“Ferrites”: Synthesis, Structure, Properties and Applications
Shanta Mullick, Garima Rana, Amit Kumar, Gaurav Sharma, Mu. Naushad
Ferrites synthesis method and characterization techniques are attracting huge attentions of researchers because of their wide scope of uses in numerous areas. The ferrites include high resistivity, saturation magnetization, permeability, coercivity and low power losses. The above-mentioned useful ferrites characteristics make them appropriate for use in different applications. These ferrites are used in biomedical field for cancer cure and MRI. Electronic applications are transformers, transducers, and inductors which are also made using ferrites and also used in making magnetic fluids, sensors, and biosensors. Ferrite is a profoundly helpful material for many electrical and electronic applications. It has applications in pretty much every domestic device like LED bulb, mobile charger, TV, microwave, fridge, PC, printer, etc. This review mainly focus on the synthesis method, characterization techniques, and implementation of FNPs. This Chapter presents various methods used for ferrites preparation with distinctive examples, their advantages as well as limitations in detail. Ferrites properties like structural, optical, electrical and magnetic with their characterization techniques and various applications in the areas of biomedical, electronics, and environment are also discussed.
Keywords
Ferrites, Magnetic-Nanoparticles, Synthesis, Characterization, Biomedical Applications
Published online , 61 pages
Citation: Shanta Mullick, Garima Rana, Amit Kumar, Gaurav Sharma, Mu. Naushad, “Ferrites”: Synthesis, Structure, Properties and Applications, Materials Research Foundations, Vol. 112, pp 1-61, 2021
DOI: https://doi.org/10.21741/9781644901595-1
Part of the book on Ferrite
References
[1] J. Silver, Chemistry of iron, Springer, 1993. https://doi.org/10.1007/978-94-011-2140-8
[2] M. Sugimoto, The past, present, and future of ferrites, Journal of the American Ceramic Society, 82 (1999) 269-280. https://doi.org/10.1111/j.1551-2916.1999.tb20058.x
[3] S.H.a.N.N. Ghosh, Preparation of nanoferrites and their applications, Journal of Nanoscience and Nanotechnology, 14 (2014) 1983-2000. https://doi.org/10.1166/jnn.2014.8745
[4] D.S. Mathew, R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, Chemical engineering journal, 129 (2007) 51-65. https://doi.org/10.1016/j.cej.2006.11.001
[5] S.B. Narang, K. Pubby, Nickel Spinel Ferrites: A Review, Journal of Magnetism and Magnetic Materials, (2020) 167163. https://doi.org/10.1016/j.jmmm.2020.167163
[6] K.K. Kefeni, T.A. Msagati, B.B. Mamba, Ferrite nanoparticles: synthesis, characterisation and applications in electronic device, Materials Science and Engineering B, 215 (2017) 37-55. https://doi.org/10.1016/j.mseb.2016.11.002
[7] R. Srivastava, B. Yadav, Ferrite materials: introduction, synthesis techniques, and applications as sensors, International Journal of Green Nanotechnology, 4 (2012) 141-154. https://doi.org/10.1080/19430892.2012.676918
[8] S.P. John, J.J.J.o.M. Mathew, Determination of ferromagnetic, superparamagnetic and paramagnetic components of magnetization and the effect of magnesium substitution on structural, magnetic and hyperfine properties of zinc ferrite nanoparticles, Journal of Magnetism and Magnetic Materials, 475 (2019) 160-170. https://doi.org/10.1016/j.jmmm.2018.11.030
[9] J. Chatterjee, Y. Haik, C.-J. Chen, M. Materials, Size dependent magnetic properties of iron oxide nanoparticles, Journal of Magnetism, 257 (2003) 113-118. https://doi.org/10.1016/S0304-8853(02)01066-1
[10] P. Dhiman, N. Dhiman, A. Kumar, G. Sharma, M. Naushad, A.A. Ghfar, Solar active nano-Zn1−xMgxFe2O4 as a magnetically separable sustainable photocatalyst for degradation of sulfadiazine antibiotic, Journal of Molecular Liquids, 294 (2019) 111574. https://doi.org/10.1016/j.molliq.2019.111574
[11] E.J.C.S.R. Roduner, Size matters: why nanomaterials are different, 35 (2006) 583-592. https://doi.org/10.1039/b502142c
[12] C. Heck, Magnetic materials and their applications, Elsevier, 2013.
[13] A.M. Ealias, M. Saravanakumar, A review on the classification, characterisation, synthesis of nanoparticles and their application, in: IOP Conf. Ser. Mater. Sci. Eng, 2017, pp. 032019. https://doi.org/10.1088/1757-899X/263/3/032019
[14] W.S. Galvão, D. Neto, R.M. Freire, P.B. Fechine, Super-paramagnetic nanoparticles with spinel structure: a review of synthesis and biomedical applications, in: solid state phenomena, Trans Tech Publ, 2016, pp. 139-176. https://doi.org/10.4028/www.scientific.net/SSP.241.139
[15] O. Masala, D. Hoffman, N. Sundaram, K. Page, T. Proffen, G. Lawes, R. Seshadri, Preparation of magnetic spinel ferrite core/shell nanoparticles: Soft ferrites on hard ferrites and vice versa, Solid state sciences, 8 (2006) 1015-1022. https://doi.org/10.1016/j.solidstatesciences.2006.04.014
[16] M.N. Akhtar, M.A. Khan, M. Ahmad, G. Murtaza, R. Raza, S. Shaukat, M. Asif, N. Nasir, G. Abbas, M. Nazir, Y3Fe5O12 nanoparticulate garnet ferrites: Comprehensive study on the synthesis and characterization fabricated by various routes, Journal of magnetism and magnetic materials, 368 (2014) 393-400. https://doi.org/10.1016/j.jmmm.2014.06.004
[17] E. Pollert, Crystal chemistry of magnetic oxides part 2: Hexagonal ferrites, Progress in crystal growth and characterization, 11 (1985) 155-205. https://doi.org/10.1016/0146-3535(85)90033-4
[18] R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science, 57 (2012) 1191-1334. https://doi.org/10.1016/j.pmatsci.2012.04.001
[19] A.A.S. Hassan, W. Khan, S. Husain, P. Dhiman, M. Singh, M.M. Alanazi, Influence of Ni doping on physical properties of La0.7Sr0.3FeO3 synthesized by reverse micelle technique, Journal of Materials Science: Materials in Electronics, 32 (2021) 3753-3765. https://doi.org/10.1007/s10854-020-05120-w
[20] R. Abazari, S. Sanati, Perovskite LaFeO3 nanoparticles synthesized by the reverse microemulsion nanoreactors in the presence of aerosol-OT: morphology, crystal structure, and their optical properties, Superlattices and Microstructures, 64 (2013) 148-157. https://doi.org/10.1016/j.spmi.2013.09.017
[21] O.B. Pavlovska, L.O. Vasylechko, I.V. Lutsyuk, N.M. Koval, Y.A. Zhydachevskii, A. Pieniążek, Structure Peculiarities of Micro- and Nanocrystalline Perovskite Ferrites La1−xSmxFeO3, Nanoscale Research Letters, 12 (2017) 153. https://doi.org/10.1186/s11671-017-1946-7
[22] S.K. Srivastav, N.J.J.o.t.A.C.S. S. Gajbhiye, Low temperature synthesis, structural, optical and magnetic properties of bismuth ferrite nanoparticles, 95 (2012) 3678-3682. https://doi.org/10.1111/j.1551-2916.2012.05411.x
[23] T.P. Yadav, R.M. Yadav, D.P. Singh, Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites, Nanoscience and Nanotechnology, 2 (2012) 22-48. https://doi.org/10.5923/j.nn.20120203.01
[24] Z. Zhang, G. Yao, X. Zhang, J. Ma, H. Lin, Synthesis and characterization of nickel ferrite nanoparticles via planetary ball milling assisted solid-state reaction, Ceramics International, 41 (2015) 4523-4530. https://doi.org/10.1016/j.ceramint.2014.11.147
[25] Z. Zhang, Y. Liu, G. Yao, G. Zu, Y. Hao, Synthesis and Characterization of NiFe2O4 Nanoparticles via Solid‐State Reaction, International Journal of Applied Ceramic Technology, 10 (2013) 142-149. https://doi.org/10.1111/j.1744-7402.2011.02719.x
[26] E. Manova, T. Tsoncheva, D. Paneva, M. Popova, N. Velinov, B. Kunev, K. Tenchev, I. Mitov, Nanosized copper ferrite materials: mechanochemical synthesis and characterization, Journal of Solid State Chemistry, 184 (2011) 1153-1158. https://doi.org/10.1016/j.jssc.2011.03.035
[27] A. Javidan, S. Rafizadeh, S.M. Hosseinpour-Mashkani, Strontium ferrite nanoparticle study: thermal decomposition synthesis, characterization, and optical and magnetic properties, Materials science in semiconductor processing, 27 (2014) 468-473. https://doi.org/10.1016/j.mssp.2014.07.024
[28] G. Singh, S. Chandra, Electrochemical performance of MnFe2O4 nano-ferrites synthesized using thermal decomposition method, International Journal of Hydrogen Energy, 43 (2018) 4058-4066. https://doi.org/10.1016/j.ijhydene.2017.08.181
[29] A.P. Herrera, L. Polo-Corrales, E. Chavez, J. Cabarcas-Bolivar, O.N. Uwakweh, C. Rinaldi, Influence of aging time of oleate precursor on the magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method, Journal of magnetism and magnetic materials, 328 (2013) 41-52. https://doi.org/10.1016/j.jmmm.2012.09.069
[30] K.K. Jaiswal, D. Manikandan, R. Murugan, A.P. Ramaswamy, Microwave-assisted rapid synthesis of Fe3O4/poly (styrene-divinylbenzene-acrylic acid) polymeric magnetic composites and investigation of their structural and magnetic properties, European Polymer Journal, 98 (2018) 177-190. https://doi.org/10.1016/j.eurpolymj.2017.11.005
[31] H. Ashassi-Sorkhabi, B. Rezaei-moghadam, R. Bagheri, L. Abdoli, E. Asghari, Synthesis of Au nanoparticles by thermal, sonochemical and electrochemical methods: optimization and characterization, Physical Chemistry Research, 3 (2015) 24-34.
[32] D.D. Andhare, S.R. Patade, J.S. Kounsalye, K. Jadhav, Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method, Physica B: Condensed Matter, 583 (2020) 412051. https://doi.org/10.1016/j.physb.2020.412051
[33] M.S. Darwish, H. Kim, H. Lee, C. Ryu, J.Y. Lee, J. Yoon, Synthesis of magnetic ferrite nanoparticles with high hyperthermia performance via a controlled co-precipitation method, Nanomaterials, 9 (2019) 1176. https://doi.org/10.3390/nano9081176
[34] H.J.P.t. Shokrollahi, Magnetic, electrical and structural characterization of BiFeO3 nanoparticles synthesized by co-precipitation, 235 (2013) 953-958. https://doi.org/10.1016/j.powtec.2012.12.008
[35] M. Houshiar, F. Zebhi, Z.J. Razi, A. Alidoust, Z. Askari, Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties, Journal of Magnetism and Magnetic Materials, 371 (2014) 43-48. https://doi.org/10.1016/j.jmmm.2014.06.059
[36] R.R. Shahraki, M. Ebrahimi, S.S. Ebrahimi, S.J.J.o.M. Masoudpanah, M. Materials, Structural characterization and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized by the coprecipitation method, 324 (2012) 3762-3765.
[37] A. Mazrouei, A. Saidi, Microstructure and magnetic properties of cobalt ferrite nano powder prepared by solution combustion synthesis, Materials Chemistry and Physics, 209 (2018) 152-158. https://doi.org/10.1016/j.matchemphys.2018.01.075
[38] P. Dhiman, S. Sharma, A. Kumar, M. Shekh, G. Sharma, M. Naushad, Rapid visible and solar photocatalytic Cr(VI) reduction and electrochemical sensing of dopamine using solution combustion synthesized ZnO–Fe2O3 nano heterojunctions: Mechanism Elucidation, Ceramics International, 46 (2020) 12255-12268. https://doi.org/10.1016/j.ceramint.2020.01.275
[39] V.J. Angadi, B. Rudraswamy, K. Sadhana, K.J.J.o.M. Praveena, M. Materials, Structural and magnetic properties of manganese zinc ferrite nanoparticles prepared by solution combustion method using mixture of fuels, 409 (2016) 111-115. https://doi.org/10.1016/j.jmmm.2016.02.096
[40] V. Sudheesh, N. Thomas, N. Roona, H. Choudhary, B. Sahoo, N. Lakshmi, V. Sebastian, Synthesis of nanocrystalline spinel ferrite (MFe2O4, M= Zn and Mg) by solution combustion method: influence of fuel to oxidizer ratio, Journal of Alloys and Compounds, 742 (2018) 577-586. https://doi.org/10.1016/j.jallcom.2018.01.266
[41] N. Thomas, T. Shimna, P. Jithin, V. Sudheesh, H.K. Choudhary, B. Sahoo, S.S. Nair, N. Lakshmi, V. Sebastian, Comparative study of the structural and magnetic properties of alpha and beta phases of lithium ferrite nanoparticles synthesized by solution combustion method, Journal of Magnetism and Magnetic Materials, 462 (2018) 136-143. https://doi.org/10.1016/j.jmmm.2018.05.010
[42] G. Kumar, S. Sharma, R. Kotnala, J. Shah, S.E. Shirsath, K.M. Batoo, M. Singh, Electric, dielectric and ac electrical conductivity study of nanocrystalline cobalt substituted Mg–Mn ferrites synthesized via solution combustion technique, Journal of Molecular Structure, 1051 (2013) 336-344. https://doi.org/10.1016/j.molstruc.2013.08.019
[43] L. Zhan, L. Jiang, Y. Zhang, B. Gao, Z. Xu, Reduction, detoxification and recycling of solid waste by hydrothermal technology: A review, Chemical Engineering Journal, (2020) 124651. https://doi.org/10.1016/j.cej.2020.124651
[44] M. Li, X. Liu, T. Xu, Y. Nie, H. Li, C. Zhang, Synthesis and characterization of nanosized MnZn ferrites via a modified hydrothermal method, Journal of Magnetism and Magnetic Materials, 439 (2017) 228-235. https://doi.org/10.1016/j.jmmm.2017.04.015
[45] J. Li, Q. Wu, J.J.H.o.N. Wu, Synthesis of nanoparticles via solvothermal and hydrothermal methods, (2015) 1-28. https://doi.org/10.1007/978-3-319-13188-7_17-1
[46] S. Komarneni, M.C. D’Arrigo, C. Leonelli, G.C. Pellacani, H. Katsuki, Microwave‐hydrothermal synthesis of nanophase ferrites, Journal of the American Ceramic Society, 81 (1998) 3041-3043. https://doi.org/10.1111/j.1151-2916.1998.tb02738.x
[47] A. Xia, C. Zuo, L. Chen, C. Jin, Y. Lv, Hexagonal SrFe12O19 ferrites: Hydrothermal synthesis and their sintering properties, Journal of magnetism and magnetic materials, 332 (2013) 186-191. https://doi.org/10.1016/j.jmmm.2012.12.035
[48] K. Nejati, R. Zabihi, Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method, Chemistry Central Journal, 6 (2012) 23. https://doi.org/10.1186/1752-153X-6-23
[49] A. Gatelytė, D. Jasaitis, A. Beganskienė, A. Kareiva, Sol-gel synthesis and characterization of selected transition metal nano-ferrites, Materials science, 17 (2011) 302-307. https://doi.org/10.5755/j01.ms.17.3.598
[50] P. Dhiman, J. Chand, A. Kumar, R.K. Kotnala, K.M. Batoo, M. Singh, Synthesis and characterization of novel Fe@ZnO nanosystem, Journal of Alloys and Compounds, 578 (2013) 235-241. https://doi.org/10.1016/j.jallcom.2013.05.015
[51] P. Hankare, K. Sanadi, K. Garadkar, D. Patil, I. Mulla, Synthesis and characterization of nickel substituted cobalt ferrite nanoparticles by sol–gel auto-combustion method, Journal of Alloys and Compounds, 553 (2013) 383-388. https://doi.org/10.1016/j.jallcom.2012.11.181
[52] S. Nasir, M. Anis-ur-Rehman, Structural, electrical and magnetic studies of nickel–zinc nanoferrites prepared by simplified sol–gel and co-precipitation methods, Physica Scripta, 84 (2011) 025603. https://doi.org/10.1088/0031-8949/84/02/025603
[53] M.N. Akhtar, M. Saleem, M.A. Khan, Al doped spinel and garnet nanostructured ferrites for microwave frequency C and X-band applications, Journal of Physics and Chemistry of Solids, 123 (2018) 260-265. https://doi.org/10.1016/j.jpcs.2018.08.007
[54] C. Sujatha, K.V. Reddy, K.S. Babu, A.R. Reddy, K. Rao, Effect of sintering temperature on electromagnetic properties of NiCuZn ferrite, Ceramics International, 39 (2013) 3077-3086. https://doi.org/10.1016/j.ceramint.2012.09.087
[55] M.A. Malik, M.Y. Wani, M.A.J.A.j.o.C. Hashim, Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update, 5 (2012) 397-417. https://doi.org/10.1016/j.arabjc.2010.09.027
[56] D. Makovec, A. Kodre, I. Arčon, M. Drofenik, The structure of compositionally constrained zinc-ferrite spinel nanoparticles, Journal of Nanoparticle Research, 13 (2011) 1781-1790. https://doi.org/10.1007/s11051-010-9929-y
[57] M.M. Naik, H.B. Naik, G. Nagaraju, M. Vinuth, H.R. Naika, K. Vinu, Green synthesis of zinc ferrite nanoparticles in Limonia acidissima juice: characterization and their application as photocatalytic and antibacterial activities, Microchemical Journal, 146 (2019) 1227-1235. https://doi.org/10.1016/j.microc.2019.02.059
[58] A. Singh, P.K. Gautam, A. Verma, V. Singh, P.M. Shivapriya, S. Shivalkar, A.K. Sahoo, S.K. Samanta, Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review, Biotechnology Reports, 25 (2020) e00427. https://doi.org/10.1016/j.btre.2020.e00427
[59] W. Abbas, I. Ahmad, M. Kanwal, G. Murtaza, I. Ali, M.A. Khan, M.N. Akhtar, M. Ahmad, Structural and magnetic behavior of Pr-substituted M-type hexagonal ferrites synthesized by sol–gel autocombustion for a variety of applications, Journal of Magnetism and Magnetic Materials, 374 (2015) 187-191. https://doi.org/10.1016/j.jmmm.2014.08.029
[60] C.-C. Huang, A.-H. Jiang, C.-H. Liou, Y.-C. Wang, C.-P. Lee, T.-Y. Hung, C.-C. Shaw, Y.-H. Hung, M.-F. Kuo, C.-H. Cheng, Magnetic property enhancement of cobalt-free M-type strontium hexagonal ferrites by CaCO3 and SiO2 addition, Intermetallics, 89 (2017) 111-117. https://doi.org/10.1016/j.intermet.2017.06.001
[61] K.M. Batoo, Study of dielectric and impedance properties of Mn ferrites, Physica B: Condensed Matter, 406 (2011) 382-387. https://doi.org/10.1016/j.physb.2010.10.075
[62] R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, Magnetic and electrical properties of In doped cobalt ferrite nanoparticles, Journal of Applied Physics, 112 (2012) 084321. https://doi.org/10.1063/1.4759436
[63] X. Huang, J. Zhang, S. Xiao, G. Chen, The cobalt zinc spinel ferrite nanofiber: lightweight and efficient microwave absorber, Journal of the American Ceramic Society, 97 (2014) 1363-1366. https://doi.org/10.1111/jace.12909
[64] C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites, The Journal of Physical Chemistry B, 104 (2000) 1141-1145. https://doi.org/10.1021/jp993552g
[65] R.H. Vignesh, K.V. Sankar, S. Amaresh, Y.S. Lee, R.K.J.S. Selvan, Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor, Sensors and Actuators B: Chemical, 220 (2015) 50-58. https://doi.org/10.1016/j.snb.2015.04.115
[66] K. Praveena, K. Sadhana, S. Bharadwaj, S. Murthy, Development of nanocrystalline Mn–Zn ferrites for high frequency transformer applications, Journal of Magnetism and Magnetic Materials, 321 (2009) 2433-2437. https://doi.org/10.1016/j.jmmm.2009.02.138
[67] H.-J. Cui, J.-W. Shi, B. Yuan, M.-L. Fu, Synthesis of porous magnetic ferrite nanowires containing Mn and their application in water treatment, Journal of Materials Chemistry A, 1 (2013) 5902-5907. https://doi.org/10.1039/c3ta01692g
[68] K. Maaz, S. Karim, A. Mumtaz, S. Hasanain, J. Liu, J. Duan, Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route, Journal of Magnetism and Magnetic Materials, 321 (2009) 1838-1842. https://doi.org/10.1016/j.jmmm.2008.11.098
[69] G. Nabiyouni, M.J. Fesharaki, M. Mozafari, C.P.L. Amighian, Characterization and magnetic properties of nickel ferrite nanoparticles prepared by ball milling technique, Chinese Physics Letters, 27 (2010) 126401. https://doi.org/10.1088/0256-307X/27/12/126401
[70] M. Amiri, M. Salavati-Niasari, A. Akbari, Magnetic nanocarriers: evolution of spinel ferrites for medical applications, Advances in Colloid and Interface Science, 265 (2019) 29-44. https://doi.org/10.1016/j.cis.2019.01.003
[71] A. Dumitrescu, G. Lisa, A. Iordan, F. Tudorache, I. Petrila, A. Borhan, M. Palamaru, C. Mihailescu, L. Leontie, C. Munteanu, Ni ferrite highly organized as humidity sensors, Materials Chemistry and Physics, 156 (2015) 170-179. https://doi.org/10.1016/j.matchemphys.2015.02.044
[72] M. Rashad, O. Fouad, Synthesis and characterization of nano-sized nickel ferrites from fly ash for catalytic oxidation of CO, Materials Chemistry and Physics, 94 (2005) 365-370. https://doi.org/10.1016/j.matchemphys.2005.05.028
[73] O. Karaagac, B.B. Yildiz, H. Köçkar, The influence of synthesis parameters on one-step synthesized superparamagnetic cobalt ferrite nanoparticles with high saturation magnetization, Journal of Magnetism and Magnetic Materials, 473 (2019) 262-267. https://doi.org/10.1016/j.jmmm.2018.10.063
[74] E. Swatsitang, S. Phokha, S. Hunpratub, B. Usher, A. Bootchanont, S. Maensiri, P. Chindaprasirt, Characterization and magnetic properties of cobalt ferrite nanoparticles, Journal of Alloys and Compounds, 664 (2016) 792-797. https://doi.org/10.1016/j.jallcom.2015.12.230
[75] G. Lal, K. Punia, S.N. Dolia, P. Alvi, S. Dalela, S. Kumar, Rietveld refinement, Raman, optical, dielectric, Mössbauer and magnetic characterization of superparamagnetic fcc-CaFe2O4 nanoparticles, Ceramics International, 45 (2019) 5837-5847. https://doi.org/10.1016/j.ceramint.2018.12.050
[76] N. Sulaiman, M. Ghazali, B. Majlis, J. Yunas, M. Razali, Superparamagnetic calcium ferrite nanoparticles synthesized using a simple sol-gel method for targeted drug delivery, Bio-medical materials and engineering, 26 (2015) S103-S110. https://doi.org/10.3233/BME-151295
[77] W.-z. Lv, B. Liu, Z.-k. Luo, X.-z. Ren, P.-x. Zhang, XRD studies on the nanosized copper ferrite powders synthesized by sonochemical method, Journal of Alloys and Compounds, 465 (2008) 261-264. https://doi.org/10.1016/j.jallcom.2007.10.049
[78] G. Yang, S.-J. Park, Conventional and microwave hydrothermal synthesis and application of functional materials: A review, Materials, 12 (2019) 1177. https://doi.org/10.3390/ma12071177
[79] A. Fernández-Ropero, J. Porras-Vázquez, A. Cabeza, P. Slater, D. Marrero-López, E. Losilla, High valence transition metal doped strontium ferrites for electrode materials in symmetrical SOFCs, Journal of Power Sources, 249 (2014) 405-413. https://doi.org/10.1016/j.jpowsour.2013.10.118
[80] M.M. Naik, H.B. Naik, G. Nagaraju, M. Vinuth, K. Vinu, R.J.N.-S. Viswanath, Green synthesis of zinc doped cobalt ferrite nanoparticles: Structural, optical, photocatalytic and antibacterial studies, Nano-Structures and Nano-Objects, 19 (2019) 100322. https://doi.org/10.1016/j.nanoso.2019.100322
[81] S.M. Hoque, M.S. Hossain, S. Choudhury, S. Akhter, F. Hyder, Synthesis and characterization of ZnFe2O4 nanoparticles and its biomedical applications, Materials letters, 162 (2016) 60-63. https://doi.org/10.1016/j.matlet.2015.09.066
[82] V. Rathod, A. Anupama, R.V. Kumar, V. Jali, B. Sahoo, Correlated vibrations of the tetrahedral and octahedral complexes and splitting of the absorption bands in FTIR spectra of Li-Zn ferrites, Vibrational Spectroscopy, 92 (2017) 267-272. https://doi.org/10.1016/j.vibspec.2017.08.008
[83] Z.K. Heiba, M. Sanad, M.B. Mohamed, Influence of Mg-deficiency on the functional properties of magnesium ferrite anode material, Solid State Ionics, 341 (2019) 115042. https://doi.org/10.1016/j.ssi.2019.115042
[84] M.A. Albalah, Y.A. Alsabah, D.E. Mustafa, Characteristics of co-precipitation synthesized cobalt nanoferrites and their potential in industrial wastewater treatment, SN Applied Sciences, 2 (2020) 1-9. https://doi.org/10.1007/s42452-020-2586-6
[85] B.J. Rani, G. Ravi, R. Yuvakkumar, V. Ganesh, S. Ravichandran, M. Thambidurai, A. Rajalakshmi, A. Sakunthala, Pure and cobalt-substituted zinc-ferrite magnetic ceramics for supercapacitor applications, Applied Physics A, 124 (2018) 511. https://doi.org/10.1007/s00339-018-1936-3
[86] A.J. Rondinone, A.C. Samia, Z.J. Zhang, Characterizing the magnetic anisotropy constant of spinel cobalt ferrite nanoparticles, Applied Physics Letters, 76 (2000) 3624-3626. https://doi.org/10.1063/1.126727
[87] S. Mourdikoudis, R.M. Pallares, N.T. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties, J Nanoscale, 10 (2018) 12871-12934. https://doi.org/10.1039/C8NR02278J
[88] K. Maaz, S. Karim, A. Mashiatullah, J. Liu, M. Hou, Y. Sun, J. Duan, H. Yao, D. Mo, Y. Chen, Structural analysis of nickel doped cobalt ferrite nanoparticles prepared by coprecipitation route, Physica B: Condensed Matter, 404 (2009) 3947-3951. https://doi.org/10.1016/j.physb.2009.07.134
[89] M. Amer, M.J.J.o.m. El Hiti, m. materials, Mössbauer and X-ray studies for Ni0. 2ZnxMg0. 8− xFe2O4 ferrites, 234 (2001) 118-125. https://doi.org/10.1016/S0304-8853(00)01406-2
[90] K. Mohammed, A. Al-Rawas, A. Gismelseed, A. Sellai, H. Widatallah, A. Yousif, M. Elzain, M. Shongwe, Infrared and structural studies of Mg1–xZnxFe2O4 ferrites, Physica B: Condensed Matter, 407 (2012) 795-804. https://doi.org/10.1016/j.physb.2011.12.097
[91] R. Melo, P. Banerjee, A.J.J.o.M.S.M.i.E. Franco, Hydrothermal synthesis of nickel doped cobalt ferrite nanoparticles: optical and magnetic properties, 29 (2018) 14657-14667. https://doi.org/10.1007/s10854-018-9602-2
[92] S. Shenoy, P. Joy, M. Anantharaman, Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite, Journal of magnetism and magnetic materials, 269 (2004) 217-226. https://doi.org/10.1016/S0304-8853(03)00596-1
[93] T. Tatarchuk, M. Bououdina, N. Paliychuk, I. Yaremiy, V. Moklyak, Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites, Journal of Alloys and Compounds, 694 (2017) 777-791. https://doi.org/10.1016/j.jallcom.2016.10.067
[94] I. Gul, A. Maqsood, Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route, Journal of Alloys and Compounds, 465 (2008) 227-231. https://doi.org/10.1016/j.jallcom.2007.11.006
[95] R. Qindeel, N.H. Alonizan, Structural, dielectric and magnetic properties of cobalt based spinel ferrites, Current Applied Physics, 18 (2018) 519-525. https://doi.org/10.1016/j.cap.2018.03.004
[96] R. Ahmad, I.H. Gul, M. Zarrar, H. Anwar, M.B. Khan Niazi, A. Khan, Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application, Journal of magnetism and magnetic materials, 405 (2016) 28-35. https://doi.org/10.1016/j.jmmm.2015.12.019
[97] R. Mahajan, K. Patankar, M. Kothale, S. Patil, Conductivity, dielectric behaviour and magnetoelectric effect in copper ferrite-barium titanate composites, Bulletin of Materials Science, 23 (2000) 273-279. https://doi.org/10.1007/BF02720082
[98] A. Ashok, L.J. Kennedy, J.J. Vijaya, Structural, optical and magnetic properties of Zn1-xMnxFe2O4 (0≤ x≤ 0.5) spinel nano particles for transesterification of used cooking oil, Journal of Alloys and Compounds, 780 (2019) 816-828. https://doi.org/10.1016/j.jallcom.2018.11.390
[99] S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, V. Singh, Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method, Journal of Molecular structure, 1076 (2014) 55-62. https://doi.org/10.1016/j.molstruc.2014.07.048
[100] K.A. McDonnell, N. Wadnerkar, N.J. English, M. Rahman, D. Dowling, Photo-active and optical properties of bismuth ferrite (BiFeO3): an experimental and theoretical study, Chemical Physics Letters, 572 (2013) 78-84. https://doi.org/10.1016/j.cplett.2013.04.024
[101] V.S. Bushkova, I.P. Yaremiy, Magnetic, electric, mechanical, and optical properties of NiCrxFe2− xO4 ferrites, Journal of Magnetism and Magnetic Materials, 461 (2018) 37-47. https://doi.org/10.1016/j.jmmm.2018.04.025
[102] T.R. Tatarchuk, N.D. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles, Journal of Alloys and Compounds, 731 (2018) 1256-1266. https://doi.org/10.1016/j.jallcom.2017.10.103
[103] S. Güner, M. Amir, M. Geleri, M. Sertkol, A. Baykal, Magneto-optical properties of Mn3+ substituted Fe3O4 nanoparticles, Ceramics International, 41 (2015) 10915-10922. https://doi.org/10.1016/j.ceramint.2015.05.034
[104] Z. Zhang, W. Wang, Solution combustion synthesis of CaFe2O4 nanocrystal as a magnetically separable photocatalyst, Materials letters 133 (2014) 212-215. https://doi.org/10.1016/j.matlet.2014.07.050
[105] M. Shahid, L. Jingling, Z. Ali, I. Shakir, M.F. Warsi, R. Parveen, M. Nadeem, Photocatalytic degradation of methylene blue on magnetically separable MgFe2O4 under visible light irradiation, Materials Chemistry and Physics, 139 (2013) 566-571. https://doi.org/10.1016/j.matchemphys.2013.01.058
[106] M. Valenzuela, P. Bosch, J. Jiménez-Becerrill, O. Quiroz, A. Páez, Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4, Journal of Photochemistry and photobiology A: Chemistry, 148 (2002) 177-182. https://doi.org/10.1016/S1010-6030(02)00040-0
[107] A.B. Harris, C. Kallin, A.J. Berlinsky, Possible Néel orderings of the Kagomé antiferromagnet, Physical Review B, 45 (1992) 2899. https://doi.org/10.1103/PhysRevB.45.2899
[108] S. Chikazumi, C.D. Graham, Physics of Ferromagnetism 2e, Oxford University Press on Demand, 2009.
[109] Y. Yafet, C. Kittel, Antiferromagnetic arrangements in ferrites, Physical Review, 87 (1952) 290. https://doi.org/10.1103/PhysRev.87.290
[110] E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, C. Estournès, C. D’Orléan, J.-L. Rehspringer, M.J.C.o.m. Kurmoo, Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4, 16 (2004) 5689-5696. https://doi.org/10.1021/cm049189u
[111] M. Buzinaro, N. Ferreira, F. Cunha, M. Macêdo, Hopkinson effect, structural and magnetic properties of M-type Sm3+-doped SrFe12O19 nanoparticles produced by a proteic sol–gel process, Ceramics International, 42 (2016) 5865-5872. https://doi.org/10.1016/j.ceramint.2015.12.130
[112] D.S. Nikam, S.V. Jadhav, V.M. Khot, R. Bohara, C.K. Hong, S.S. Mali, S. Pawar, Cation distribution, structural, morphological and magnetic properties of Co 1− x Zn x Fe2O4 (x= 0–1) nanoparticles, RSC Advances, 5 (2015) 2338-2345. https://doi.org/10.1039/C4RA08342C
[113] L. Chauhan, A. Shukla, K. Sreenivas, Dielectric and magnetic properties of Nickel ferrite ceramics using crystalline powders derived from DL alanine fuel in sol–gel auto-combustion, Ceramics International, 41 (2015) 8341-8351. https://doi.org/10.1016/j.ceramint.2015.03.014
[114] M. Naseri, Optical and magnetic properties of monophasic cadmium ferrite (CdFe2O4) nanostructure prepared by thermal treatment method, Journal of magnetism and magnetic materials, 392 (2015) 107-113. https://doi.org/10.1016/j.jmmm.2015.05.026
[115] E. Hema, A. Manikandan, M. Gayathri, M. Durka, S.A. Antony, B. Venkatraman, The role of Mn2+-doping on structural, morphological, optical, magnetic and catalytic properties of spinel ZnFe2O4 nanoparticles, Journal of nanoscience and nanotechnology, 16 (2016) 5929-5943. https://doi.org/10.1166/jnn.2016.11037
[116] P. Chand, S. Vaish, P. Kumar, Structural, optical and dielectric properties of transition metal (MFe2O4; M= Co, Ni and Zn) nanoferrites, Physica B: Condensed Matter, 524 (2017) 53-63. https://doi.org/10.1016/j.physb.2017.08.060
[117] R.S. Yadav, I. Kuřitka, J. Vilcakova, P. Urbánek, M. Machovsky, M. Masař, M. Holek, Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method, Journal of Physics and Chemistry of Solids, 110 (2017) 87-99. https://doi.org/10.1016/j.jpcs.2017.05.029
[118] S. Gowreesan, A.R. Kumar, Synthesis, structural, dielectric and magnetic properties of spinel structure of Ca2+ substitute in Cobalt ferrites (Co1− xCaxFe2O4), Chinese journal of physics, 56 (2018) 1262-1272. https://doi.org/10.1016/j.cjph.2018.02.014
[119] S. Iftikhar, M.F. Warsi, S. Haider, S. Musaddiq, I. Shakir, M. Shahid, The impact of carbon nanotubes on the optical, electrical, and magnetic parameters of Ni2+ and Co2+ based spinel ferrites, Ceramics International, 45 (2019) 21150-21161. https://doi.org/10.1016/j.ceramint.2019.07.092
[120] M.F. Warsi, A. Iftikhar, M.A. Yousuf, M.I. Sarwar, S. Yousaf, S. Haider, M.F.A. Aboud, I. Shakir, S. Zulfiqar, Erbium substituted nickel–cobalt spinel ferrite nanoparticles: Tailoring the structural, magnetic and electrical parameters, Ceramics International, 46 (2020) 24194-24203. https://doi.org/10.1016/j.ceramint.2020.06.199
[121] K.K. Kefeni, B.B. Mamba, T.A.J.S. Msagati, P. Technology, Application of spinel ferrite nanoparticles in water and wastewater treatment: a review, 188 (2017) 399-422. https://doi.org/10.1016/j.seppur.2017.07.015
[122] R. Kappiyoor, M. Liangruksa, R. Ganguly, I.K. Puri, The effects of magnetic nanoparticle properties on magnetic fluid hyperthermia, Journal of Applied Physics, 108 (2010) 094702. https://doi.org/10.1063/1.3500337
[123] Z. Hedayatnasab, F. Abnisa, W.M.A.W. Daud, Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application, Materials and design, 123 (2017) 174-196. https://doi.org/10.1016/j.matdes.2017.03.036
[124] S. Laurent, S. Dutz, U.O. Häfeli, M. Mahmoudi, Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles, Advances in colloid and interface science, 166 (2011) 8-23. https://doi.org/10.1016/j.cis.2011.04.003
[125] I. Sharifi, H. Shokrollahi, S.J.J.o.m. Amiri, m. materials, Ferrite-based magnetic nanofluids used in hyperthermia applications, 324 (2012) 903-915. https://doi.org/10.1016/j.jmmm.2011.10.017
[126] H.B. Na, I.C. Song, T. Hyeon, Inorganic nanoparticles for MRI contrast agents, Advanced materials, 21 (2009) 2133-2148. https://doi.org/10.1002/adma.200802366
[127] C. Bárcena, A.K. Sra, G.S. Chaubey, C. Khemtong, J.P. Liu, J.J.C.C. Gao, Zinc ferrite nanoparticles as MRI contrast agents, Chemical Communications, (2008) 2224-2226. https://doi.org/10.1039/b801041b
[128] S. Rana, A. Gallo, R. Srivastava, R. Misra, On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: functionalization, conjugation and drug release kinetics, Acta Biomaterialia, 3 (2007) 233-242. https://doi.org/10.1016/j.actbio.2006.10.006
[129] M. Ansari, A. Bigham, S. Hassanzadeh-Tabrizi, H.A. Ahangar, Synthesis and characterization of Cu0.3Zn0.5Mg0. 2Fe2O4 nanoparticles as a magnetic drug delivery system, Journal of Magnetism and Magnetic Materials, 439 (2017) 67-75. https://doi.org/10.1016/j.jmmm.2017.04.084
[130] E.R. Kumar, R. Jayaprakash, G.S. Devi, P.S.P. Reddy, Magnetic, dielectric and sensing properties of manganese substituted copper ferrite nanoparticles, Journal of magnetism and magnetic materials, 355 (2014) 87-92. https://doi.org/10.1016/j.jmmm.2013.11.051
[131] S. Joshi, V.B. Kamble, M. Kumar, A.M. Umarji, G. Srivastava, Nickel substitution induced effects on gas sensing properties of cobalt ferrite nanoparticles, Journal of Alloys and Compounds, 654 (2016) 460-466. https://doi.org/10.1016/j.jallcom.2015.09.119
[132] Y.-L. Liu, Z.-M. Liu, Y. Yang, H.-F. Yang, G.-L. Shen, R.-Q. Yu, Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials, Sensors and Actuators B: Chemical, 107 (2005) 600-604. https://doi.org/10.1016/j.snb.2004.11.026
[133] Z. Sun, L. Liu, D. zeng Jia, W. Pan, Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials, Sensors and Actuators B: Chemical, 125 (2007) 144-148. https://doi.org/10.1016/j.snb.2007.01.050
[134] H.-J. Zhang, F.-N. Meng, L.-Z. Liu, Y.-J. Chen, P.-J.J.J.o.A. Wang, Highly sensitive H2S sensor based on solvothermally prepared spinel ZnFe2O4 nanoparticles, Journal of Alloys and Compounds, 764 (2018) 147-154. https://doi.org/10.1016/j.jallcom.2018.06.052
[135] K. Wu, J. Li, C. Zhang, Zinc ferrite based gas sensors: A review, Ceramics International, 45 (2019) 11143-11157. https://doi.org/10.1016/j.ceramint.2019.03.086
[136] E.O. Blair, D.K. Corrigan, A review of microfabricated electrochemical biosensors for DNA detection, Biosensors and Bioelectronics, 134 (2019) 57-67. https://doi.org/10.1016/j.bios.2019.03.055
[137] G. Asghar, M. Anis-ur-Rehman, Structural, dielectric and magnetic properties of Cr–Zn doped strontium hexa-ferrites for high frequency applications, Journal of alloys and compounds, 526 (2012) 85-90. https://doi.org/10.1016/j.jallcom.2012.02.086
[138] M. Pardavi-Horvath, Microwave applications of soft ferrites, Journal of Magnetism and Magnetic Materials, 215 (2000) 171-183. https://doi.org/10.1016/S0304-8853(00)00106-2
[139] P. Guzdek, J. Kulawik, K. Zaraska, A. Bieńkowski, NiZnCu ferrite applied for LTCC microinductor, Journal of Magnetism and Magnetic Materials, 322 (2010) 2897-2901. https://doi.org/10.1016/j.jmmm.2010.05.001
[140] F.M. Ismail, M. Ramadan, A.M. Abdellah, I. Ismail, N.K. Allam, Mesoporous spinel manganese zinc ferrite for high-performance supercapacitors, Journal of Electroanalytical Chemistry, 817 (2018) 111-117. https://doi.org/10.1016/j.jelechem.2018.04.002
[141] B.I. Kharisov, H.R. Dias, O.V. Kharissova, Mini-review: ferrite nanoparticles in the catalysis, Arabian Journal of Chemistry, 12 (2019) 1234-1246. https://doi.org/10.1016/j.arabjc.2014.10.049
[142] A. Evdou, V. Zaspalis, L.J.F. Nalbandian, Ferrites as redox catalysts for chemical looping processes, 165 (2016) 367-378. https://doi.org/10.1016/j.fuel.2015.10.049
[143] A. Kumar, A. Kumari, G. Sharma, B. Du, M. Naushad, F.J. Stadler, Carbon quantum dots and reduced graphene oxide modified self-assembled S@ C3N4/B@ C3N4 metal-free nano-photocatalyst for high performance degradation of chloramphenicol, Journal of Molecular Liquids, 300 (2020) 112356. https://doi.org/10.1016/j.molliq.2019.112356
[144] E. Casbeer, V.K. Sharma, X.-Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: a review, Separation and Purification Technology, 87 (2012) 1-14. https://doi.org/10.1016/j.seppur.2011.11.034
[145] M. Kaur, N. Kaur, Ferrites: synthesis and applications for environmental remediation, in: Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation, ACS Publications, 2016, pp. 113-136. https://doi.org/10.1021/bk-2016-1238.ch004
[146] A. Kumar, A. Kumar, G. Sharma, M. Naushad, F.J. Stadler, A.A. Ghfar, P. Dhiman, R.V. Saini, Sustainable nano-hybrids of magnetic biochar supported g-C3N4/FeVO4 for solar powered degradation of noxious pollutants- Synergism of adsorption, photocatalysis & photo-ozonation, Journal of Cleaner Production, 165 (2017) 431-451. https://doi.org/10.1016/j.jclepro.2017.07.117
[147] A. Kumar, A. Rana, C. Guo, G. Sharma, K.M. M Katubi, F.M. Alzahrani, M. Naushad, M. Sillanpää, P. Dhiman, F.J. Stadler, Acceleration of photo-reduction and oxidation capabilities of Bi4O5I2/SPION@calcium alginate by metallic Ag: Wide spectral removal of nitrate and azithromycin, Chemical Engineering Journal, 423 (2021) 130173. https://doi.org/10.1016/j.cej.2021.130173
[148] A. Kumar, S.K. Sharma, G. Sharma, A.a.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, F.J. Stadler, Wide spectral degradation of Norfloxacin by Ag@BiPO4/BiOBr/BiFeO3 nano-assembly: Elucidating the photocatalytic mechanism under different light sources, Journal of Hazardous Materials, 364 (2019) 429-440. https://doi.org/10.1016/j.jhazmat.2018.10.060
[149] V. Srivastava, Y. Sharma, M. Sillanpää, Application of nano-magnesso ferrite (n-MgFe2O4) for the removal of Co2+ ions from synthetic wastewater: Kinetic, equilibrium and thermodynamic studies, Applied Surface Science, 338 (2015) 42-54. https://doi.org/10.1016/j.apsusc.2015.02.072
[150] P. Dhiman, M. Patial, A. Kumar, M. Alam, M. Naushad, G. Sharma, D.-V.N. Vo, R. Kumar, Environmental friendly and robust Mg0.5-xCuxZn0.5Fe2O4 spinel nanoparticles for visible light driven degradation of Carbamazepine: Band shift driven by dopants, Materials Letters, 284 (2021) 129005. https://doi.org/10.1016/j.matlet.2020.129005
[151] G. Sharma, A. Kumar, S. Sharma, M. Naushad, P. Dhiman, D.-V.N. Vo, F.J. Stadler, Fe3O4/ZnO/Si3N4 nanocomposite based photocatalyst for the degradation of dyes from aqueous solution, Materials Letters, 278 (2020) 128359. https://doi.org/10.1016/j.matlet.2020.128359
[152] P. Dhiman, A. Kumar, M. Shekh, G. Sharma, G. Rana, D.-V.N. Vo, N. AlMasoud, M. Naushad, Z.A. Alothman, Robust magnetic ZnO-Fe2O3 Z-scheme hetereojunctions with in-built metal-redox for high performance photo-degradation of sulfamethoxazole and electrochemical dopamine detection, Environmental Research, 197 (2021) 111074. https://doi.org/10.1016/j.envres.2021.111074
[153] X.C. Tong, Advanced materials and design for electromagnetic interference shielding, CRC press, 2016. https://doi.org/10.1201/9781420073591
[154] A.M. Gama, M.C. Rezende, C.C. Dantas, Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials, Journal of Magnetism and Magnetic Materials, 323 (2011) 2782-2785. https://doi.org/10.1016/j.jmmm.2011.05.052
[155] U. Lima, M. Nasar, R. Nasar, M. Rezende, J.J.J.o.M. Araújo, Ni–Zn nanoferrite for radar-absorbing material, Journal of Magnetism and Magnetic Materials, 320 (2008) 1666-1670. https://doi.org/10.1016/j.jmmm.2008.01.022