Polymeric Membranes for O2/N2 Separation

$30.00

Polymeric Membranes for O2/N2 Separation

Ragib Shakil, Yeasin Arafat Tarek, Mahamudul Hasan Rumon, Chanchal Kumar Roy, Al-Nakib Chowdhury, Rasel Das

Over the last few decades, polymeric membranes-based O2/N2 separation techniques have been progressed from a laboratory curiosity to a commercial reality. These membranes show various advantages i.e., low energy consumption and cost, compared to the other conventional methods for O2 and N2 separation. These benefits generate a great deal of interest in industry and academia to accelerate the commercial feasibility of polymeric membranes for O2/N2 separation. For this, various materials have been developed in order to enhance both O2 permeability and O2/N2 selectivity of the polymeric membranes. In this chapter, the recent development of various polymeric membranes, including a different polymer matrix and polymer inorganic composite for O2/N2 separation, is discussed.

Keywords
Membrane Technology, Polymeric Membrane, O2/N2 Separation, Gas Separation, Selectivity and Permeability

Published online , 32 pages

Citation: Ragib Shakil, Yeasin Arafat Tarek, Mahamudul Hasan Rumon, Chanchal Kumar Roy, Al-Nakib Chowdhury, Rasel Das, Polymeric Membranes for O2/N2 Separation, Materials Research Foundations, Vol. 113, pp 171-202, 2021

DOI: https://doi.org/10.21741/9781644901632-6

Part of the book on Polymeric Membranes for Water Purification and Gas Separation

References
[1] T. A. Saleh, and V. K. Gupta, An Overview of Membrane Science and Technology, Nano. Pol. Mem., Elsevier (2016) 1–23. https://doi.org/10.1016/b978-0-12-804703-300001-2
[2] Z. Y. Yeo, T. L. Chew, P. W. Zhu, A. R. Mohamed, and S. P. Chai, Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review, J. Nat. Gas Chem., Elsevier 21(3) (2012) 282–298. https://doi.org/10.1016/S1003-9953(11)60366-6
[3] X. Y. Chen, H. Vinh-Thang, A. A. Ramirez, D. Rodrigue, and S. Kaliaguine, Membrane gas separation technologies for biogas upgrading, RSC Adv. 5(31) (2015). https://doi.org/10.1039/c5ra00666j
[4] A. F. Ismail, K. C. Khulbe, and T. Matsuura, Gas separation membranes: Polymeric and inorganic, Springer 10 (2015) 978-3. https://doi.org/ 10.1007/978-3-319-01095-3
[5] L. Li, G. Ma, Z. Pan, N. Zhang, and Z. Zhang, Research progress in gas separation using hollow fiber membrane contactors, Membranes (Basel) 10(12) (2020) 1–20. https://doi.org/10.3390/membranes10120380
[6] E. Nagy, Membrane Gas Separation, Basic Equations of Mass Transport Through a Membrane Layer, Elsevier (2019) 457–481. https://doi.org/10.1016/B978-0-12-813722-2.00018-2
[7] J. Gilron, and A. Soffer, Knudsen diffusion in microporous carbon membranes with molecular sieving character, J. Memb. Sci., 209(2) (2002) 339–352. https://doi.org/10.1016/S0376-7388(02)00074-1
[8] C. Z. Liang, T. S. Chung, and J. Y. Lai, A review of polymeric composite membranes for gas separation and energy production, Prog. Pol. Sci., Elsevier 97 (2019) 101-141 https://doi.org/10.1016/j.progpolymsci.2019.06.001
[9] D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robeson, J. E. McGrath, D. R. Pail, and B. D. Freeman, Energy-efficient polymeric gas separation membranes for a sustainable future: A review, Polymer, Elsevier 54(18) (2013) 4729–4761. https://doi.org/10.1016/j.polymer.2013.05.075
[10] N. Sazali, A review of the application of carbon-based membranes to hydrogen separation, J. Mat. Sci., Springer (2020) 11052–11070. https://doi.org/10.1007/s10853-020-04829-7
[11] B. D. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules, 32(2) (1999) 375–380. https://doi.org/10.1021/ma9814548
[12] E. Kianfar, and V. Cao, Polymeric membranes on base of PolyMethyl methacrylate for air separation: A review, J. Mat. Res. Tech., Elsevier 10 (2021) 1437–1461. https://doi.org/10.1016/j.jmrt.2020.12.061
[13] B. D. Freeman, and I. Pinnau, Polymeric Materials for Gas Separations, (1999). https://doi.org/10.1021/bk-1999-0733.ch001
[14] K. C. Khulbe, C. Feng, and T. Matsuura, The art of surface modification of synthetic polymeric membranes, J. Appl. Polym. Sci., 115(2) (2010) 855–895. https://doi.org/10.1002/app.31108
[15] A. B. Gil’man, Low-Temperature Plasma Treatment as an Effective Method for Surface Modification of Polymeric Materials, High Energy Chem., 37(1) (2003) 17–23. https://doi.org/10.1023/A:1021957425359
[16] Ş. B. Tantekin-Ersolmaz, Ç. Atalay-Oral, M. Tatlier, A. Erdem-Şenatalar, B. Schoeman, and J. Sterte, Effect of zeolite particle size on the performance of polymer-zeolite mixed matrix membranes, J. Memb. Sci., 175(2), (2000) 285–288. https://doi.org/10.1016/S0376-7388(00)00423-3
[17] J. Dechnik, J. Gascon, C. J. Doonan, C. Janiak, and C. J. Sumby, Mixed-Matrix Membranes, Angewandte Chemie – International Edition, 56(32) (2017) 9292–9310. https://doi.org/10.1002/anie.201701109
[18] J. Caro, Are MOF membranes better in gas separation than those made of zeolites?, Curr. Opi. Chem. Eng., Elsevier 1(1) (2011) 77–83. https://doi.org/10.1016/j.coche.2011.08.007
[19] H. B. Tanh Jeazet, C. Staudt, and C. Janiak, Metal-organic frameworks in mixed-matrix membranes for gas separation, Dalt. Trans., RSC 41(46) (2012) 14003–14027. https://doi.org/10.1039/c2dt31550e
[20] T. S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Prog. Pol. Sci. 32(4) (2007) 483–507. https://doi.org/10.1016/j.progpolymsci.2007.01.008
[21] N. Y. Abu-Thabit, S. A. Ali, S. M. J. Zaidi, and K. Mezghani, Novel sulfonated poly(ether ether ketone)/phosphonated polysulfone polymer blends for proton conducting membranes, J. Mater. Res. 27(15) (2012) 1958–1968. https://doi.org/10.1557/jmr.2012.145
[22] A. Ram, Description of Major Plastics: Structure, Properties and Utilization, Fun. Pol. Eng., Springer (1997) 48–215. https://doi.org/10.1007/978-1-4899-1822-2_6
[23] O. Mehmood et al., Optimization analysis of polyurethane based mixed matrix gas separation membranes by incorporation of gamma-cyclodextrin metal organic frame work, Chem. Pap. 74(10) (2020) 3527–3543. https://doi.org/10.1007/s11696-020-01179-1
[24] N. F. Himma, A. K. Wardani, N. Prasetya, P. T. P. Aryanti, and I. G. Wenten, Recent progress and challenges in membrane-based O2/N2 separation, Rev. Chem. Eng. 35(5) (2019) 591–625. https://doi.org/10.1515/revce-2017-0094
[25] N. Abdullah, M. A. Rahman, M. H. D. Othman, J. Jaafar, and A. F. Ismail, Membranes and Membrane Processes: Fundamentals, in Current Trends and Future Developments on (Bio-) Membranes: Photocatalytic Membranes and Photocatalytic Membrane Reactors, Elsevier 2018 45–70. https://doi.org/10.1016/B978-0-12-813549-5.00002-5
[26] A. F. Ismail, and P. Y. Lai, Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation, Sep. Purif. Tech. 33(2) (2003) 127–143. https://doi.org/10.1016/S1383-5866(02)00201-0
[27] B. W. Rowe, B. D. Freeman, and D. R. Paul, Chapter 3. Physical Aging of Membranes for Gas Separations (2011) 58–83. https://doi.org/10.1039/9781849733472-00058
[28] P. Banerjee, R. Das, P. Das, and A. Mukhopadhyay, Membrane technology, Carbon Nano., Springer (2018) 127–150
[29] F. Mostafapoor et al., Interface analysis of compatibilized polymer blends, in Compatibilization of Polymer Blends: Micro and Nano Scale Phase Morphologies, Interphase Characterization, and Properties, Elsevier (2019) 349–371. https://doi.org/10.1016/B978-0-12-816006-0.00012-8
[30] J. M. Gohil, and R. R. Choudhury, Introduction to Nanostructured and Nano-enhanced Polymeric Membranes: Preparation, Function, and Application for Water Purification, Nano. Mat. Wat. Pur., Elsevier (2018) 25–57. https://doi.org/10.1016/B978-0-12-813926-4.00038-0
[31] I. Pinnau, and W. J. Koros, Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion, J. Appl. Polym. Sci. 43(8) (1991) 1491–1502. https://doi.org/10.1002/app.1991.070430811
[32] D. T. Clausi, and W. J. Koros, Formation of defect-free polyimide hollow fiber membranes for gas separations, J. Memb. Sci. 167(1) (2000) 79–89. https://doi.org/10.1016/S0376-7388(99)00276-8
[33] T. S. Chung, S. K. Teoh, and X. Hu, Formation of ultrathin high-performance polyethersulfone hollow-fiber membranes, J. Mem. Sci. 133(2) (1997) 161–175. https://doi.org/10.1016/S0376-7388(97)00101-4
[34] A. F. Ismail, I. R. Dunkin, S. L. Gallivan, and S. J. Shilton, Production of super selective polysulfone hollow fiber membranes for gas separation, Polymer 40(23) (1999) 6499–6506. https://doi.org/10.1016/S0032-3861(98)00862-3
[35] D. Wang, K. Li, and W. K. Teo, Polyethersulfone hollow fiber gas separation membranes prepared from NMP/alcohol solvent systems, J. Memb. Sci. 115(1) (1996) 85–108. https://doi.org/10.1016/0376-7388(95)00312-6
[36] D. Wang, K. Li, and W. K. Teo, Highly permeable polyethersulfone hollow fiber gas separation membranes prepared using water as non-solvent additive, J. Memb. Sci. 176(2) (2000) 147–158. https://doi.org/10.1016/S0376-7388(00)00419-1
[37] F. Mohamed, H. Hasbullah, W. N. R. Jamian, A. R. A. Rani, M. F. K. Saman, W. N. H. Salleh, & R. R. Ali, Gas Permeation Performance of Poly(lactic acid) Asymmetric Membrane for O2/N2 Separation, Springer (2015) 149–156. https://doi.org/10.1007/978-981-287-505-1_18
[38] A. F. Ismail, and L. P. Yean, Effects of Shear Rate on Morphology and Gas Separation Performance as Asymetric Polysulfone Membranes, J. Chem. Eng. 2(1) (2008) 67. https://doi.org/10.22146/ajche.50805
[39] R. V. Kulkarni, S. Z. Inamdar, K. K. Das, and M. S. Biradar, Polysaccharide-based stimuli-sensitive graft copolymers for drug delivery, Polysac. Car. Drug Del., Elsevier (2019) 155–177. https://doi.org/10.1016/B978-0-08-102553-6.00007-6
[40] I. Khan, M. Mansha, and M. A. Jafar Mazumder, Pol. Blends, Springer Cham, 2019 513–549. https://doi.org/10.1007/978-3-319-95987-0_16
[41] A. C. Shi, and B. Li, Block Copolymers under Confinement, Pol. Sci., Elsevier 10(7) (2012) 71–81. https://doi.org/10.1016/B978-0-444-53349-4.00186-2
[42] C. Camacho-Zuñiga, F. A. Ruiz-Treviño, S. Hernández-López, M. G. Zolotukhin, F. H. J. Maurer, and A. González-Montiel, Aromatic polysulfone copolymers for gas separation membrane applications, J. Memb. Sci. 340(1–2) (2009) 221–226. https://doi.org/10.1016/j.memsci.2009.05.033
[43] T. Komatsuka, A. Kusakabe, and K. Nagai, Characterization and gas transport properties of poly(lactic acid) blend membranes, Desalination 234(1–3) (2008) 212–220. https://doi.org/10.1016/j.desal.2007.09.088
[44] E. Rudnik, Compostable Polymer Properties and Packaging Applications, in Plastic Films in Food Packaging: Materials, Technology and Applications, Elsevier Inc (2012) 217–248. https://doi.org/10.1016/B978-1-4557-3112-1.00013-2.
[45] S. C. George, K. N. Ninan, and S. Thomas, Permeation of nitrogen and oxygen gases through styrene-butadiene rubber, natural rubber and styrene-butadiene rubber/natural rubber blend membranes, Eur. Polym. J. 37(1) (2001) 183–191. https://doi.org/10.1016/S0014-3057(00)00083-5
[46] P. Gibson, H. Schreuder-Gibson, and D. Rivin, Transport properties of porous membranes based on electrospun nanofibers, Colloids and Surfaces A: Physicochemical and Engineering Aspects 187(188) (2001) 469–481. https://doi.org/10.1016/S0927-7757(01)00616-1
[47] C. M. Zimmerman, and W. J. Koros, Polypyrrolones for membrane gas separations. I. Structural comparison of gas transport and sorption properties, Journal of Polymer Science, Part B: Polymer Physics (1999)
[48] F. Marken, M. Carta, and N. B. McKeown, Polymers of intrinsic microporosity in the design of electrochemical multicomponent and multiphase interfaces, Anal. Chem. 93(3) (2021) 1213–1220. https://doi.org/10.1021/acs.analchem.0c04554
[49] A. Arabi Shamsabadi, M. Rezakazemi, F. Seidi, H. Riazi, T. Aminabhavi, and M. Soroush, Next generation polymers of intrinsic microporosity with tunable moieties for ultrahigh permeation and precise molecular CO2 separation, Prog. Ener. Comb. Sci., Elsevier 48 (2021) 100903. https://doi.org/10.1016/j.pecs.2021.100903
[50] D. Meis et al., Thermal rearrangement of: Ortho -allyloxypolyimide membranes and the effect of the degree of functionalization, Polym. Chem. 9(29) (2018) 3987–3999. https://doi.org/10.1039/c8py00530c
[51] S. Kim, and Y. M. Lee, Rigid and microporous polymers for gas separation membranes, Progress, Pol. Sci., Elsevier 43 (2015) 1–32, https://doi.org/10.1016/j.progpolymsci.2014.10.005
[52] K. Balani, V. Verma, A. Agarwal, and R. Narayan, Physical, Thermal, and Mechanical Properties of Polymers, Biosurfaces, John Wiley & Sons (2015) 329–344. https://doi.org/10.1002/9781118950623.app1
[53] P. M. Budd, N. B. McKeown, B. S. Ghanem, K. J. Msayib, D. Fritsch, L. Starannikova, N. Belov, O. Sanfirova, Y. Yampolskii, & V. Shantarovich, Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: Polybenzodioxane PIM-1. J. Memb. Sci. 325(2) (2008) 851–860. https://doi.org/10.1016/j.memsci.2008.09.010
[54] C. L. Staiger, S. J. Pas, A. J. Hill, and C. J. Cornelius, Gas separation, free volume distribution, and physical aging of a highly microporous spirobisindane polymer, Chem. Mat. 20(8) (2008) 2606–2608. https://doi.org/10.1021/cm071722t
[55] N. Du, G. P. Robertson, J. Song, I. Pinnau, S. Thomas, and M. D. Guiver, Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation, Macromolecules 41(24) (2008) 9656–9662, https://doi.org/10.1021/ma801858d
[56] B. S. Ghanem, N. B. McKeown, P. M. Budd, J. D. Selbie, and D. Fritsch, High-performance membranes from polyimides with intrinsic microporosity, Adv. Mater. 20(14) (2008) 2766–2771, https://doi.org/10.1002/adma.200702400
[57] B. Comesaña-Gándara, A. Hernández, J. G. de la Campa, J. de Abajo, A. E. Lozano, and Y. M. Lee, Thermally rearranged polybenzoxazoles and poly(benzoxazole-co-imide)s from ortho-hydroxyamine monomers for high performance gas separation membranes, J. Memb. Sci. 493 (2015) 329–339. https://doi.org/10.1016/j.memsci.2015.05.061
[58] T. V. Ngo, Microfinance Complementarity and Trade-Off between Financial Performance and Social Impact, Int. J. Econ. Financ. 7(11) (2015) 128. https://doi.org/10.5539/ijef.v7n11p128
[59] N. Sazali, W. N. Wan Salleh, A. F. Ismail, N. H. Ismail, and K. Kadirgama, A brief review on carbon selective membranes from polymer blends for gas separation performance, Rev. Chem. Eng., De Gruyter, 37(3) (2012) 339–362. https://doi.org/10.1515/revce-2018-0086
[60] K. C. Chong, S. O. Lai, H. S. Thiam, & W. J. Lau, The progress of polymeric membrane separation technique in O2/N2 separation. Key Eng. Mat., 701, (2016) 255–259, https://doi.org/10.4028/www.scientific.net/KEM.701.255
[61] K. Hunger, N. Schmeling, H. B. T. Jeazet, C. Janiak, C. Staudt, and K. Kleinermanns, Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation, Membranes 2(4) (2012) 727–763. https://doi.org/10.3390/membranes2040727
[62] Q. Xu, A. Sigen, P.McMichael, J. Creagh-Flynn, D. Zhou, X. Li.Y. Gao, X. Wang, and W. Wang, Double-Cross-Linked Hydrogel Strengthened by UV Irradiation from a Hyperbranched PEG-Based Trifunctional Polymer, ACS Macro Lett. 7(5) (2018) 509–513. https://doi.org/10.1021/acsmacrolett.8b00138
[63] A. Morelli, and M. J. Hawker, Utilizing Radio Frequency Plasma Treatment to Modify Polymersic Materials for Biomedical Applications, ACS Biomat. Sci. Eng. (2021). https://doi.org/10.1021/acsbiomaterials.0c01673
[64] Z. A. Fekete, E. Wilusz, F. E. Karasz, and C. Visy, Ion beam irradiation of conjugated polymers for preparing new membrane materials-A theoretical study, Sep. Purif. Technol. 57(3) (2007) 440–443. https://doi.org/10.1016/j.seppur.2006.04.014
[65] L. Upadhyaya, X. Qian, and S. Ranil Wickramasinghe, Chemical modification of membrane surface — overview, Current Opinion in Chem. Eng. 20 (2018) 13–18. https://doi.org/10.1016/j.coche.2018.01.002
[66] S. Dilpazir, M. Usman, S. Rasul, and S. N. Arshad, A simple UV-ozone surface treatment to enhance photocatalytic performance of TiO2 loaded polymer nanofiber membranes, RSC Adv. 6(18) (2016) 14751–14755. https://doi.org/10.1039/c5ra22903k
[67] Q. Liu et al., Effect of UV irradiation and physical aging on O 2 and N 2 transport properties of thin glassy poly(arylene ether ketone) copolymer films based on tetramethyl bisphenol A and 4,4’-difluorobenzophenone, 2019
[68] B. Comesañ A-Gá Ndara et al., Redefining the Robeson upper bounds for CO 2 / CH 4 and CO 2 /N 2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity, Energy Environ. Sci. 2 (2019) 2733. https://doi.org/10.1039/c9ee01384a
[69] M. Ulbricht, Advanced functional polymer membranes, Polymer, Elsevier BV 47 (7), (2006) 2217–2262. https://doi.org/10.1016/j.polymer.2006.01.084
[70] L. M. Robeson, Polymer Membranes, in Polymer Science: A Comprehensive Referencn 10(8) ( (2012) 325–347. https://doi.org/10.1016/B978-0-444-53349-4.00211-9
[71] C. A. Dennett Gołda, M. Brzychczy-Włoch, M. Faryna, K. Engvall, and A. Kotarba, Listening to Radiation Damage In Situ: Passive and Active Acoustic Techniques, JOM 72(1) (2020) 197–209. https://doi.org/10.1007/s11837-019-03898-7
[72] M. Gołda, M. Brzychczy-Włoch, M. Faryna, K. Engvall, and A. Kotarba, Oxygen plasma functionalization of parylene C coating for implants surface: Nanotopography and active sites for drug anchoring, Mater. Sci. Eng. C 33(7) (2013) 4221–4227. https://doi.org/10.1016/j.msec.2013.06.014
[73] M. Kahoush, N. Behary, A. Cayla, B. Mutel, J. Guan, and V. Nierstrasz, Surface modification of carbon felt by cold remote plasma for glucose oxidase 3 enzyme immobilization, App. Surf. Sci. 476 (2019) 1016-1024. https://doi.org/10.1016/j.apsusc.2019.01.155
[74] G. Nageswaran, L. Jothi, and S. Jagannathan, Plasma Assisted Polymer Modifications, Non-Thermal Plasma Technology for Polymeric Materials, Elsevier (2019) 95–127. https://doi.org/10.1016/b978-0-12-813152-7.00004-4
[75] A. P. Kharitonov, Direct fluorination of polymers-From fundamental research to industrial applications, Non-Thermal Plasma Technology for Polymeric Materials 61(2–4) (2008) 192–204. https://doi.org/10.1016/j.porgcoat.2007.09.027
[76] J. Y. Park, H. Y. Chae, J. S. Sim, J. Park, H. H. Lee, and J. P. Yoo, Controlled wavelength reduction in surface wrinkling of poly(dimethylsiloxane), Soft Matt. 6(3) (2010) 677–684. https://doi.org/10.1039/b916603c
[77] S. Zare and A. Kargari, Membrane properties in membrane distillation, Emerging Technologies for Sustainable Desalination Handbook, Elsevier (2018) 107–156. https://doi.org/10.1016/B978-0-12-815818-0.00004-7
[78] Y. M. Lee, S. Y. Ha, Y. K. Lee, D. H. Suh, and S. Y. Hong, Gas separation through conductive polymer membranes Polyaniline membranes with high oxygen selectivity, Ind. Eng. Chem. Res. 38(5) (1999) 1917–1924. https://doi.org/10.1021/ie980259e
[79] G. Illing, K. Hellgardt, M. Schonert, R. J. Wakeman, and A. Jungbauer, Towards ultrathin polyaniline films for gas separation, J. Memb. Sci. 253(1–2) (2005) 199–208. https://doi.org/10.1016/j.memsci.2004.12.031
[80] I. S. S. Han Gyu Moon, Electrical and structural analysis of conductive polyaniline/polyimide blends, J. App. Pol. Sci., Wiley Online Library, Appl. Polym. Sci. (1999) 2169–2178
[81] M. Kawakami, Y. Yamashita, M. Iwamoto, and S. Kagawa, Modification of gas permeabilities of polymer membranes by plasma coating, J. Memb. Sci. 19(3) (1984) 249–258. https://doi.org/10.1016/S0376-7388(00)80228-8
[82] N. Inagaki and J. Ohkubo, Plasma polymerization of hexafluoropropene/methane mixtures and composite membranes for gas separations, J. Memb. Sci. 27(1) (1986) 63–75. https://doi.org/10.1016/S0376-7388(00)81382-4
[83] F. Huber, J. Springer, and M. Muhler, Plasma polymer membranes from hexafluoroethane/hydrogen mixtures for separation of oxygen and nitrogen, J. App. Pol. Sci. 63(12) (1997) 1517-1526. https://doi.org/10.1002/(SICI)1097-4628(19970321)63:12%3C1517::AID-APP2%3E3.0.CO;2-R
[84] S. Kim, L. Chen, J. K. Johnson, and E. Marand, Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment, J. Memb. Sci. 294(1–2) (2007) 147–158. https://doi.org/10.1016/j.memsci.2007.02.028
[85] C. C. Hu, T. C. Liu, K. R. Lee, R. C. Ruaan, and J. Y. Lai, Zeolite-filled PMMA composite membranes: influence of coupling agent addition on gas separation properties, Desalination 193(1–3) (2006) 14–24. https://doi.org/10.1016/j.desal.2005.04.137
[86] J. T. Chen et al., Zeolite-filled porous mixed matrix membranes for air separation, Ind. Eng. Chem. Res. 53(7) (2014) 2781–2789. https://doi.org/10.1021/ie403833u
[87] D. Q. Vu, W. J. Koros, and S. J. Miller, Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results, J. Memb. Sci. 211(2) (2003) 311–334. https://doi.org/10.1016/S0376-7388(02)00429-5
[88] P. S. Goh, A. F. Ismail, S. M. Sanip, B. C. Ng, and M. Aziz, Recent advances of inorganic fillers in mixed matrix membrane for gas separation, Sep. Purif. Tech., Elsevier 81(3) (2011) 243–264. https://doi.org/10.1016/j.seppur.2011.07.042
[89] B. Zornoza, B. Seoane, J. M. Zamaro, C. Téllez, and J. Coronas, Combination of MOFs and zeolites for mixed-matrix membranes, ChemPhysChem 12 (15) (2011)
[90] M. F. A. Wahab, A. F. Ismail, and S. J. Shilton, Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers, Sep. Purif. Technol. 86 (2012) 41–48. https://doi.org/10.1016/j.seppur.2011.10.018
[91] A. Fernández-Barquín, C. Casado-Coterillo, S. Valencia, and A. Irabien, Mixed matrix membranes for O2/N2 separation: The influence of temperature, Membranes 6(2) (2016) 28. https://doi.org/10.3390/membranes6020028
[92] R. Adams, C. Carson, J. Ward, R. Tannenbaum, and W. Koros, Metal organic framework mixed matrix membranes for gas separations, Micro. Meso. Mat. 131(1–3) (2010) 13–20. https://doi.org/10.1016/j.micromeso.2009.11.035
[93] S. S. Madaeni, E. Enayati, and V. Vatanpour, Separation of nitrogen and oxygen gases by polymeric membrane embedded with magnetic nano-particle, Pol. Adv. Tech. 22(12) (2011) 2556–2563. https://doi.org/10.1002/pat.1800
[94] M. Ulbricht, Smart Polymeric Membranes with Magnetic Nanoparticles for Switchable Separation, RSC Smart Mat. 35 (2019) 297–328. https://doi.org/10.1039/9781788016377-00297
[95] O. Philippova, A. Barabanova, V. Molchanov, and A. Khokhlov, Magnetic polymer beads: Recent trends and developments in synthetic design and applications, Eur. Pol. J. 47(4) 2011 542–559. https://doi.org/10.1016/j.eurpolymj.2010.11.006
[96] X. Feng et al., Scalable fabrication of polymer membranes with vertically aligned 1 nm pores by magnetic field directed self-Assembly, ACS Nano 8(12) (2014) 11977–11986. https://doi.org/10.1021/nn505037b
[97] I. Csetneki, G. Filipcsei, and M. Zrínyi, Smart nanocomposite polymer membranes with on/off switching control, Macromolecules 39(5) (2006) 939–1942. https://doi.org/10.1021/ma052189a
[98] P. W. Majewski, M. Gopinadhan, W. S. Jang, J. L. Lutkenhaus, and C. O. Osuji, Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment, J. Am. Chem. Soc. 132(49) (2010) 17516–17522. https://doi.org/10.1021/ja107309p
[99] Y. Li, X. F. Yin, F. R. Chen, H. H. Yang, Z. X. Zhuang, and X. R. Wang, Synthesis of magnetic molecularly imprinted polymer nanowires using a nanoporous alumina template, Macromolecules 39(3) (2006) 4497–4499. https://doi.org/10.1021/ma0526185
[100] A. Rybak, G. Dudek, M. Krasowska, A. Strzelewicz, Z. J. Grzywna, and P. Sysel, Magnetic mixed matrix membranes in air separation, Chem. Pap. 68(10) (2013) 1332–1340. https://doi.org/10.2478/s11696-014-0587-x
[101] P. Bernardo and G. Clarizia, 30 years of membrane technology for gas separation, Chem. Eng. Trans. 32 (2013) 1999–2004. https://doi.org/10.3303/CET1332334
[102] S. S. Hosseini, S. Najari, P. K. Kundu, N. R. Tan, and S. M. Roodashti, Simulation and sensitivity analysis of transport in asymmetric hollow fiber membrane permeators for air separation, RSC Adv. 5 (2015) 86359–86370. https://doi.org/10.1039/c5ra13943k
[103] H. M. Ettouney, H. T. El-Dessouky, and W. Abou Waar, Separation characteristics of air by polysulfone hollow fiber membranes in series, J. Memb. Sci. 148(1) (1998) 105–117. https://doi.org/10.1016/S0376-7388(98)00144-6
[104] R. C. Ruaan, S. H. Chen, and J. Y. Lai, Oxygen/nitrogen separation by polycarbonate/Co(SalPr) complex membranes, J. Memb. Sci. 35(1) (1997) 9–18. https://doi.org/10.1016/S0376-7388(97)00129-4
[105] O. Choi, Y. Kim, J. D. Jeon, and T. H. Kim, Preparation of thin film nanocomposite hollow fiber membranes with polydopamine-encapsulated Engelhard titanosilicate-4 for gas separation applications, J. Memb. Sci. 620 (2021) 118946. https://doi.org/10.1016/j.memsci.2020.118946
[106] H. Nishide, M. Ohyanagi, O. Okada, and E. Tsuchida, Dual-Mode Transport of Molecular Oxygen in a Membrane Containing a Cobalt Porphyrin Complex as a Fixed Carrier, Macromolecules, 20(2) (1987) 417–422. https://doi.org/10.1021/ma00168a032
[107] R. Rautenbach, A. Struck, T. Melin, and M. F. M. Roks, Impact of operating pressure on the permeance of hollow fiber gas separation membranes, J. Memb. Sci. 146(2) (1998) 217–223. https://doi.org/10.1016/S03767388(98)00119-7
[108] S. Sridhar, B. Smitha, and T. M. Aminabhavi, Separation of carbon dioxide from natural gas mixtures through polymeric membranes – A review, Sep. Purif. Rev., 36(2) (2007) 113–174.https://doi.org/10.1080/15422110601165967
[109] G. Dong, H. Li, and V. Chen, Challenges and opportunities for mixed-matrix membranes for gas separation, J. Mat. Chem. A 1(15) (2013) 4610–4630. https://doi.org/10.1039/c3ta00927k
[110] T. A. Zangle, A. Mani, and J. G. Santiago, Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces, Chem. Soc. Rev. (2005). https://doi.org/ 10.1039/b902074h