. https://doi.org/10.1016/j.memsci.2011.11.030
[133] C.R. Mason, L. Maynard-Atem, K.W.J. Heard, B. Satilmis, P.M. Budd, K. Friess, M. Lanc̆, P. Bernardo, G. Clarizia, J.C. Jansen, Enhancement of CO2 affinity in a polymer of intrinsic microporosity by amine modification, Macromolecules, 47 (2014) 1021-1029. https://doi.org/10.1021/ma401869p
[134] N. Du, G.P. Robertson, M.M. Dal-Cin, L. Scoles, M.D. Guiver, Polymers of intrinsic microporosity (PIMs) substituted with methyl tetrazole, Polymer, 53 (2012) 4367-4372. https://doi.org/10.1016/j.polymer.2012.07.055
[135] R.A. Hayes, Amine-modified polyimide membranes, U.S. Patent 4,981,497, 1991
[136] Y. Liu, R. Wang, T.S. Chung, Chemical cross-linking modification of polyimide membranes for gas separation, J. Membr. Sci., 189 (2001) 231-239. https://doi.org/10.1016/S0376-7388(01)00415-X
[137] K. Vanherck, G. Koeckelberghs, I.F.J. Vankelecom, Crosslinking polyimides for membrane applications: A review, Prog. Polym. Sci., 38 (2013) 874-896. https://doi.org/10.1016/j.progpolymsci.2012.11.001
[138] W. F. Yong, F.Y. Li, T.S. Chung, Y.W. Tong, Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification, J. Mater. Chem. A, 1 (2013) 139 14-13925. https://doi.org/10.1039/c3ta13308g
[139] H.Y. Zhao, Y.M. Cao, X.L. Ding, M.Q. Zhou, J.H. Liu, Q. Yuan, Poly(ethylene oxide) induced cross-linking modification of Matrimid membranes for selective separation of CO2, J. Membr. Sci., 320 (2008) 179-184. https://doi.org/10.1016/j.memsci.2008.03.070
[140] H. Lin, T. Kai, B.D. Freeman, S. Kalakkunnath, D.S. Kalika, The effect of cross-linking on gas permeability in cross-linked poly(ethylene glycol diacrylate), Macromolecules, 38 (2005) 8381-8393. https://doi.org/10.1021/ma0510136
[141] H.K. Yun, K. Cho, J.K. Kim, C.E. Park, S.M. Sim, S.Y. Oh, J.M. Park, Adhesion improvement of epoxy resin/polyimide joints by amine treatment of polyimide surface, Polymer, 38 (1997) 827-834. https://doi.org/10.1016/S0032-3861(96)00592-7
[142] L. Shao, T.S. Chung, S.H. Goh, K.P. Pramoda, Polyimide modification by a linear aliphatic diamine to enhance transport performance and plasticization resistance, J. Membr. Sci., 256 (2005) 46-56. https://doi.org/10.1016/j.memsci.2005.02.030
[143] C.E. Powell, X.J. Duthie, S.E. Kentish, G.G. Qiao, G.W. Stevens, Reversible diamine cross-linking of polyimide membranes, J. Membr. Sci., 291 (2007) 199-209. https://doi.org/10.1016/j.memsci.2007.01.016
[144] B.T. Low, Y.C. Xiao, T.S. Chung, Y. Liu, Simultaneous occurrence of chemical grafting, cross-linking, and etching on the surface of polyimide membranes and their Impact on H2/CO2 separation, Macromolecules, 41 (2008) 1297-1309. https://doi.org/10.1021/ma702360p
[145] L. Shao, B.T. Low, T.S. Chung, A.R. Greenberg, Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future, J. Membr. Sci., 327 (2009) 18-31. https://doi.org/10.1016/j.memsci.2008.11.019
[146] H. Wang, D.R. Paul, T.S. Chung, Surface modification of polyimide membranes by diethylenetriamine (DETA) vapor for H2 purification and moisture effect on gas permeation, J. Membr. Sci., 430 (2013) 223-233. https://doi.org/10.1016/j.memsci.2012.12.008
[147] S. Japip, K.S. Liao, Y.C. Xiao, T.S. Chung, Enhancement of molecular-sieving properties by constructing surface nano-metric layer via vapor cross-linking, J. Membr. Sci., 497 (2016) 248-258. https://doi.org/10.1016/j.memsci.2015.09.045
[148] S. Japip, K.S. Liao, T.S. Chung, Molecularly tuned free volume of vapor cross-linked 6FDA-Durene/ZIF-71 MMMs for H2/CO2 separation at 150 °C, Adv. Mater., 29 (2017) 1603833. https://doi.org/10.1002/adma.201603833
[149] C. Staudt-Bickel, W. J. Koros, Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking, J. Membr. Sci., 155 (1999) 145-154. https://doi.org/10.1016/S0376-7388(98)00306-8
[150] C. Zhang, L. Fu, Z. Tian, B. Cao, P. Li, Post-crosslinking of triptycene-based Tröger’s base polymers with enhanced natural gas separation performance, J. Membr. Sci., 556 (2018) 277-284. https://doi.org/10.1016/j.memsci.2018.04.013
[151] M.E. Rezac, E. Todd Sorensen, H.W. Beckham, Transport properties of crosslinkable polyimide blends, J. Membr. Sci., 136 (1997) 249-259. https://doi.org/10.1016/S0376-7388(97)00170-1
[152] A.C. Puleo, D.R. Paul, P.K. Wong, Gas sorption and transport in semicrystalline poly(4-methyl-1-pentene), Polymer, 30 (1989) 1357-1366. https://doi.org/10.1016/0032-3861(89)90060-8
[153] C.T. Wright, D.R. Paul, Feasibility of thermal crosslinking of polyarylate gas-separation membranes using benzocyclobutene-based monomers, J. Membr. Sci., 129 (1997) 47-53. https://doi.org/10.1016/S0376-7388(96)00327-4
[154] A.M. Kratochvil, W.J. Koros, Decarboxylation-induced cross-linking of a polyimide for enhanced CO2 plasticization resistance, Macromolecules, 41 (2008) 7920-7927. https://doi.org/10.1021/ma801586f
[155] W. Qiu, C.C. Chen, L. Xu, L. Cui, D.R. Paul, W.J. Koros, Sub-Tg cross-linking of a polyimide membrane for enhanced CO2 plasticization resistance for natural gas separation, Macromolecules, 44 (2011) 6046-6056. https://doi.org/10.1021/ma201033j
[156] C. Zhang, P. Li, B. Cao, Decarboxylation crosslinking of polyimides with high CO2/CH4 separation performance and plasticization resistance, J. Membr. Sci., 528 (2017) 206-216. https://doi.org/10.1016/j.memsci.2017.01.008
[157] R. Xu, L. Li, X. Jin, M. Hou, L. He, Y. Lu, C. Song, T. Wang, Thermal crosslinking of a novel membrane derived from phenolphthalein-based cardo poly(arylene ether ketone) to enhance CO2/CH4 separation performance and plasticization resistance, J. Membr. Sci., 586 (2019) 306-317. https://doi.org/10.1016/j.memsci.2019.05.084
[158] N. Du, M.M. Dal-Cin, G.P. Robertson, M.D. Guiver, Decarboxylation-induced cross-linking of polymers of intrinsic microporosity (PIMs) for membrane gas separation, Macromolecules, 45 (2012) 5134-5139. https://doi.org/10.1021/ma300751s
[159] Q. Song, S. Cao, R.H. Pritchard, B. Ghalei, S.A. Al-Muhtaseb, E.M. Terentjev, A.K. Cheetham, E. Sivaniah, Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes, Nat. Commun., 5 (2014) 4813. https://doi.org/10.1038/ncomms5813
[160] C. Zhang, B. Cao, P. Li, Thermal oxidative crosslinking of phenolphthalein-based cardo polyimides with enhanced gas permeability and selectivity, J. Membr. Sci., 546 (2018) 90-99. https://doi.org/10.1016/j.memsci.2017.10.015
[161] A.A. Lin, V.R. Sastri, G. Tesoro, A. Reiser, R. Eachus, On the crosslinking mechanism of benzophenone-containing polyimides, Macromolecules, 21 (1988) 1165-1169. https://doi.org/10.1021/ma00182a052
[162] R.A. Hayes, Polyimide gas separation membranes, U.S. Patent 4,717,393, 1988
[163] H. Kita, T. Inada, K. Tanaka, K.-i. Okamoto, Effect of photocrosslinking on permeability and permselectivity of gases through benzophenone- containing polyimide, J. Membr. Sci., 87 (1994) 139-147. https://doi.org/10.1016/0376-7388(93)E0098-X
[164] M.S. McCaig, D.R. Paul, Effect of UV crosslinking and physical aging on the gas permeability of thin glassy polyarylate films, Polymer, 40 (1999) 7209-7225. https://doi.org/10.1016/S0032-3861(99)00125-1
[165] C.T. Wright, D.R. Paul, Gas sorption and transport in UV-irradiated polyarylate copolymers based on tetramethyl bisphenol-A and dihydroxybenzophenone, J. Membr. Sci., 124 (1997) 161-174. https://doi.org/10.1016/S0376-7388(96)00215-3
[166] J.R. Rowlett, Q. Liu, W. Zhang, J.D. Moon, M.E. Dose, J.S. Riffle, B.D. Freeman, J.E. McGrath, Gas transport properties and characterization of UV crosslinked poly(phenylene oxide-co-arylene ether ketone) copolymers, J. Mater. Chem. A, 4 (2016) 16047-16056. https://doi.org/10.1039/C6TA05320C
[167] S. Matsui, T. Ishiguro, A. Higuchi, T. Nakagawa, Effect of ultraviolet light irradiation on gas permeability in polyimide membranes. 1. Irradiation with low pressure mercury lamp on photosensitive and nonphotosensitive membranes, J. Polym. Sci. Part B: Polym. Phys., 35 (1997) 2259-2269. https://doi.org/10.1002/(SICI)1099-0488(199710)35:14<2259::AID-POLB6>3.0.CO;2-R
[168] I.K. Meier, M. Langsam, H.C. Klotz, Selectivity enhancement via photooxidative surface modification of polyimide air separation membranes, J. Membr. Sci., 94 (1994) 195-212. https://doi.org/10.1016/0376-7388(93)E0174-I
[169] Q. Song, S. Cao, P. Zavala-Rivera, L. Ping Lu, W. Li, Y. Ji, S.A. Al-Muhtaseb, A.K. Cheetham, E. Sivaniah, Photo-oxidative enhancement of polymeric molecular sieve membranes, Nat. Commun., 4 (2013) 1918. https://doi.org/10.1038/ncomms2942
[170] C.Z. Liang, T.S. Chung, J.-Y. Lai, A review of polymeric composite membranes for gas separation and energy production, Prog. Polym. Sci., 97 (2019) 101141. https://doi.org/10.1016/j.progpolymsci.2019.06.001
[171] K. Xie, Q. Fu, G.G. Qiao, P.A. Webley, Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture, J. Membr. Sci., 572 (2019) 38-60. https://doi.org/10.1016/j.memsci.2018.10.049
[172] M.F. Jimenez-Solomon, Q. Song, K.E. Jelfs, M. Munoz-Ibanez, A.G. Livingston, Polymer nanofilms with enhanced microporosity by interfacial polymerization, Nat. Mater., 15 (2016) 760-767. https://doi.org/10.1038/nmat4638
[173] Z. Ali, F. Pacheco, E. Litwiller, Y. Wang, Y. Han, I. Pinnau, Ultra-selective defect-free interfacially polymerized molecular sieve thin-film composite membranes for H2 purification, J. Mater. Chem. A, 6 (2018) 30-35. https://doi.org/10.1039/C7TA07819F
[174] M.J.T. Raaijmakers, M.A. Hempenius, P.M. Schön, G.J. Vancso, A. Nijmeijer, M. Wessling, N.E. Benes, Sieving of hot gases by hyper-cross-linked nanoscale-hybrid membranes, J. Am. Chem. Soc., 136 (2014) 330-335. https://doi.org/10.1021/ja410047u
[175] (a) T. S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Prog. Polym. Sci., 32 (2007) 483-507; https://doi.org/10.1016/j.progpolymsci.2007.01.008 (b) P. Banerjee, R. Das, P. Das, A. Mukhopadhyay, Membrane technology, in: R. Das (Ed.), Carbon Nanotubes for Clean Water, Springer, Cham, 2018, pp. 127-150. https://doi.org/10.1007/978-3-319-95603-9_6
[176] Y.C. Xiao, K.Y. Wang, T.S. Chung, J. Tan, Evolution of nano-particle distribution during the fabrication of mixed matrix TiO2-polyimide hollow fiber membranes, Chem. Eng. Sci., 61 (2006) 6228-6233. https://doi.org/10.1016/j.ces.2006.05.040
[177] M.D. Guiver, G.P. Robertson, Y. Dai, F. Bilodeau, Y.S. Kang, K.J. Lee, J.Y. Jho, J. Won, Structural characterization and gas-transport properties of brominated Matrimid polyimide, J. Polym. Sci. A Polym. Chem., 40 (2002) 4193-4204.
[178] R. Mahajan, R. Burns, M. Schaeffer, W.J. Koros, Challenges in forming successful mixed matrix membranes with rigid polymeric materials, J. Appl. Polym. Sci., 86 (2002) 881-890.
[179] R. Mahajan,W.J. Koros, Factors controlling successful formation of mixed-matrix gas separation materials, Ind. Eng. Chem. Res., 39 (2000) 2692-2696.
[180] J.L.C. Rowsell, O.M. Yaghi, Metal–organic frameworks: A new class of porous materials, Microporous Mesoporous Mater., 73 (2004) 3-14. https://doi.org/10.1016/j.micromeso.2004.03.034
[181] Y. Cheng, Y. Ying, S. Japip, S.D. Jiang, T.S. Chung, S. Zhang, D. Zhao, Advanced porous materials in mixed matrix membranes, Adv. Mater., 30 (2018) 1802401. https://doi.org/10.1002/adma.201802401
[182] B. Ghalei, K. Sakurai, Y. Kinoshita, K. Wakimoto, A.P. Isfahani, Q. Song, K. Doitomi, S. Furukawa, H. Hirao, H. Kusuda, S. Kitagawa, E. Sivaniah, Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles, Nat. Energy, 2 (2017) 17086. https://doi.org/10.1038/nenergy.2017.86
[183] T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F.X. Llabrés I Xamena, J. Gascon, Metal–organic framework nanosheets in polymer composite materials for gas separation, Nat. Mater., 14 (2015) 48-55. https://doi.org/10.1038/nmat4113
[184] (a) Z. Kang, Y. Peng, Z. Hu, Y. Qian, C. Chi, L.Y. Yeo, L. Tee, D. Zhao, Mixed matrix membranes composed of two-dimensional metal–organic framework nanosheets for pre-combustion CO2 capture: A relationship study of filler morphology versus membrane performance, J. Mater. Chem. A, 3 (2015) 20801-20810; https://doi.org/10.1039/C5TA03739E (b) G.R. Xu, J.M. Xu, H.C. Su, X.Y. Liu, L. Li, H.L. Zhao, H.J. Feng, R. Das, Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: Latest developments and future directions, Desalination, 451 (2019) 18-34. https://doi.org/10.1016/j.desal.2017.09.024
[185] A.P. Côté, A.I. Benin, N.W. Ockwig, M. Keeffe, A.J. Matzger, O.M. Yaghi, Porous, crystalline, covalent organic frameworks, Science, 310 (2005) 1166. https://doi.org/10.1126/science.1120411
[186] Z. Kang, Y. Peng, Y. Qian, D. Yuan, M.A. Addicoat, T. Heine, Z. Hu, L. Tee, Z. Guo, D. Zhao, Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation, Chem. Mater., 28 (2016) 1277-1285. https://doi.org/10.1021/acs.chemmater.5b02902
[187] B.P. Biswal, H.D. Chaudhari, R. Banerjee, U.K. Kharul, Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: Enhanced gas separation through pore modulation, Chem. Eur. J., 22 (2016) 4695-4699. https://doi.org/10.1002/chem.201504836
[188] T. Tozawa, J.T.A. Jones, S.I. Swamy, S. Jiang, D.J. Adams, S. Shakespeare, R. Clowes, D. Bradshaw, T. Hasell, S.Y. Chong, C. Tang, S. Thompson, J. Parker, A. Trewin, J. Bacsa, A.M.Z. Slawin, A. Steiner, A.I. Cooper, Porous organic cages, Nat. Mater., 8 (2009) 973-978. https://doi.org/10.1038/nmat2545
[189] A.F. Bushell, P.M. Budd, M.P. Attfield, J.T.A. Jones, T. Hasell, A.I. Cooper, P. Bernardo, F. Bazzarelli, G. Clarizia, J.C. Jansen, Nanoporous organic polymer/cage composite membranes, Angew. Chem. Int. Ed., 52 (2013) 1253-1256. https://doi.org/10.1002/anie.201206339
[190] G. Zhu, F. Zhang, M.P. Rivera, X. Hu, G. Zhang, C.W. Jones, R.P. Lively, Molecularly mixed composite membranes for advanced separation processes, Angew. Chem. Int. Ed., 58 (2019) 2638-2643. https://doi.org/10.1002/anie.201811341
[191] C.D. Gutsche, Using the baskets: Calixarenes in action, in: Calixarenes: An Introduction, Second Edition, The Royal Society of Chemistry, Cambridge, 2008, pp. 208-237. https://doi.org/10.1039/9781847558190-00208
[192] J.T. Liu, Y.C. Xiao, K.S. Liao, T.S. Chung, Highly permeable and aging resistant 3D architecture from polymers of intrinsic microporosity incorporated with beta-cyclodextrin, J. Membr. Sci., 523 (2017) 92-102. https://doi.org/10.1016/j.memsci.2016.10.001
[193] J. Wu, J.T. Liu, T.S. Chung, Structural tuning of polymers of intrinsic microporosity via the copolymerization with macrocyclic 4-tert-butylcalix[4]arene for enhanced gas separation performance, Adv. Sustainable Syst., 2 (2018) 1800044. https://doi.org/10.1002/adsu.201800044
[194] J. Wu, S. Japip, T.S. Chung, Infiltrating molecular gatekeepers with coexisting molecular solubility and 3D-intrinsic porosity into a microporous polymer scaffold for gas separation, J. Mater. Chem. A, 8 (2020) 6196-6209. https://doi.org/10.1039/C9TA12028A
[195] J. Shen, M. Zhang, G. Liu, K. Guan, W. Jin, Size effects of graphene oxide on mixed matrix membranes for CO2 separation, AIChE J., 62 (2016) 2843-2852. https://doi.org/10.1002/aic.15260
[196] M. Chen, F. Soyekwo, Q. Zhang, C. Hu, A. Zhu, Q. Liu, Graphene oxide nanosheets to improve permeability and selectivity of PIM-1 membrane for carbon dioxide separation, J. Ind. Eng. Chem., 63 (2018) 296-302. https://doi.org/10.1016/j.jiec.2018.02.030
[197] G. Dong, J. Hou, J. Wang, Y. Zhang, V. Chen, J. Liu, Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes, J. Membr. Sci., 520 (2016) 860-868. https://doi.org/10.1016/j.memsci.2016.08.059
[198] Y. Wang, X. Wang, J. Guan, L. Yang, Y. Ren, N. Nasir, H. Wu, Z. Chen, Z. Jiang, 110th anniversary: Mixed matrix membranes with fillers of intrinsic nanopores for gas separation, Ind. Eng. Chem. Res., 58 (2019) 7706-7724. https://doi.org/10.1021/acs.iecr.9b01568
[199] B.H. Jeong, E.M.V. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A.K. Ghosh, A. Jawor, Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes, J. Membr. Sci., 294 (2007) 1-7. https://doi.org/10.1016/j.memsci.2007.02.025
[200] S. Yu, S. Li, S. Huang, Z. Zeng, S. Cui, Y. Liu, Covalently bonded zeolitic imidazolate frameworks and polymers with enhanced compatibility in thin film nanocomposite membranes for gas separation, J. Membr. Sci., 540 (2017) 155-164. https://doi.org/10.1016/j.memsci.2017.06.047