Polymeric Reverse Osmosis and Forward Osmosis Membranes for Water Desalination

$30.00

Polymeric Reverse Osmosis and Forward Osmosis Membranes for Water Desalination

Wei Lun Ang, Pui Vun Chai

Polymeric reverse osmosis (RO) and forward osmosis (FO) membranes have been predominantly used in membrane applications for water desalination. The membrane science has advanced in the past decades and various efforts have been employed to improve the membrane characteristics for enhanced water flux and impurities rejection capability. In this chapter, the progress of RO and FO membranes has been discussed in three sections: synthesis methods of RO and FO membranes, modification works done on the membranes and the formulation used for the synthesis of RO and FO membranes, with particular interest given to the incorporation of nanoparticles in the synthesis of thin film composite membrane.

Keywords
Reverse Osmosis, Forward Osmosis, Desalination, Polymeric Membrane, Membrane Synthesis and Modification, Thin Film Composite Membrane

Published online , 58 pages

Citation: Wei Lun Ang, Pui Vun Chai, Polymeric Reverse Osmosis and Forward Osmosis Membranes for Water Desalination, Materials Research Foundations, Vol. 113, pp 113-170, 2021

DOI: https://doi.org/10.21741/9781644901632-5

Part of the book on Polymeric Membranes for Water Purification and Gas Separation

References
[1] H. Saleem, S.J. Zaidi, Nanoparticles in reverse osmosis membranes for desalination: A state of the art review. Desalination. 475 (2020) 114171. https://doi.org/10.1016/j.desal.2019.114171
[2] A. Ali, R.A. Tufa, F. Macedonio, E. Curcio, E. Drioli, Membrane technology in renewable-energy-driven desalination. Renew. Sustain. Energy Rev. 81 (2018) 1–21. https://doi.org/10.1016/j.rser.2017.07.047
[3] M. Qasim, M. Badrelzaman, N.N. Darwish, N.A. Darwish, N. Hilal, Reverse osmosis desalination: A state-of-the-art review. Desalination. 459 (2019) 59–104. https://doi.org/10.1016/j.desal.2019.02.008
[4] M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-water-environment nexus underpinning future desalination sustainability. Desalination. 413 (2017) 52–64. https://doi.org/10.1016/j.desal.2017.03.009
[5] M.A. Abdelkareem, M. El Haj Assad, E.T. Sayed, B. Soudan, Recent progress in the use of renewable energy sources to power water desalination plants. Desalination. 435 (2018) 97–113. https://doi.org/10.1016/j.desal.2017.11.018
[6] S.S. Shenvi, A.M. Isloor, A.F. Ismail, A review on RO membrane technology : Developments and challenges. Desalination. 368 (2015) 10–26. https://doi.org/10.1016/j.desal.2014.12.042
[7] W.L. Ang, A.W. Mohammad, D. Johnson, N. Hilal, Unlocking the application potential of forward osmosis through integrated/hybrid process. Sci. Total Environ. 706 (2020) 136047. https://doi.org/10.1016/j.scitotenv.2019.136047
[8] D.J. Johnson, W.A. Suwaileh, A.W. Mohammed, N. Hilal, Osmotic’s potential: An overview of draw solutes for forward osmosis. Desalination. 434 (2018) 100–120. https://doi.org/10.1016/j.desal.2017.09.017
[9] F. Volpin, E. Fons, L. Chekli, J.E. Kim, A. Jang, H.K. Shon, Hybrid forward osmosis-reverse osmosis for wastewater reuse and seawater desalination: Understanding the optimal feed solution to minimise fouling. Process Saf. Environ. Prot. 117 (2018) 523–532. https://doi.org/10.1016/j.psep.2018.05.006
[10] S.J. Im, S. Jeong, S. Jeong, A. Jang, Techno-economic evaluation of an element-scale forward osmosis-reverse osmosis hybrid process for seawater desalination. Desalination. 476 (2020) 114240. https://doi.org/10.1016/j.desal.2019.114240
[11] D. Li, Y. Yan, H. Wang, Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes. Prog. Polym. Sci. 61 (2016) 104–155. https://doi.org/10.1016/j.progpolymsci.2016.03.003
[12] S. Loeb, S. Sourirajan, Sea water demineralization by means of an osmotic membrane. Adv. Chem. Am. Chem. Soc. (1963) 117–132. https://doi.org/10.1021/ba-1963-0038.ch009
[13] J.S. Lee, S.A. Heo, H.J. Jo, B.R. Min, Preparation and characteristics of cross-linked cellulose acetate ultrafiltration membranes with high chemical resistance and mechanical strength. React. Funct. Polym. 99 (2016) 114–121. https://doi.org/10.1016/j.reactfunctpolym.2015.12.014
[14] J.E. Cadotte, R.J. Petersen, R.E. Larson, E.E. Erickson, Interfacially synthesized reverse osmosis membrane, 1981.
[15] C.Y. Tang, Y. Zhao, R. Wang, C. Hélix-Nielsen, A.G. Fane, Desalination by biomimetic aquaporin membranes: Review of status and prospects. Desalination. 308 (2013) 34–40. https://doi.org/10.1016/j.desal.2012.07.007
[16] A. Tiraferri, N.Y. Yip, W.A. Phillip, J.D. Schiffman, M. Elimelech, Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. J. Memb. Sci. 367 (2011) 340–352. https://doi.org/10.1016/j.memsci.2010.11.014
[17] R.C. Ong, T.S. Chung, B.J. Helmer, J.S. De Wit, Novel cellulose esters for forward osmosis membranes. Ind. Eng. Chem. Res. 51 (2012) 16135–16145. https://doi.org/10.1021/ie302654h
[18] J.R. McCutcheon, R.L. McGinnis, M. Elimelech, A novel ammonia-carbon dioxide forward (direct) osmosis desalination process. Desalination. 174 (2005) 1–11. https://doi.org/10.1016/j.desal.2004.11.002
[19] C.Y. Tang, Q. She, W.C.L. Lay, R. Wang, A.G. Fane, Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration. J. Memb. Sci. 354 (2010) 123–133. https://doi.org/10.1016/j.memsci.2010.02.059
[20] N.Y. Yip, A. Tiraferri, W.A. Phillip, J.D. Schiffman, M. Elimelech, High Performance Thin-Film Membrane. Environ. Sci. Technol. 44 (2010) 3812–3818. https://doi.org/10.1021/es1002555
[21] K.L. Hickenbottom, J. Vanneste, M. Elimelech, T.Y. Cath, Assessing the current state of commercially available membranes and spacers for energy production with pressure retarded osmosis. Desalination. 389 (2016) 108–118. https://doi.org/10.1016/j.desal.2015.09.029
[22] R. Wang, L. Shi, C.Y. Tang, S. Chou, C. Qiu, A.G. Fane, Characterization of novel forward osmosis hollow fiber membranes. J. Memb. Sci. 355 (2010) 158–167. https://doi.org/10.1016/j.memsci.2010.03.017
[23] G.R. Xu, S.H. Wang, H.L. Zhao, S.B. Wu, J.M. Xu, L. Li, X.Y. Liu, Layer-by-layer (LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes. J. Memb. Sci. 493 (2015) 428–443. https://doi.org/10.1016/j.memsci.2015.06.038
[24] W.A. Suwaileh, D.J. Johnson, S. Sarp, N. Hilal, Advances in forward osmosis membranes: Altering the sub-layer structure via recent fabrication and chemical modification approaches. Desalination. 436 (2018) 176–201. https://doi.org/10.1016/j.desal.2018.01.035
[25] R.H. Hailemariam, Y.C. Woo, M.M. Damtie, B.C. Kim, K.D. Park, J.S. Choi, Reverse osmosis membrane fabrication and modification technologies and future trends: A review. Adv. Colloid Interface Sci. 276 (2020) 102100. https://doi.org/10.1016/j.cis.2019.102100
[26] M. Asadollahi, D. Bastani, S.A. Musavi, Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: A review. Desalination. 420 (2017) 330–383. https://doi.org/10.1016/j.desal.2017.05.027
[27] A.K. Ghosh, E.M.V. Hoek, Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes. J. Memb. Sci. 336 (2009) 140–148. https://doi.org/10.1016/j.memsci.2009.03.024
[28] L. Boor Singh, V. Kochkodan, R. Hashaikeh, N. Hilal, A review on membrane fabrication : Structure , properties and performance relationship. Desalination. 326 (2013) 77–95. https://doi.org/10.1016/j.desal.2013.06.016
[29] G.R. Guillen, Y. Pan, M. Li, E.M.V. Hoek, Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review. Ind. Eng. Chem. Res. 50 (2011) 3798–3817. https://doi.org/10.1021/ie101928r
[30] K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination — Development to date and future potential. J. Memb. Sci. 370 (2011) 1–22. https://doi.org/10.1016/j.memsci.2010.12.036
[31] D.M. Wang, J.Y. Lai, Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Curr. Opin. Chem. Eng. 2 (2013) 229–237. https://doi.org/10.1016/j.coche.2013.04.003
[32] A. Sabir, M. Shafiq, A. Islam, F. Jabeen, A. Shafeeq, A. Ahmad, M.T. Zahid Butt, K.I. Jacob, T. Jamil, Conjugation of silica nanoparticles with cellulose acetate/polyethylene glycol 300 membrane for reverse osmosis using MgSO4 solution. Carbohydr. Polym. 136 (2016) 551–559. https://doi.org/10.1016/j.carbpol.2015.09.042
[33] A.M.A. Abdelsamad, A.S.G. Khalil, M. Ulbricht, Influence of controlled functionalization of mesoporous silica nanoparticles as tailored fillers for thin-film nanocomposite membranes on desalination performance. J. Memb. Sci. 563 (2018) 149–161. https://doi.org/10.1016/j.memsci.2018.05.043
[34] F.E. Ahmed, B.S. Lalia, R. Hashaikeh, A review on electrospinning for membrane fabrication: Challenges and applications. Desalination. 356 (2015) 15–30. https://doi.org/10.1016/j.desal.2014.09.033
[35] M.K. Selatile, S. Ray, Recent developments in polymeric electrospun nano fibrous membranes for seawater desalination. RSC Adv. (2018) 37915–37938. https://doi.org/10.1039/C8RA07489E
[36] S.S. Ray, S. Chen, C. Li, C. Nguyen, A comprehensive review : electrospinning technique for fabrication and surface modi fi cation. RSC Adv. 6 (2016) 85495–85514. https://doi.org/10.1039/C6RA14952A
[37] X. Wang, H. Ma, B. Chu, B.S. Hsiao, Thin- film nano fibrous composite reverse osmosis membranes for desalination. Desalination. 420 (2017) 91–98. https://doi.org/10.1016/j.desal.2017.06.029
[38] Z. Yang, Y. Zhou, Z. Feng, X. Rui, T. Zhang, Z. Zhang, A review on reverse osmosis and nanofiltration membranes for water purification. Polymers (Basel). 11 (2019) 1252. https://doi.org/10.3390/polym11081252
[39] J. Zheng, Y. Yao, M. Li, L. Wang, X. Zhang, A non-MPD-type reverse osmosis membrane with enhanced permselectivity for brackish water desalination. J. Memb. Sci. 565 (2018) 104–111. https://doi.org/10.1016/j.memsci.2018.08.015
[40] W.J. Lau, A.F. Ismail, N. Misdan, M.A. Kassim, A recent progress in thin film composite membrane: A review. Desalination. 287 (2012) 190–199. https://doi.org/10.1016/j.desal.2011.04.004
[41] J.M. Gohil, P. Ray, A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: Potential for water treatment and desalination. Sep. Purif. Technol. 181 (2017) 159–182. https://doi.org/10.1016/j.seppur.2017.03.020
[42] J.R. Kovacs, C. Liu, P.T. Hammond, Spray Layer-by-layer assembled clay composite thin films as selective layers in reverse osmosis membranes. ACS Appl. Mater. Interfaces. 7 (2015) 13375–13383. https://doi.org/10.1021/acsami.5b01879
[43] P. Taylor, F. Fadhillah, S.M.J. Zaidi, Z. Khan, M. Khaled, T. Paula, Desalination and Water Treatment Reverse osmosis desalination membrane formed from weak polyelectrolytes by spin assisted layer by layer technique by spin assisted layer by layer technique. Desalin. Water Treat. 34 (2012) 44–49. https://doi.org/10.5004/dwt.2011.2856
[44] I.L. Alsvik, M.B. Hägg, Pressure retarded osmosis and forward osmosis membranes: Materials and methods. Polymers (Basel). 5 (2013) 303–327. https://doi.org/10.3390/polym5010303
[45] C. Boo, S. Lee, M. Elimelech, Z. Meng, S. Hong, Colloidal fouling in forward osmosis: Role of reverse salt diffusion. J. Memb. Sci. 390–391 (2012) 277–284. https://doi.org/10.1016/j.memsci.2011.12.001
[46] M. Mulder, Basic Principles of Membrane Technology, 2nd ed., Kluwer Academic Publishers, The Netherlands, 1996.
[47] Y.N. Wang, K. Goh, X. Li, L. Setiawan, R. Wang, Membranes and processes for forward osmosis-based desalination: Recent advances and future prospects. Desalination. 434 (2018) 81–99. https://doi.org/10.1016/j.desal.2017.10.028
[48] X. Lu, L.H. Arias Chavez, S. Romero-Vargas Castrillón, J. Ma, M. Elimelech, Influence of active layer and support layer surface structures on organic fouling propensity of thin-film composite forward osmosis membranes. Environ. Sci. Technol. 49 (2015) 1436–1444. https://doi.org/10.1021/es5044062
[49] H.Q. Liang, W.S. Hung, H.H. Yu, C.C. Hu, K.R. Lee, J.Y. Lai, Z.K. Xu, Forward osmosis membranes with unprecedented water flux. J. Memb. Sci. 529 (2017) 47–54. https://doi.org/10.1016/j.memsci.2017.01.056
[50] X. Liu, H.Y. Ng, Fabrication of layered silica-polysulfone mixed matrix substrate membrane for enhancing performance of thin-film composite forward osmosis membrane. J. Memb. Sci. 481 (2015) 148–163. https://doi.org/10.1016/j.memsci.2015.02.012
[51] X. Liu, H.Y. Ng, Double-blade casting technique for optimizing substrate membrane in thin-film composite forward osmosis membrane fabrication. J. Memb. Sci. 469 (2014) 112–126. https://doi.org/10.1016/j.memsci.2014.06.037
[52] P. Xiao, L.D. Nghiem, Y. Yin, X.M. Li, M. Zhang, G. Chen, J. Song, T. He, A sacrificial-layer approach to fabricate polysulfone support for forward osmosis thin-film composite membranes with reduced internal concentration polarisation. J. Memb. Sci. 481 (2015) 106–114. https://doi.org/10.1016/j.memsci.2015.01.036
[53] G. Chen, R. Liu, H.K. Shon, Y. Wang, J. Song, X.M. Li, T. He, Open porous hydrophilic supported thin-film composite forward osmosis membrane via co-casting for treatment of high-salinity wastewater. Desalination. 405 (2017) 76–84. https://doi.org/10.1016/j.desal.2016.12.004
[54] S. Zhang, K.Y. Wang, T.S. Chung, H. Chen, Y.C. Jean, G. Amy, Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer. J. Memb. Sci. 360 (2010) 522–535. https://doi.org/10.1016/j.memsci.2010.05.056
[55] R.C. Ong, T.S. Chung, Fabrication and positron annihilation spectroscopy (PAS) characterization of cellulose triacetate membranes for forward osmosis. J. Memb. Sci. 394–395 (2012) 230–240. https://doi.org/10.1016/j.memsci.2011.12.046
[56] N.N. Bui, M.L. Lind, E.M.V. Hoek, J.R. McCutcheon, Electrospun nanofiber supported thin film composite membranes for engineered osmosis. J. Memb. Sci. 385–386 (2011) 10–19. https://doi.org/10.1016/j.memsci.2011.08.002
[57] M. Tian, R. Wang, K. Goh, Y. Liao, A.G. Fane, Synthesis and characterization of high-performance novel thin film nanocomposite PRO membranes with tiered nanofiber support reinforced by functionalized carbon nanotubes. J. Memb. Sci. 486 (2015) 151–160. https://doi.org/10.1016/j.memsci.2015.03.054
[58] M. Obaid, M.A. Abdelkareem, S. Kook, H.Y. Kim, N. Hilal, N. Ghaffour, I.S. Kim, Breakthroughs in the fabrication of electrospun-nanofiber-supported thin film composite/nanocomposite membranes for the forward osmosis process: A review. Crit. Rev. Environ. Sci. Technol. (2019) 1–69. https://doi.org/10.1080/10643389.2019.1672510
[59] E.L. Tian, H. Zhou, Y.W. Ren, Z. a. mirza, X.Z. Wang, S.W. Xiong, Novel design of hydrophobic/hydrophilic interpenetrating network composite nanofibers for the support layer of forward osmosis membrane. Desalination. 347 (2014) 207–214. https://doi.org/10.1016/j.desal.2014.05.043
[60] J. Wei, X. Liu, C. Qiu, R. Wang, C.Y. Tang, Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes. J. Memb. Sci. 381 (2011) 110–117. https://doi.org/10.1016/j.memsci.2011.07.034
[61] Q. Saren, C.Q. Qiu, C.Y. Tang, Synthesis and characterization of novel forward osmosis membranes based on layer-by-layer assembly. Environ. Sci. Technol. 45 (2011) 5201–5208. https://doi.org/10.1021/es200115w
[62] C. Liu, W. Fang, S. Chou, L. Shi, A.G. Fane, R. Wang, Fabrication of layer-by-layer assembled FO hollow fiber membranes and their performances using low concentration draw solutions. Desalination. 308 (2013) 147–153. https://doi.org/10.1016/j.desal.2012.07.027
[63] C. Liu, L. Shi, R. Wang, Enhanced hollow fiber membrane performance via semi-dynamic layer-by-layer polyelectrolyte inner surface deposition for nanofiltration and forward osmosis applications. React. Funct. Polym. 86 (2015) 154–160. https://doi.org/10.1016/j.reactfunctpolym.2014.07.018
[64] Y. Cui, H. Wang, H. Wang, T.S. Chung, Micro-morphology and formation of layer-by-layer membranes and their performance in osmotically driven processes. Chem. Eng. Sci. 101 (2013) 13–26. https://doi.org/10.1016/j.ces.2013.06.011
[65] S. Qi, C.Q. Qiu, Y. Zhao, C.Y. Tang, Double-skinned forward osmosis membranes based on layer-by-layer assembly-FO performance and fouling behavior. J. Memb. Sci. 405–406 (2012) 20–29. https://doi.org/10.1016/j.memsci.2012.02.032
[66] P. Pardeshi, A.A. Mungray, Synthesis, characterization and application of novel high flux FO membrane by layer-by-layer self-assembled polyelectrolyte. J. Memb. Sci. 453 (2014) 202–211. https://doi.org/10.1016/j.memsci.2013.11.001
[67] G. Xu, S. Wang, H. Zhao, S. Wu, J. Xu, L. Li, X. Liu, S. Wang, H. Zhao, S. Wu, J. Xu, L. Li, X. Liu, Layer by layer (LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes. J. Memb. Sci. 493 (2015) 428–443. https://doi.org/10.1016/j.memsci.2015.06.038
[68] T. Ishigami, K. Amano, A. Fujii, Y. Ohmukai, E. Kamio, T. Maruyama, H. Matsuyama, Fouling reduction of reverse osmosis membrane by surface modification via layer-by-layer assembly. Sep. Purif. Technol. 99 (2012) 1–7. https://doi.org/10.1016/j.seppur.2012.08.002
[69] W. Choi, J. Choi, J. Bang, J. Lee, Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications. ACS Appl. Mater. Interfaces. 5 (2013) 12510–12519. https://doi.org/10.1021/am403790s
[70] W. Ma, A. Soroush, T. Van Anh, G. Brennan, S. Rahaman, B. Asadishad, N. Tufenkji, Spray- and spin-assisted layer-by-layer assembly of copper nanoparticles on thin- film composite reverse osmosis membrane for biofouling mitigation. Water Res. 99 (2016) 188–199. https://doi.org/10.1016/j.watres.2016.04.042
[71] J. Saqib, I.H. Aljundi, Membrane fouling and modification using surface treatment and layer-by-layer assembly of polyelectrolytes : State-of-the-art review. J. Water Process Eng. 11 (2016) 68–87. https://doi.org/10.1016/j.jwpe.2016.03.009
[72] Q. Zhang, C. Zhang, J. Xu, Y. Nie, S. Li, S. Zhang, C. Peg, Effect of poly (vinyl alcohol) coating process conditions on the properties and performance of polyamide reverse osmosis membranes. Desalination. 379 (2016) 42–52. https://doi.org/10.1016/j.desal.2015.10.012
[73] S. Hafiz zahid, Z. Khan, R. Yang, K.K. Gleason, Surface modification of reverse osmosis membranes with zwitterionic coating for improved resistance to fouling. Desalination. 362 (2015) 93–103. https://doi.org/10.1016/j.desal.2015.02.009
[74] L. Ni, J. Meng, X. Li, Y. Zhang, Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement. J. Memb. Sci. 451 (2014) 205–215. https://doi.org/10.1016/j.memsci.2013.09.040
[75] S. Yu, G. Yao, B. Dong, H. Zhu, X. Peng, J. Liu, Improving fouling resistance of thin-film composite polyamide reverse osmosis membrane by coating natural hydrophilic polymer sericin. Sep. Purif. Technol. 118 (2013) 285–293. https://doi.org/10.1016/j.seppur.2013.07.018
[76] Y. Zhao, L. Dai, Q. Zhang, S. Zhou, S. Zhang, Chlorine-resistant sulfochlorinated and sulfonated polysulfone for reverse osmosis membranes by coating method. J. Colloid Interface Sci. 541 (2019) 434–443. https://doi.org/10.1016/j.jcis.2019.01.104
[77] N. Misdan, A.F. Ismail, N. Hilal, Recent advances in the development of (bio) fouling resistant thin fi lm composite membranes for desalination ☆. Desalination. 380 (2015) 105–111. https://doi.org/10.1016/j.desal.2015.06.001
[78] D. Nikolaeva, C. Langner, A. Ghanem, M. Abdel, B. Voit, J. Meier-haack, Hydrogel surface modi fi cation of reverse osmosis membranes. J. Memb. Sci. 476 (2015) 264–276. https://doi.org/10.1016/j.memsci.2014.11.051
[79] M.M. Armendáriz-ontiveros, A.G. García, S.D.L.S. Villalobos, Biofouling performance of RO membranes coated with Iron NPs on graphene oxide. Desalination. (2018) 0–1. https://doi.org/10.1016/j.desal.2018.07.005
[80] Q. Cheng, Y. Zheng, S. Yu, H. Zhu, X. Peng, Surface modi fi cation of a commercial thin- fi lm composite polyamide reverse osmosis membrane through graft polymerization of N-isopropylacrylamide followed by acrylic acid. J. Memb. Sci. 447 (2013) 236–245. https://doi.org/10.1016/j.memsci.2013.07.025
[81] M.B. El-arnaouty, A.M.A. Ghaffar, M. Eid, M.E. Aboulfotouh, N.H. Taher, E. Soliman, Nano-modification of polyamide thin film composite reverse osmosis membranes by radiation grafting. J. Radiat. Res. Appl. Sci. (2018) 1–13. https://doi.org/10.1016/j.jrras.2018.01.005
[82] X. Huang, K.L. Marsh, B.T. Mcverry, E.M. V Hoek, R.B. Kaner, Low-fouling antibacterial reverse osmosis membranes via surface grafting of graphene oxide. ACS Appl. Mater. Interfaces. 8 (2016) 14334–14338. https://doi.org/10.1021/acsami.6b05293
[83] H. Li, L. Peng, Y. Luo, P. Yu, Enhancement in membrane performances of a commercial polyamide reverse osmosis membrane via surface coating of polydopamine followed by the grafting of polyethylenimine. RSC Adv. 5 (2015) 98566–98575. https://doi.org/10.1039/C5RA20891B
[84] J. Li, L. Yin, G. Qiu, X. Li, Q. Liu, J. Xie, A photo-bactericidal thin film composite membrane for forward osmosis. J. Mater. Chem. A. 3 (2015) 6781–6786. https://doi.org/10.1039/C5TA00430F
[85] D. Li, H. Wang, Recent developments in reverse osmosis desalination membranes. J. Mater. Chem. 20 (2010) 4551–4566. https://doi.org/10.1039/b924553g
[86] A. Nguyen, S. Azari, L. Zou, Coating zwitterionic amino acid l-DOPA to increase fouling resistance of forward osmosis membrane. Desalination. 312 (2013) 82–87. https://doi.org/10.1016/j.desal.2012.11.038
[87] S. Azari, L. Zou, Using zwitterionic amino acid l-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance. J. Memb. Sci. 401–402 (2012) 68–75. https://doi.org/10.1016/j.memsci.2012.01.041
[88] P. Lu, S. Liang, T. Zhou, T. Xue, X. Mei, Q. Wang, Layered double hydroxide nanoparticle modified forward osmosis membranes via polydopamine immobilization with significantly enhanced chlorine and fouling resistance. Desalination. 421 (2017) 99–109. https://doi.org/10.1016/j.desal.2017.04.030
[89] J.T. Arena, S.S. Manickam, K.K. Reimund, B.D. Freeman, J.R. McCutcheon, Solute and water transport in forward osmosis using polydopamine modified thin film composite membranes. Desalination. 343 (2014) 8–16. https://doi.org/10.1016/j.desal.2014.01.009
[90] X. Liu, S.L. Ong, H.Y. Ng, Fabrication of mesh-embedded double-skinned substrate membrane and enhancement of its surface hydrophilicity to improve anti-fouling performance of resultant thin-film composite forward osmosis membrane. J. Memb. Sci. 511 (2016) 40–53. https://doi.org/10.1016/j.memsci.2016.03.015
[91] S. Kim, R. Roque, B. Birgisson, A. Guarin, Porosity of the dominant aggregate size range to evaluate coarse aggregate structure of asphalt mixtures. J. Mater. Civ. Eng. 21 (2009) 32–39. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:1(32)
[92] F. Peng, X. Huang, A. Jawor, E.M.V. Hoek, Transport, structural, and interfacial properties of poly(vinyl alcohol)-polysulfone composite nanofiltration membranes. J. Memb. Sci. 353 (2010) 169–176. https://doi.org/10.1016/j.memsci.2010.02.044
[93] H.R. Ahn, T.M. Tak, Y.N. Kwon, Preparation and applications of poly vinyl alcohol (PVA) modified cellulose acetate (CA) membranes for forward osmosis (FO) processes. Desalin. Water Treat. 53 (2015) 1–7. https://doi.org/10.1080/19443994.2013.834516
[94] Q. Liu, J. Li, Z. Zhou, J. Xie, J.Y. Lee, Hydrophilic mineral coating of membrane substrate for reducing internal concentration polarization (ICP) in forward Osmosis. Sci. Rep. 6 (2016) 1–10. https://doi.org/10.1038/srep19593
[95] C. Qiu, L. Setiawan, R. Wang, C.Y. Tang, A.G. Fane, High performance flat sheet forward osmosis membrane with an NF-like selective layer on a woven fabric embedded substrate. Desalination. 287 (2012) 266–270. https://doi.org/10.1016/j.desal.2011.06.047
[96] L. Setiawan, R. Wang, S. Tan, L. Shi, A.G. Fane, Fabrication of poly(amide-imide)-polyethersulfone dual layer hollow fiber membranes applied in forward osmosis by combined polyelectrolyte cross-linking and depositions. Desalination. 312 (2013) 99–106. https://doi.org/10.1016/j.desal.2012.10.032
[97] K.Y. Wang, Q. Yang, T.S. Chung, R. Rajagopalan, Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall. Chem. Eng. Sci. 64 (2009) 1577–1584. https://doi.org/10.1016/j.ces.2008.12.032
[98] L. Setiawan, L. Shi, R. Wang, Dual layer composite nanofiltration hollow fiber membranes for low-pressure water softening. Polymer (Guildf). 55 (2014) 1367–1374. https://doi.org/10.1016/j.polymer.2013.12.032
[99] L. Setiawan, R. Wang, K. Li, A.G. Fane, Fabrication of novel poly(amide-imide) forward osmosis hollow fiber membranes with a positively charged nanofiltration-like selective layer. J. Memb. Sci. 369 (2011) 196–205. https://doi.org/10.1016/j.memsci.2010.11.067
[100] L. Setiawan, R. Wang, L. Shi, K. Li, A.G. Fane, Novel dual-layer hollow fiber membranes applied for forward osmosis process. J. Memb. Sci. 421–422 (2012) 238–246. https://doi.org/10.1016/j.memsci.2012.07.020
[101] K. Goh, L. Setiawan, L. Wei, R. Si, A.G. Fane, R. Wang, Y. Chen, Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process. J. Memb. Sci. 474 (2015) 244–253. https://doi.org/10.1016/j.memsci.2014.09.057
[102] L. Setiawan, R. Wang, K. Li, A.G. Fane, Fabrication and characterization of forward osmosis hollow fiber membranes with antifouling NF-like selective layer. J. Memb. Sci. 394–395 (2012) 80–88. https://doi.org/10.1016/j.memsci.2011.12.026
[103] S. Xiong, S. Xu, A. Phommachanh, M. Yi, Y. Wang, Versatile Surface Modification of TFC Membrane by Layer-by-Layer Assembly of Phytic Acid-Metal Complexes for Comprehensively Enhanced FO Performance. Environ. Sci. Technol. 53 (2019) 3331–3341. https://doi.org/10.1021/acs.est.8b06628
[104] H. Kang, W. Wang, J. Shi, Z. Xu, H. Lv, X. Qian, L. Liu, M. Jing, F. Li, J. Niu, Interlamination restrictive effect of carbon nanotubes for graphene oxide forward osmosis membrane via layer by layer assembly. Appl. Surf. Sci. 465 (2019) 1103–1106. https://doi.org/10.1016/j.apsusc.2018.09.255
[105] H.M. Hegab, L. Zou, Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification. J. Memb. Sci. 484 (2015) 95–106. https://doi.org/10.1016/j.memsci.2015.03.011
[106] A. Tiraferri, Y. Kang, E.P. Giannelis, M. Elimelech, Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. ACS Appl. Mater. Interfaces. 4 (2012) 5044–5053. https://doi.org/10.1021/am301532g
[107] C. Xing, L. Liu, H. Tang, X. Feng, Q. Yang, S. Wang, G.C. Bazan, Design guidelines for conjugated polymers with light-activated anticancer activity. Adv. Funct. Mater. 21 (2011) 4058–4067. https://doi.org/10.1002/adfm.201100840
[108] C. Ringot, V. Sol, R. Granet, P. Krausz, Porphyrin-grafted cellulose fabric: New photobactericidal material obtained by “Click-Chemistry” reaction. Mater. Lett. 63 (2009) 1889–1891. https://doi.org/10.1016/j.matlet.2009.06.009
[109] P.K.S. Mural, S. Jain, S. Kumar, G. Madras, S. Bose, Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes. Nanoscale. 8 (2016) 8048–8057. https://doi.org/10.1039/C6NR01356B
[110] X. Zhao, R. Zhang, Y. Liu, M. He, Y. Su, C. Gao, Z. Jiang, Antifouling membrane surface construction: Chemistry plays a critical role. J. Memb. Sci. 551 (2018) 145–171. https://doi.org/10.1016/j.memsci.2018.01.039
[111] C. Wang, Q. Yan, H.B. Liu, X.H. Zhou, S.J. Xiao, Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions. Langmuir. 27 (2011) 12058–12068. https://doi.org/10.1021/la202267p
[112] S. Romero-Vargas Castrillón, X. Lu, D.L. Shaffer, M. Elimelech, Amine enrichment and poly(ethylene glycol) (PEG) surface modification of thin-film composite forward osmosis membranes for organic fouling control. J. Memb. Sci. 450 (2014) 331–339. https://doi.org/10.1016/j.memsci.2013.09.028
[113] L. Shen, X. Zhang, J. Zuo, Y. Wang, Performance enhancement of TFC FO membranes with polyethyleneimine modification and post-treatment. J. Memb. Sci. 534 (2017) 46–58. https://doi.org/10.1016/j.memsci.2017.04.008
[114] Z. Liu, X. An, C. Dong, S. Zheng, B. Mi, Y. Hu, Modification of thin film composite polyamide membranes with 3D hyperbranched polyglycerol for simultaneous improvement in their filtration performance and antifouling properties. J. Mater. Chem. A. 5 (2017) 23190–23197. https://doi.org/10.1039/C7TA07335F
[115] X. Bao, Q. Wu, W. Shi, W. Wang, Z. Zhu, Z. Zhang, R. Zhang, X. Zhang, B. Zhang, Y. Guo, F. Cui, Insights into simultaneous ammonia-selective and anti-fouling mechanism over forward osmosis membrane for resource recovery from domestic wastewater. J. Memb. Sci. 573 (2019) 135–144. https://doi.org/10.1016/j.memsci.2018.11.072
[116] A. Schulze, M. Went, A. Prager, Membrane functionalization with hyperbranched polymers. Materials (Basel). 9 (2016). https://doi.org/10.3390/ma9080706
[117] X. Bao, Q. Wu, W. Shi, W. Wang, H. Yu, Z. Zhu, X. Zhang, Z. Zhang, R. Zhang, F. Cui, Polyamidoamine dendrimer grafted forward osmosis membrane with superior ammonia selectivity and robust antifouling capacity for domestic wastewater concentration. Water Res. 153 (2019) 1–10. https://doi.org/10.1016/j.watres.2018.12.067
[118] R.R. Choudhury, J.M. Gohil, S. Mohanty, S.K. Nayak, Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes. J. Mater. Chem. A. 6 (2018) 313–333. https://doi.org/10.1039/C7TA08627J
[119] R. Zhang, Y. Liu, M. He, Y. Su, X. Zhao, M. Elimelech, Z. Jiang, Antifouling membranes for sustainable water purification: Strategies and mechanisms. Chem. Soc. Rev. 45 (2016) 5888–5924. https://doi.org/10.1039/C5CS00579E
[120] M.F. Flanagan, I.C. Escobar, Novel charged and hydrophilized polybenzimidazole (PBI) membranes for forward osmosis. J. Memb. Sci. 434 (2013) 85–92. https://doi.org/10.1016/j.memsci.2013.01.039
[121] R. Hausman, B. Digman, I.C. Escobar, M. Coleman, T.S. Chung, Functionalization of polybenzimidizole membranes to impart negative charge and hydrophilicity. J. Memb. Sci. 363 (2010) 195–203. https://doi.org/10.1016/j.memsci.2010.07.027
[122] B.S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal, A review on membrane fabrication: Structure, properties and performance relationship. Desalination. 326 (2013) 77–95. https://doi.org/10.1016/j.desal.2013.06.016
[123] J. Li, M. Wei, Y. Wang, NU SC State Key Laboratory of Materials-Oriented Chemical Engineering , Jiangsu National Synergetic. Chinese J. Chem. Eng. (2017).
[124] M. Fathizadeh, A. Aroujalian, A. Raisi, Effect of lag time in interfacial polymerization on polyamide composite membrane with different hydrophilic sub layers. Desalination. 284 (2012) 32–41. https://doi.org/10.1016/j.desal.2011.08.034
[125] J. Lee, R. Wang, T.H. Bae, High-performance reverse osmosis membranes fabricated on highly porous microstructured supports. Desalination. 436 (2018) 48–55. https://doi.org/10.1016/j.desal.2018.01.037
[126] T.H. Lee, M.Y. Lee, H.D. Lee, J.S. Roh, H.W. Kim, H.B. Park, Highly porous carbon nanotube/polysulfone nanocomposite supports for high-flux polyamide reverse osmosis membranes. J. Memb. Sci. 539 (2017) 441–450. https://doi.org/10.1016/j.memsci.2017.06.027
[127] W. Sobieski, M. Matyka, J. Gołembiewski, S. Lipiński, The Path Tracking Method as an alternative for tortuosity determination in granular beds. Granul. Matter. 20 (2018). https://doi.org/10.1007/s10035-018-0842-x
[128] A.F. Ismail, M. Padaki, N. Hilal, T. Matsuura, W.J. Lau, Thin film composite membrane-Recent development and future potential. Desalination. 356 (2015) 140–148. https://doi.org/10.1016/j.desal.2014.10.042
[129] M.T.M. Pendergast, J.M. Nygaard, A.K. Ghosh, E.M. V Hoek, Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination. 261 (2010) 255–263. https://doi.org/10.1016/j.desal.2010.06.008
[130] W. Yan, Z. Wang, J. Wu, S. Zhao, J. Wang, Enhancing the flux of brackish water TFC RO membrane by improving support surface porosity via a secondary pore-forming method. J. Memb. Sci. 498 (2015) 227–241. https://doi.org/10.1016/j.memsci.2015.10.029
[131] M. Son, H. Choi, L. Liu, E. Celik, H. Park, H. Choi, Efficacy of carbon nanotube positioning in the polyethersulfone support layer on the performance of thin-film composite membrane for desalination. Chem. Eng. J. (2014). https://doi.org/10.1016/j.cej.2014.12.108
[132] H. Chae, C. Lee, P. Park, I. Kim, J. Kim, Synergetic effect of graphene oxide nanosheets embedded in the active and support layers on the performance of thin- film composite membranes. J. Memb. Sci. 525 (2017) 99–106. https://doi.org/10.1016/j.memsci.2016.10.034
[133] H.M. Park, K.Y. Jee, Y.T. Lee, Preparation and characterization of a thin-film composite reverse osmosis membrane using a polysulfone membrane including metal-organic frameworks. J. Memb. Sci. 541 (2017) 510–518. https://doi.org/10.1016/j.memsci.2017.07.034
[134] B. Jeong, E.M. V Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A.K. Ghosh, A. Jawor, Interfacial polymerization of thin film nanocomposites : A new concept for reverse osmosis membranes. J. Memb. Sci. 294 (2007) 1–7. https://doi.org/10.1016/j.memsci.2007.02.025
[135] D.L. Zhao, S. Japip, Y. Zhang, M. Weber, C. Maletzko, T.S. Chung, Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review. Water Res. 173 (2020) 115557. https://doi.org/10.1016/j.watres.2020.115557
[136] S. Ho, S. Kwak, B. Sohn, T. Hyun, Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J. Memb. Sci. 211 (2003) 157–165. https://doi.org/10.1016/S0376-7388(02)00418-0
[137] K.A. Mahmoud, B. Mansoor, A. Mansour, M. Khraisheh, Functional graphene nanosheets : The next generation membranes for water desalination. Desalination. 365 (2014) 208–225. https://doi.org/10.1016/j.desal.2014.10.022
[138] H.M. Hegab, Y. Wimalasiri, M. Ginic-markovic, L. Zou, Improving the fouling resistance of brackish water membranes via surface modification with graphene oxide functionalized chitosan. Desalination. 365 (2015) 99–107. https://doi.org/10.1016/j.desal.2015.02.029
[139] J. Yin, G. Zhu, B. Deng, Graphene oxide (GO) enhanced polyamide (PA) thin- film nanocomposite (TFN) membrane for water purification. Desalination. 379 (2016) 93–101. https://doi.org/10.1016/j.desal.2015.11.001
[140] L. He, L.F. Dumée, C. Feng, L. Velleman, R. Reis, F. She, W. Gao, L. Kong, Promoted water transport across graphene oxide – poly (amide) thin film composite membranes and their antibacterial activity. Desalination. 365 (2015) 126–135. https://doi.org/10.1016/j.desal.2015.02.032
[141] V. Vatanpour, N. Zoqi, Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes. Appl. Surf. Sci. 396 (2016) 1478–1489. https://doi.org/10.1016/j.apsusc.2016.11.195
[142] H. Yang, J.C. Lin, C. Huang, Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Res. 43 (2009) 3777–3786. https://doi.org/10.1016/j.watres.2009.06.002
[143] M. Ben-sasson, X. Lu, E. Bar-zeev, K.R. Zodrow, S. Nejati, G. Qi, E.P. Giannelis, M. Elimelech, In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Res. 62 (2014) 260–270. https://doi.org/10.1016/j.watres.2014.05.049
[144] R. Rajakumaran, V. Boddu, M. Kumar, M.S. Shalaby, H. Abdallah, Effect of ZnO morphology on GO-ZnO modified polyamide reverse osmosis membranes for desalination. Desalination. 467 (2019) 245–256. https://doi.org/10.1016/j.desal.2019.06.018
[145] S.G. Kim, J.H. Chun, B. Chun, S.H. Kim, Preparation , characterization and performance of poly (aylene ether sulfone)/ modified silica nanocomposite reverse osmosis membrane for seawater desalination ☆. Desalination. 325 (2013) 76–83. https://doi.org/10.1016/j.desal.2013.06.017
[146] S. Qi, R. Wang, G. Krishna, M. Chaitra, J. Torres, X. Hu, A. Gordon, Aquaporin-based biomimetic reverse osmosis membranes : Stability and long term performance. J. Memb. Sci. 508 (2016) 94–103. https://doi.org/10.1016/j.memsci.2016.02.013
[147] L. Huang, J.R. McCutcheon, Impact of support layer pore size on performance of thin film composite membranes for forward osmosis, 483 (2015) 25-33. https://doi.org/10.1016/j.memsci.2015.01.025
[148] E. Fontananova, J.C. Jansen, A. Cristiano, E. Curcio, E. Drioli, Effect of additives in the casting solution on the formation of PVDF membranes. Desalination. 192 (2006) 190–197. https://doi.org/10.1016/j.desal.2005.09.021
[149] Y. Wu, H. Zhu, L. Feng, L. Zhang, Effects of polyethylene glycol on the structure and filtration performance of thin-film PA-Psf composite forward osmosis membranes. Sep. Sci. Technol. 51 (2016) 862–873. https://doi.org/10.1080/01496395.2015.1119846
[150] N.N. Bui, J.R. McCutcheon, Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis. Environ. Sci. Technol. 47 (2013) 1761–1769. https://doi.org/10.1021/es304215g
[151] B. Van der Bruggen, Chemical modification of polyethersulfone nanofiltration membranes: A review. J. Appl. Polym. Sci. 114 (2009) 630–642. https://doi.org/10.1002/app.30578
[152] N. Widjojo, T.S. Chung, M. Weber, C. Maletzko, V. Warzelhan, The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes. J. Memb. Sci. 383 (2011) 214–223. https://doi.org/10.1016/j.memsci.2011.08.041
[153] X. Zhang, J. Tian, Z. Ren, W. Shi, Z. Zhang, Y. Xu, S. Gao, F. Cui, High performance thin-film composite (TFC) forward osmosis (FO) membrane fabricated on novel hydrophilic disulfonated poly(arylene ether sulfone) multiblock copolymer/polysulfone substrate. J. Memb. Sci. 520 (2016) 529–539. https://doi.org/10.1016/j.memsci.2016.08.005
[154] D. Möckel, E. Staude, M.D. Guiver, Static protein adsorption, ultrafiltration behavior and cleanability of hydrophilized polysulfone membranes. J. Memb. Sci. 158 (1999) 63–75. https://doi.org/10.1016/S0376-7388(99)00028-9
[155] T.S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32 (2007) 483–507. https://doi.org/10.1016/j.progpolymsci.2007.01.008
[156] L.Y. Ng, A.W. Mohammad, C.P. Leo, N. Hilal, Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination. 308 (2013) 15–33. https://doi.org/10.1016/j.desal.2010.11.033
[157] W.J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J. Paul Chen, A.F. Ismail, A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches. Water Res. 80 (2015) 306–324. https://doi.org/10.1016/j.watres.2015.04.037
[158] M.J. Park, S. Phuntsho, T. He, G.M. Nisola, L.D. Tijing, X.M. Li, G. Chen, W.J. Chung, H.K. Shon, Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes. J. Memb. Sci. 493 (2015) 496–507. https://doi.org/10.1016/j.memsci.2015.06.053
[159] S. Morales-Torres, C.M.P. Esteves, J.L. Figueiredo, A.M.T. Silva, Thin-film composite forward osmosis membranes based on polysulfone supports blended with nanostructured carbon materials. J. Memb. Sci. 520 (2016) 326–336. https://doi.org/10.1016/j.memsci.2016.07.009
[160] N. Ma, J. Wei, S. Qi, Y. Zhao, Y. Gao, C.Y. Tang, Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes. J. Memb. Sci. 441 (2013) 54–62. https://doi.org/10.1016/j.memsci.2013.04.004
[161] X. Fan, Y. Liu, X. Quan, A novel reduced graphene oxide/carbon nanotube hollow fiber membrane with high forward osmosis performance. Desalination. (2019) 117–124. https://doi.org/10.1016/j.desal.2018.07.020
[162] H. gyu Choi, M. Son, H. Choi, Integrating seawater desalination and wastewater reclamation forward osmosis process using thin-film composite mixed matrix membrane with functionalized carbon nanotube blended polyethersulfone support layer. Chemosphere. 185 (2017) 1181–1188. https://doi.org/10.1016/j.chemosphere.2017.06.136
[163] M.D. Firouzjaei, S.F. Seyedpour, S.A. Aktij, M. Giagnorio, N. Bazrafshan, A. Mollahosseini, F. Samadi, S. Ahmadalipour, F.D. Firouzjaei, M.R. Esfahani, A. Tiraferri, M. Elliott, M. Sangermano, A. Abdelrasoul, J.R. McCutcheon, M. Sadrzadeh, A.R. Esfahani, A. Rahimpour, Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. J. Memb. Sci. 596 (2020). https://doi.org/10.1016/j.memsci.2019.117604
[164] D.Y. Koseoglu-Imer, B. Kose, M. Altinbas, I. Koyuncu, The production of polysulfone (PS) membrane with silver nanoparticles (AgNP): Physical properties, filtration performances, and biofouling resistances of membranes. J. Memb. Sci. 428 (2013) 620–628. https://doi.org/10.1016/j.memsci.2012.10.046
[165] K. Chamakura, R. Perez-Ballestero, Z. Luo, S. Bashir, J. Liu, Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants. Colloids Surfaces B Biointerfaces. 84 (2011) 88–96. https://doi.org/10.1016/j.colsurfb.2010.12.020
[166] Z. Liu, L. Qi, X. An, C. Liu, Y. Hu, Surface engineering of thin film composite polyamide membranes with silver nanoparticles through layer-by-layer interfacial polymerization for antibacterial properties. ACS Appl. Mater. Interfaces. 9 (2017) 40987–40997. https://doi.org/10.1021/acsami.7b12314
[167] R. Hausman, T. Gullinkala, I.C. Escobar, Development of copper-charged polypropylene feedspacers for biofouling control. J. Memb. Sci. 358 (2010) 114–121. https://doi.org/10.1016/j.memsci.2010.04.033
[168] Z. Liu, Y. Hu, C. Liu, Z. Zhou, Surface-independent one-pot chelation of copper ions onto filtration membranes to provide antibacterial properties. Chem. Commun. 52 (2016) 12245–12248. https://doi.org/10.1039/C6CC06015C
[169] A.C. Abreu, R.R. Tavares, A. Borges, F. Mergulhão, M. Simões, Current and emergent strategies for disinfection of hospital environments. J. Antimicrob. Chemother. 68 (2013) 2718–2732. https://doi.org/10.1093/jac/dkt281
[170] Z. Liu, Y. Hu, Sustainable antibiofouling properties of thin film composite forward osmosis membrane with rechargeable silver nanoparticles loading. ACS Appl. Mater. Interfaces. 8 (2016) 21666–21673. https://doi.org/10.1021/acsami.6b06727
[171] H.M. Hegab, A. ElMekawy, T.G. Barclay, A. Michelmore, L. Zou, C.P. Saint, M. Ginic-Markovic, Fine-tuning the surface of forward osmosis membranes via grafting Graphene oxide: Performance patterns and biofouling propensity. ACS Appl. Mater. Interfaces. 7 (2015) 18004–18016. https://doi.org/10.1021/acsami.5b04818
[172] M. Amini, M. Jahanshahi, A. Rahimpour, Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes. J. Memb. Sci. 435 (2013) 233–241. https://doi.org/10.1016/j.memsci.2013.01.041
[173] Q. Liu, G.R. Xu, Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes. Desalination. 394 (2016) 162–175. https://doi.org/10.1016/j.desal.2016.05.017
[174] A. Soroush, W. Ma, Y. Silvino, M.S. Rahaman, Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets. Environ. Sci. Nano. 2 (2015) 395–405. https://doi.org/10.1039/C5EN00086F
[175] A. Soroush, W. Ma, M. Cyr, M.S. Rahaman, B. Asadishad, N. Tufenkji, In situ silver decoration on graphene oxide-treated thin film composite forward osmosis membranes: Biocidal properties and regeneration potential. Environ. Sci. Technol. Lett. 3 (2016) 13–18. https://doi.org/10.1021/acs.estlett.5b00304
[176] A.F. Faria, C. Liu, M. Xie, F. Perreault, L.D. Nghiem, J. Ma, M. Elimelech, Thin-film composite forward osmosis membranes functionalized with graphene oxide–silver nanocomposites for biofouling control. J. Memb. Sci. 525 (2017) 146–156. https://doi.org/10.1016/j.memsci.2016.10.040
[177] C. Liu, A.F. Faria, J. Ma, M. Elimelech, Mitigation of biofilm development on thin-film composite membranes functionalized with zwitterionic polymers and silver nanoparticles. Environ. Sci. Technol. 51 (2017) 182–191. https://doi.org/10.1021/acs.est.6b03795
[178] S. Khoshhal, A.A. Ghoreyshi, M. Jahanshahi, M. Mohammadi, Study of the temperature and solvent content effects on the structure of Cu-BTC metal organic framework for hydrogen storage. RSC Adv. 5 (2015) 24758–24768. https://doi.org/10.1039/C5RA01890K
[179] M. Berchel, T. Le Gall, C. Denis, S. Le Hir, F. Quentel, C. Elléouet, T. Montier, J.M. Rueff, J.Y. Salaün, J.P. Haelters, G.B. Hix, P. Lehn, P.A. Jaffrès, A silver-based metal-organic framework material as a “reservoir” of bactericidal metal ions. New J. Chem. 35 (2011) 1000–1003. https://doi.org/10.1039/c1nj20202b
[180] S.F. Seyedpour, A. Rahimpour, G. Najafpour, Facile in-situ assembly of silver-based MOFs to surface functionalization of TFC membrane: A novel approach toward long-lasting biofouling mitigation. J. Memb. Sci. 573 (2019) 257–269. https://doi.org/10.1016/j.memsci.2018.12.016
[181] M. Ben-Sasson, K.R. Zodrow, Q. Genggeng, Y. Kang, E.P. Giannelis, M. Elimelech, Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ. Sci. Technol. 48 (2014) 384–393. https://doi.org/10.1021/es404232s
[182] Y. Lu, Z. He, Mitigation of salinity buildup and recovery of wasted salts in a hybrid osmotic membrane bioreactor-electrodialysis system. Environ. Sci. Technol. 49 (2015) 10529–10535. https://doi.org/10.1021/acs.est.5b01243
[183] S. Zou, E.D. Smith, S. Lin, S.M. Martin, Z. He, Mitigation of bidirectional solute flux in forward osmosis via membrane surface coating of zwitterion functionalized carbon nanotubes. Environ. Int. 131 (2019) 104970. https://doi.org/10.1016/j.envint.2019.104970
[184] X. Song, L. Wang, C.Y. Tang, Z. Wang, C. Gao, Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process. Desalination. 369 (2015) 1–9. https://doi.org/10.1016/j.desal.2015.04.020
[185] M. Yasukawa, S. Mishima, M. Shibuya, D. Saeki, T. Takahashi, T. Miyoshi, H. Matsuyama, Preparation of a forward osmosis membrane using a highly porous polyketone microfiltration membrane as a novel support. J. Memb. Sci. 487 (2015) 51–59. https://doi.org/10.1016/j.memsci.2015.03.043
[186] H.T. Madsen, N. Bajraktari, C. Hélix-Nielsen, B. Van der Bruggen, E.G. Søgaard, Use of biomimetic forward osmosis membrane for trace organics removal. J. Memb. Sci. 476 (2015) 469–474. https://doi.org/10.1016/j.memsci.2014.11.055
[187] C. Tang, Z. Wang, I. Petrinić, A.G. Fane, C. Hélix-Nielsen, Biomimetic aquaporin membranes coming of age. Desalination. 368 (2015) 89–105. https://doi.org/10.1016/j.desal.2015.04.026