Hexagonal Ferrites, Synthesis, Properties and Their Applications

$30.00

Hexagonal Ferrites, Synthesis, Properties and Their Applications

Pooja Dhiman, Rohit Jasrotia, Dipanshi Goyal, Genene Tessema Mola

We intend to report on possible fabrication routes for all types of hexagonal ferrites which are known for their wide area of use and applications. Hexagonal ferrites have now become an intense topic of research as they are the part of most of magnetic recording and data storage applications globally. Hexagonal or popularly known as ‘Heaxa-ferrites’ are known for their utilization in permanent magnets and their utilization in electrical devices being operated at high frequencies especially at GHz frequencies. We have presented in this chapter all main six types of hexagonal ferrites i.e. M Type, Z-Type, Y-type, W-type, X-Type and U-type hexa-ferrites. Hexaferrites belong to ferromagnetic class of magnetic materials and their properties are purely dependent on intrinsic structure of ferrites. In this chapter, we aim to discuss more on M-type of hexa-ferrites, their properties and their applications. Also, recent advances on M-type ferrites are also a part of this chapter.

Keywords
Hexaferrites, M-Type, Anisotropy, High Frequency Applications

Published online , 35 pages

Citation: Pooja Dhiman, Rohit Jasrotia, Dipanshi Goyal, Genene Tessema Mola, Hexagonal Ferrites, Synthesis, Properties and Their Applications, Materials Research Foundations, Vol. 112, pp 336-370, 2021

DOI: https://doi.org/10.21741/9781644901595-10

Part of the book on Ferrite

References
[1] P. Dhiman, T. Mehta, A. Kumar, G. Sharma, M. Naushad, T. Ahamad, G.T. Mola, Mg0. 5NixZn0. 5-xFe2O4 spinel as a sustainable magnetic nano-photocatalyst with dopant driven band shifting and reduced recombination for visible and solar degradation of Reactive Blue-19, Advanced Powder Technology, (2020). https://doi.org/10.1016/j.apt.2020.10.010
[2] S. Kour, R. Jasrotia, P. Puri, A. Verma, B. Sharma, V.P. Singh, R. Kumar, S. Kalia, Improving photocatalytic efficiency of MnFe2O4 ferrites via doping with Zn2+/La3+ ions: photocatalytic dye degradation for water remediation, Environmental Science and Pollution Research, (2021). https://doi.org/10.1007/s11356-021-13147-7
[3] T. Kikuchi, T. Nakamura, T. Yamasaki, M. Nakanishi, T. Fujii, J. Takada, Y. Ikeda, Magnetic properties of La–Co substituted M-type strontium hexaferrites prepared by polymerizable complex method, Journal of Magnetism and Magnetic Materials, 322 (2010) 2381-2385. https://doi.org/10.1016/j.jmmm.2010.02.041
[4] J. Kasahara, T. Katayama, S. Mo, A. Chikamatsu, Y. Hamasaki, S. Yasui, M. Itoh, T. Hasegawa, Room-Temperature Antiferroelectricity in Multiferroic Hexagonal Rare-Earth Ferrites, ACS Applied Materials & Interfaces, 13 (2021) 4230-4235. https://doi.org/10.1021/acsami.0c20924
[5] R. Tang, H. Zhou, W. You, H. Yang, Room-temperature multiferroic and magnetocapacitance effects in M-type hexaferrite BaFe10.2Sc1.8O19, Applied Physics Letters, 109 (2016) 082903. https://doi.org/10.1063/1.4961615
[6] R.C. Pullar, Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science, 57 (2012) 1191-1334. https://doi.org/10.1016/j.pmatsci.2012.04.001
[7] H. Bayrakdar, Fabrication, magnetic and microwave absorbing properties of Ba2Co2Cr2Fe12O22 hexagonal ferrites, Journal of Alloys and Compounds, 674 (2016) 185-188. https://doi.org/10.1016/j.jallcom.2016.03.055
[8] C.A. Stergiou, G. Litsardakis, Y-type hexagonal ferrites for microwave absorber and antenna applications, Journal of Magnetism and Magnetic Materials, 405 (2016) 54-61. https://doi.org/10.1016/j.jmmm.2015.12.027
[9] A. Geiler, A. Daigle, J. Wang, Y. Chen, C. Vittoria, V. Harris, Consequences of magnetic anisotropy in realizing practical microwave hexaferrite devices, Journal of magnetism and magnetic materials, 324 (2012) 3393-3397. https://doi.org/10.1016/j.jmmm.2012.02.050
[10] J. Smit, H. Wijn, Ferrites, Eindhoven, the Netherlands: Philips Tech, in, Library, 1959.
[11] M. Sugimoto, The past, present, and future of ferrites, Journal of the American Ceramic Society, 82 (1999) 269-280. https://doi.org/10.1111/j.1551-2916.1999.tb20058.x
[12] R. Jotania, Crystal structure, magnetic properties and advances in hexaferrites: A brief review, in: AIP Conference Proceedings, American Institute of Physics, 2014, pp. 596-599. https://doi.org/10.1063/1.4898528
[13] M. Chandel, V.P. Singh, R. Jasrotia, K. Singha, M. Singh, P. Thakur, S. Kalia, Fabrication of Ni2+ and Dy3+ substituted Y-Type nanohexaferrites: A study of structural and magnetic properties, Physica B: Condensed Matter, 595 (2020) 412378. https://doi.org/10.1016/j.physb.2020.412378
[14] O. Aleshko-Ozhevskiǐ, R. Sizov, I. Yamzin, V. Lubimtsev, Helicoidal antiphase spin ordering in hexagonal ferrites of the BaSc x Fe 12-x O 19 (M) system, Soviet Journal of Experimental and Theoretical Physics, 28 (1969) 425.
[15] R. Sizov, K. Zaitsev, Noncollinear spin ordering in a hexagonal ferrite of type W, Zh. Eksp. Teor. Fiz, 66 (1974) 368-373.
[16] U. Enz, Magnetization process of a helical spin configuration, Journal of Applied Physics, 32 (1961) S22-S26. https://doi.org/10.1063/1.2000413
[17] N. Momozawa, Y. Yamaguchi, Field-Induced Commensurate Intermediate Phases in Helimagnet (Ba 1-x Sr x) 2 Zn 2 Fe 12 O 22 (x= 0.748), Journal of the Physical Society of Japan, 62 (1993) 1292-1304. https://doi.org/10.1143/JPSJ.62.1292
[18] C. Fang, F. Kools, R. Metselaar, R. De Groot, Magnetic and electronic properties of strontium hexaferrite SrFe12O19 from first-principles calculations, Journal of Physics: Condensed Matter, 15 (2003) 6229. https://doi.org/10.1088/0953-8984/15/36/311
[19] V. Adelskold, Arkiv Kemi Miner, in, Geol, 1938.
[20] Z. Haijun, Y. Xi, Z. Liangying, The preparation and microwave properties of Ba2ZnxCo2− xFe28O46 hexaferrites, Journal of magnetism and magnetic materials, 241 (2002) 441-446. https://doi.org/10.1016/S0304-8853(01)00447-4
[21] F. Leccabue, R. Panizzieri, G. Bocelli, G. Calestani, C. Rizzoli, N.S. Almodovar, Crystal structure and magnetic characterization of Sr2Zn2Fe28O46 (SrZn− X) hexaferrite single crystal, Journal of magnetism and magnetic materials, 68 (1987) 365-373. https://doi.org/10.1016/0304-8853(87)90015-1
[22] H. Elkady, M. Abou‐Sekkina, K. Nagorny, New information on Mössbauer and phase transition properties of Z‐type hexaferrites, Hyperfine Interactions, 128 (2000) 423-432. https://doi.org/10.1023/A:1012612405813
[23] D. Lisjak, D. Makovec, M. Drofenik, Formation of U-type hexaferrites, Journal of materials research, 19 (2004) 2462-2470. https://doi.org/10.1557/JMR.2004.0317
[24] T. Kimura, Magnetoelectric hexaferrites, Annu. Rev. Condens. Matter Phys., 3 (2012) 93-110. https://doi.org/10.1146/annurev-conmatphys-020911-125101
[25] S. Munir, I. Ahmad, A. Laref, H.M.T. Farid, Synthesis, structural, dielectric and magnetic properties of hexagonal ferrites, Applied Physics A, 126 (2020) 722. https://doi.org/10.1007/s00339-020-03809-7
[26] R. Sagayaraj, T. Dhineshkumar, A. Prakash, S. Aravazhi, G. Chandrasekaran, D. Jayarajan, S. Sebastian, Fabrication, microstructure, morphological and magnetic properties of W-type ferrite by co-precipitation method: Antibacterial activity, Chemical Physics Letters, 759 (2020) 137944. https://doi.org/10.1016/j.cplett.2020.137944
[27] J. Mahapatro, S. Agrawal, Effect of Eu3+ ions on electrical and dielectric properties of barium hexaferrites prepared by solution combustion method, Ceramics International, (2021). https://doi.org/10.1016/j.ceramint.2021.04.062
[28] L. Wang, L. He, J. Li, Y. Yu, H. Li, Effects of Al and Ca ions co-doping on magnetic properties of M-type strontium ferrites, Journal of Materials Science: Materials in Electronics, 31 (2020) 22375-22384. https://doi.org/10.1007/s10854-020-04739-z
[29] Y. Yang, J. Shao, F. Wang, X. Liu, D. Huang, Impacts of MnZn doping on the structural and magnetic properties of M-type SrCaLa hexaferrites, Applied Physics A, 123 (2017) 309. https://doi.org/10.1007/s00339-017-0950-1
[30] Y. Yang, F. Wang, J. Shao, D. Huang, H. He, A. Trukhanov, S. Trukhanov, Influence of Nd-NbZn co-substitution on structural, spectral and magnetic properties of M-type calcium-strontium hexaferrites Ca0.4Sr0.6-xNdxFe12.0-x (Nb0. 5Zn0. 5) xO19, Journal of Alloys and Compounds, 765 (2018) 616-623. https://doi.org/10.1016/j.jallcom.2018.06.255
[31] S. Dı́az-Castañón, J. Faloh-Gandarilla, F. Leccabue, G. Albanese, The optimum synthesis of high coercivity Pb–M hexaferrite powders using modifications to the traditional ceramic route, Journal of magnetism and magnetic materials, 272 (2004) 2221-2223. https://doi.org/10.1016/j.jmmm.2003.12.923
[32] K. Haneda, C. Miyakawa, H. Kojima, Preparation of High‐Coercivity BaFe12O19, Journal of the American Ceramic Society, 57 (1974) 354-357. https://doi.org/10.1111/j.1151-2916.1974.tb10921.x
[33] M.M. Barakat, D.E.-S. Bakeer, A.-H. Sakr, Structural, Magnetic Properties and Electron Paramagnetic Resonance for BaFe12-xHgxO19 Hexaferrite Nanoparticles Prepared by Co-Precipitation Method, Journal of Taibah University for Science, 14 (2020) 640-652. https://doi.org/10.1080/16583655.2020.1761676
[34] P. Dhiman, S. Sharma, A. Kumar, M. Shekh, G. Sharma, M. Naushad, Rapid visible and solar photocatalytic Cr(VI) reduction and electrochemical sensing of dopamine using solution combustion synthesized ZnO–Fe2O3 nano heterojunctions: Mechanism Elucidation, Ceramics International, 46 (2020) 12255-12268. https://doi.org/10.1016/j.ceramint.2020.01.275
[35] P. Dhiman, J. Chand, A. Kumar, R.K. Kotnala, K.M. Batoo, M. Singh, Synthesis and characterization of novel Fe@ZnO nanosystem, Journal of Alloys and Compounds, 578 (2013) 235-241. https://doi.org/10.1016/j.jallcom.2013.05.015
[36] R. Pullar, M. D TAYLOR, A. Bhattacharya, Novel aqueous sol–gel preparation and characterization of barium M ferrite, BaFe12O19 fibres, Journal of materials science, 32 (1997) 349-352. https://doi.org/10.1023/A:1018593014378
[37] R.C. Pullar, Combinatorial bulk ceramic magnetoelectric composite libraries of strontium hexaferrite and barium titanate, ACS combinatorial science, 14 (2012) 425-433. https://doi.org/10.1021/co300036m
[38] R. Pullar, M. D TAYLOR, A. Bhattacharya, Magnetic Co2Y ferrite, Ba2Co2Fe12O22 fibres produced by a blow spun process, Journal of materials science, 32 (1997) 365-368. https://doi.org/10.1023/A:1018549232125
[39] R. Pullar, M. D TAYLOR, A. Bhattacharya, Aligned hexagonal ferrite fibres of Co2W, BaCo2Fe16O27 produced from an aqueous sol–gel process, Journal of materials science, 32 (1997) 873-877. https://doi.org/10.1023/A:1018541314320
[40] R. Pullar, S. Appleton, M. Stacey, M. Taylor, A. Bhattacharya, The manufacture and characterisation of aligned fibres of the ferroxplana ferrites Co2Z, 0.67% CaO-doped Co2Z, Co2Y and Co2W, Journal of Magnetism and Magnetic materials, 186 (1998) 313-325. https://doi.org/10.1016/S0304-8853(98)00098-5
[41] I. Ali, M. Islam, M. Awan, M. Ahmad, M.N. Ashiq, S. Naseem, Effect of Tb3+ substitution on the structural and magnetic properties of M-type hexaferrites synthesized by sol–gel auto-combustion technique, Journal of Alloys and Compounds, 550 (2013) 564-572. https://doi.org/10.1016/j.jallcom.2012.10.121
[42] S. Chawla, R. Mudsainiyan, S. Meena, S. Yusuf, Sol–gel synthesis, structural and magnetic properties of nanoscale M-type barium hexaferrites BaCoxZrxFe (12− 2x) O19, Journal of Magnetism and Magnetic Materials, 350 (2014) 23-29. https://doi.org/10.1016/j.jmmm.2013.09.007
[43] A.V. Trukhanov, K.A. Darwish, M.M. Salem, O.M. Hemeda, M.I. Abdel Ati, M.A. Darwish, E.Y. Kaniukov, S.V. Podgornaya, V.A. Turchenko, D.I. Tishkevich, T.I. Zubar, K.A. Astapovich, V.G. Kostishyn, S.V. Trukhanov, Impact of the heat treatment conditions on crystal structure, morphology and magnetic properties evolution in BaM nanohexaferrites, Journal of Alloys and Compounds, 866 (2021) 158961. https://doi.org/10.1016/j.jallcom.2021.158961
[44] P. Dhiman, K.M. Batoo, R.K. Kotnala, J. Chand, M. Singh, Room temperature ferromagnetism and structural characterization of Fe,Ni co-doped ZnO nanocrystals, Applied Surface Science, 287 (2013) 287-292. https://doi.org/10.1016/j.apsusc.2013.09.144
[45] P. Dhiman, G. Kumar, K. Batoo, A. Kumar, G. Sharma, M. Singh, Effective Degradation of Methylene Blue using ZnO: Fe: Ni Nanocomposites, Materials Research Foundations, 29.
[46] P. Dhiman, M. Naushad, K.M. Batoo, A. Kumar, G. Sharma, A.A. Ghfar, G. Kumar, M. Singh, Nano FexZn1−xO as a tuneable and efficient photocatalyst for solar powered degradation of bisphenol A from aqueous environment, Journal of Cleaner Production, 165 (2017) 1542-1556. https://doi.org/10.1016/j.jclepro.2017.07.245
[47] V.N. Dhage, M. Mane, A. Keche, C. Birajdar, K. Jadhav, Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique, Physica B: Condensed Matter, 406 (2011) 789-793. https://doi.org/10.1016/j.physb.2010.11.094
[48] S.S. Afshar, M. Hasheminiasari, S. Masoudpanah, Structural, magnetic and microwave absorption properties of SrFe12O19/Ni0. 6Zn0. 4Fe2O4 composites prepared by one-pot solution combustion method, Journal of Magnetism and Magnetic Materials, 466 (2018) 1-6. https://doi.org/10.1016/j.jmmm.2018.06.061
[49] B. Abasht, S.M. Mirkazemi, A. Beitollahi, Solution combustion synthesis of Ca hexaferrite using glycine fuel, Journal of Alloys and Compounds, 708 (2017) 337-343. https://doi.org/10.1016/j.jallcom.2017.03.036
[50] K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology, William Andrew, 2012. https://doi.org/10.1016/B978-0-12-375090-7.00002-5
[51] A. Kumar, G. Sharma, A. Kumari, C. Guo, M. Naushad, D.-V.N. Vo, J. Iqbal, F.J. Stadler, Construction of dual Z-scheme g-C3N4/Bi4Ti3O12/Bi4O5I2 heterojunction for visible and solar powered coupled photocatalytic antibiotic degradation and hydrogen production: Boosting via I−/I3− and Bi3+/Bi5+ redox mediators, Applied Catalysis B: Environmental, 284 (2021) 119808. https://doi.org/10.1016/j.apcatb.2020.119808
[52] A. Kumar, S.K. Sharma, G. Sharma, M. Naushad, F.J. Stadler, CeO2/g-C3N4/V2O5 ternary nano hetero-structures decorated with CQDs for enhanced photo-reduction capabilities under different light sources: Dual Z-scheme mechanism, Journal of Alloys and Compounds, 838 (2020) 155692. https://doi.org/10.1016/j.jallcom.2020.155692
[53] M. Shandilya, R. Rai, J. Singh, hydrothermal technology for smart materials, Advances in Applied Ceramics, 115 (2016) 354-376. https://doi.org/10.1080/17436753.2016.1157131
[54] T.B. Ghzaiel, W. Dhaoui, A. Pasko, F. Mazaleyrat, Effect of non-magnetic and magnetic trivalent ion substitutions on BaM-ferrite properties synthesized by hydrothermal method, Journal of Alloys and Compounds, 671 (2016) 245-253. https://doi.org/10.1016/j.jallcom.2016.02.071
[55] A. Xia, C. Zuo, L. Chen, C. Jin, Y. Lv, Hexagonal SrFe12O19 ferrites: Hydrothermal synthesis and their sintering properties, Journal of magnetism and magnetic materials, 332 (2013) 186-191. https://doi.org/10.1016/j.jmmm.2012.12.035
[56] V. Banihashemi, M. Ghazi, M. Izadifard, Structural, optical, dielectric and magnetic properties of Ce-doped strontium hexaferrite synthesized by a hydrothermal process, Journal of Materials Science: Materials in Electronics, 30 (2019) 17374-17381. https://doi.org/10.1007/s10854-019-02086-2
[57] T.-S. Chin, S. Hsu, M. Deng, Barium ferrite particulates prepared by a salt-melt method, Journal of magnetism and magnetic materials, 120 (1993) 64-68. https://doi.org/10.1016/0304-8853(93)91288-I
[58] S. Dursun, R. Topkaya, N. Akdoğan, S. Alkoy, Comparison of the structural and magnetic properties of submicron barium hexaferrite powders prepared by molten salt and solid state calcination routes, Ceramics International, 38 (2012) 3801-3806. https://doi.org/10.1016/j.ceramint.2012.01.028
[59] H. Li, X. Yi, Y. Wu, X. Wei, D. Deng, L. Zheng, W. Luo, X. Luo, R. Gong, M. Zhang, Molten salt synthesis, formation mechanism and greatly enhanced magnetic properties of randomly oriented BaM ferrite, Journal of Alloys and Compounds, 827 (2020) 154083. https://doi.org/10.1016/j.jallcom.2020.154083
[60] N. Borisova, Z. Golubenko, T. Kuz’micheva, L. Ol’khovik, V. Shabatin, Optimization principles for preparation methods and properties of fine ferrite materials, Journal of magnetism and magnetic materials, 114 (1992) 317-328. https://doi.org/10.1016/0304-8853(92)90274-R
[61] L. Ol’Khovik, N. Borisova, A. Kamzin, O. Fisenko, Radiothermal synthesis of fine barium ferrite powders and their properties, Journal of magnetism and magnetic materials, 154 (1996) 365-368. https://doi.org/10.1016/0304-8853(95)00593-5
[62] J. Dufour, L. Lopez, A. Formoso, C. Negro, R. Latorre, F. Lopez-Mateos, Mathematical model of goethite synthesis by oxyprecipitation of steel pickling liquors, The Chemical Engineering Journal and The Biochemical Engineering Journal, 59 (1995) 287-291. https://doi.org/10.1016/0923-0467(94)02950-4
[63] J. Dufour, R. Latorre, C. Negro, E. Alcalá, A. Formoso, F. López-Mateos, Protocol for the synthesis of Ba-hexaferrites with prefixed coercivities, Journal of magnetism and magnetic materials, 172 (1997) 308-316. https://doi.org/10.1016/S0304-8853(97)00145-5
[64] S. Han, Part~ I. The synthesis and thermal rearrangements of 7, 7-dihalo-trans-bicyclo (4.1. 0) hept-3-enes. Part~ II. Synthesis of electron deficient cyclopropene derivatives and investigation of cyclopropenyl anions, University of Minnesota, 1997.
[65] J. Ding, T. Tsuzuki, P. McCormick, Ultrafine BaFe12O19 powder synthesised by mechanochemical processing, Journal of magnetism and magnetic materials, 177 (1998) 931-932. https://doi.org/10.1016/S0304-8853(97)00858-5
[66] W. Kaczmarek, B. Ninham, Application of mechanochemistry in ferrite materials technology, Le Journal de Physique IV, 7 (1997) C1-47-C41-48. https://doi.org/10.1051/jp4:1997106
[67] G. Han, R. Sui, Y. Yu, L. Wang, M. Li, J. Li, H. Liu, W. Yang, Structure and magnetic properties of the porous Al-substituted barium hexaferrites, Journal of Magnetism and Magnetic Materials, 528 (2021) 167824. https://doi.org/10.1016/j.jmmm.2021.167824
[68] D. Chen, Y. Liu, Y. Li, K. Yang, H. Zhang, Microstructure and magnetic properties of Al-doped barium ferrite with sodium citrate as chelate agent, Journal of Magnetism and Magnetic Materials, 337-338 (2013) 65-69. https://doi.org/10.1016/j.jmmm.2013.02.036
[69] R.E. El Shater, E.H. El-Ghazzawy, M.K. El-Nimr, Study of the sintering temperature and the sintering time period effects on the structural and magnetic properties of M-type hexaferrite BaFe12O19, Journal of Alloys and Compounds, 739 (2018) 327-334. https://doi.org/10.1016/j.jallcom.2017.12.228
[70] Z.K. Heiba, A.M. Wahba, M.B. Mohamed, Phase analysis and cation distribution correlated with magnetic properties of spinel Ba1−xSrxFe2O4 ferrites prepared at different annealing temperatures, Journal of Materials Science: Materials in Electronics, 31 (2020) 12482-12492. https://doi.org/10.1007/s10854-020-03795-9
[71] M. Ginting, P. Sebayang, M. Rianna, M. Situmorang, H. Fujiati, A.P. Tetuko, E.A. Setiadi, C. Kurniawan, A.M.S. Sebayang, Effect of Co and Ni additions as doping materials on the micro-structures and the magnetic properties of barium hexa-ferrites, Case Studies in Thermal Engineering, 18 (2020) 100589. https://doi.org/10.1016/j.csite.2020.100589
[72] V.N. Dhage, M.L. Mane, A.P. Keche, C.T. Birajdar, K.M. Jadhav, Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique, Physica B: Condensed Matter, 406 (2011) 789-793. https://doi.org/10.1016/j.physb.2010.11.094
[73] H. Kaur, A. Marwaha, C. Singh, S.B. Narang, R. Jotania, S. Jacobo, A.S.B. Sombra, S.V. Trukhanov, A.V. Trukhanov, P. Dhruv, Investigation of structural, hysteresis and electromagnetic parameters for microwave absorption application in doped Ba–Sr hexagonal ferrites at X-band, Journal of Alloys and Compounds, 806 (2019) 1220-1229. https://doi.org/10.1016/j.jallcom.2019.07.032
[74] R. Joshi, C. Singh, D. Kaur, H. Zaki, S. Bindra Narang, R. Jotania, S.R. Mishra, J. Singh, P. Dhruv, M. Ghimire, Structural and magnetic properties of Co2+-W4+ ions doped M-type Ba-Sr hexaferrites synthesized by a ceramic method, Journal of Alloys and Compounds, 695 (2017) 909-914. https://doi.org/10.1016/j.jallcom.2016.10.192
[75] J. Singh, C. Singh, D. Kaur, H. Zaki, I.A. Abdel-Latif, S.B. Narang, R. Jotania, S.R. Mishra, R. Joshi, P. Dhruv, M. Ghimire, S.E. Shirsath, S.S. Meena, Elucidation of phase evolution, microstructural, Mössbauer and magnetic properties of Co2+Al3+ doped M-type BaSr hexaferrites synthesized by a ceramic method, Journal of Alloys and Compounds, 695 (2017) 1112-1121. https://doi.org/10.1016/j.jallcom.2016.10.237
[76] S. Vadivelan, N. Victor Jaya, Investigation of magnetic and structural properties of copper substituted barium ferrite powder particles via co-precipitation method, Results in Physics, 6 (2016) 843-850. https://doi.org/10.1016/j.rinp.2016.07.013
[77] Q. Mohsen, Factors affecting the synthesis and formation of single-phase barium hexaferrite by a technique of oxalate precursor, American Journal of applied sciences, 7 (2010) 914. https://doi.org/10.3844/ajassp.2010.914.921
[78] G.F. Dionne, D.E. Oates, D.H. Temme, J.A. Weiss, Ferrite-superconductor devices for advanced microwave applications, IEEE Transactions on Microwave theory and Techniques, 44 (1996) 1361-1368. https://doi.org/10.1109/22.508241
[79] R. Gerber, R. Atkinson, Z. Šimša, Magnetism and magneto-optics of hexaferrite layers, Journal of magnetism and magnetic materials, 175 (1997) 79-89. https://doi.org/10.1016/S0304-8853(97)00151-0
[80] O. Kubo, T. Ido, H. Yokoyama, Properties of Ba ferrite particles for perpendicular magnetic recording media, IEEE transactions on magnetics, 18 (1982) 1122-1124. https://doi.org/10.1109/TMAG.1982.1062007
[81] R. Jasrotia, V.P. Singh, B. Sharma, A. Verma, P. Puri, R. Sharma, M. Singh, Sol-gel synthesized Ba-Nd-Cd-In nanohexaferrites for high frequency and microwave devices applications, Journal of Alloys and Compounds, 830 (2020) 154687. https://doi.org/10.1016/j.jallcom.2020.154687
[82] R. Meena, S. Bhattachrya, R. Chatterjee, Complex permittivity, permeability and microwave absorbing studies of (Co2− xMnx) U-type hexaferrite for X-band (8.2–12.4 GHz) frequencies, Materials Science and Engineering: B, 171 (2010) 133-138. https://doi.org/10.1016/j.mseb.2010.03.086
[83] C.-W. Nan, M. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, Journal of applied physics, 103 (2008) 1. https://doi.org/10.1063/1.2836410
[84] G. Srinivasan, Magnetoelectric composites, Annual Review of Materials Research, 40 (2010) 153-178. https://doi.org/10.1146/annurev-matsci-070909-104459
[85] P. Muth, E. P. Wohlfarth (ed.). Ferromagnetic Materials, vol. 2. North-Holland Publ. Co. Amsterdam 1980 592 Seiten. Preis US £ 102,50, Dfl. 210,00, Kristall und Technik, 16 (1981) 127-127. https://doi.org/10.1002/crat.19810160127
[86] A. Vaingankar, S. Kulkarni, M. Sagare, Humidity sensing using soft ferrites, Le Journal de Physique IV, 7 (1997) C1-155-C151-156. https://doi.org/10.1051/jp4:1997155
[87] S. Kong, P. Zhang, X. Wen, P. Pi, J. Cheng, Z. Yang, J. Hai, Influence of surface modification of SrFe12O19 particles with oleic acid on magnetic microsphere preparation, Particuology, 6 (2008) 185-190. https://doi.org/10.1016/j.partic.2008.03.004
[88] M. Koblischka, M. Kirsch, J. Wei, T. Sulzbach, U. Hartmann, Preparation of ferrite-coated MFM cantilevers, Journal of Magnetism and Magnetic Materials, 316 (2007) e666-e669. https://doi.org/10.1016/j.jmmm.2007.03.075