Bio-Mediated Synthesis of Quantum Dots for Fluorescent Biosensing and Bio-Imaging Applications
Selvaraj Devi and Vairaperumal Tharmaraj
Quantum dots (QDs) have received great attention for development of novel fluorescent nanoprobe with tunable colors towards the near-infrared (NIR) region because of their unique optical and electronic properties such as luminescence characteristics, wide range, continuous absorption spectra and narrow emission spectra with high light stability. Quantum dots are promising materials for biosensing and single molecular bio-imaging application due to their excellent photophysical properties such as strong brightness and resistance to photobleaching. However, the use of quantum dots in biomedical applications is limited due to their toxicity. Recently, the development of novel and safe alternative method, the biomediated greener approach is one of the best aspects for synthesis of quantum dots. In this Chapter, biomediated synthesis of quantum dots by living organisms and biomimetic systems were highlighted. Quantum dots based fluorescent probes utilizing resonance energy transfer (RET), especially Förster resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and chemiluminescence resonance energy transfer (CRET) to probe biological phenomena were discussed. In addition, quantum dot nanocomposites are promising ultrasensitive bioimaging probe for in vivo multicolor, multimodal, multiplex and NIR deep tissue imaging. Finally, this chapter provides a conclusion with future perspectives of this field.
Keywords
Green Synthesis, Quantum Dots, Biosensor, Fluorescence Imaging, FRET, BRET, CRET, NIR
Published online 8/10/2021, 39 pages
Citation: Selvaraj Devi and Vairaperumal Tharmaraj, Bio-Mediated Synthesis of Quantum Dots for Fluorescent Biosensing and Bio-Imaging Applications, Materials Research Foundations, Vol. 111, pp 185-223, 2021
DOI: https://doi.org/10.21741/9781644901571-7
Part of the book on Bioinspired Nanomaterials
References
[1] I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nature Mater., 4 (2005) 435. https://doi.org/10.1038/nmat1390
[2] X. He, L. Gao and N. Ma, One-step instant synthesis of protein-conjugated quantum dots at room temperature, Sci. Rep., 3, (2013)2825. https://doi.org/10.1038/srep02825
[3] J. Wu, J. Dai, Y. Shao and Y. Sun, One-step synthesis of fluorescent silicon quantum dots (Si-QDs) and their application for cell imaging, RSC Adv., 5 (2015) 83581-83587. https://doi.org/10.1039/C5RA13119G
[4] R. Gui and X. An, Layer-by-layer aqueous synthesis, characterization and fluorescence properties of type-II CdTe/CdS core/shell quantum dots with near-infrared emission, RSC Adv., 3 (2013) 20959-20969. https://doi.org/10.1039/C3RA43120G
[5] H. Han, G. D. Francesco and M. M. Maye, Size control and photophysical properties of quantum dots prepared via a novel tunable hydrothermal route, J. Phys. Chem. C,45(2010) 19270-19277. https://doi.org/10.1021/jp107702b
[6] Q. Ma and X. Su, Recent advances and applications in QDs-based sensors, Analyst, 136 (2011) 4883-4893. https://doi.org/10.1039/c1an15741h
[7] J. Li and J-J. Zhu, Quantum dots for fluorescent biosensing and bio-imaging applications, Analyst, 138 (2013) 2506-2515. https://doi.org/10.1039/c3an36705c
[8] I. L.Medintz, H.Mattoussi and A. R. Clapp, Potential clinical applications of quantum dots, Int J Nanomedicine. 3(2) (2008) 151-167. https://doi.org/10.2147/IJN.S614
[9] X. H. Zhong, Y. Y. Feng, W. Knoll and M. Y. Han, Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc., 125 (2003) 13559-13563. https://doi.org/10.1021/ja036683a
[10] X. H. Zhong, M. Y. Han, Z. Dong, T. J. White and W. Knoll, Composition-tunable ZnxCd1-xSe nanocrystals with high luminescence and stability, J. Am. Chem. Soc., 125 (2003) 8589-8594. https://doi.org/10.1021/ja035096m
[11] R. E. Bailey and S. M. Nie, Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size, J. Am. Chem. Soc., 125 (2003) 7100-7106. https://doi.org/10.1021/ja035000o
[12] S. Kim, B. Fisher, H. J. Eisler and M. Bawendi, Type-II quantum dots: CdTe/CdSe(core/ shell) and CdSe/ZnTe(Core/Shell) heterostructures, J. Am. Chem. Soc., 125 (2003) 11466-11467. https://doi.org/10.1021/ja0361749
[13] B. L. Wehrenberg, C. J. Wang and P. Guyot-Sionnest, Interband and intraband optical studies of PbSe colloidal quantum dots, J. Phys. Chem. B, 106 (2002) 10634-10640. https://doi.org/10.1021/jp021187e
[14] A. M. Smith and S. Nie, Chemical analysis and cellular imaging with quantum dots, Analyst, 129 (2004) 672–677. https://doi.org/10.1039/b404498n
[15] W. R. Algar, A. Tavares and U. J. Krull, Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction, Anal. Chim. Acta, 673 (2010) 1-25. https://doi.org/10.1016/j.aca.2010.05.026
[16] M. F. Frasco and N. Chaniotakis, Semiconductor quantum dots in chemical sensors and biosensors, Sensors, 9 (2009) 7266-7286. https://doi.org/10.3390/s90907266
[17] J. Costa-Fernandez, R. Pereiro and A. Sanz-Medel, The use of luminescent quantum dots for optical sensing, TrAC, Trends Anal. Chem., 25 (2006) 207-218. https://doi.org/10.1016/j.trac.2005.07.008
[18] R. Gui, J. Sun, D. Liu, Y. Wang, H. Jin, A facile cation exchange-based aqueous synthesis of highly stable and biocompatible Ag2S quantum dots emitting in the second near-infrared biological window, Dalton Trans, 43 (2014) 16690−16697. https://doi.org/10.1039/C4DT00699B
[19] S. Chinnathambi and N. Shirahata, Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging, Sci. Technol. Adv. Mater. 20 (2019) 337-355. https://doi.org/10.1080/14686996.2019.1590731
[20] W. T.Wu, H. Liu, C. Dong, W. J. Zheng, L. L. Han, L. Li, S. Z.Qiao, J. Yang and X. W. Du, High-quality colloidal quantum dots directly from natural minerals. Langmuir.31 (2015) 2251−2255. https://doi.org/10.1021/la5044415
[21] J. Yang, T. Ling, W-T. Wu, H. Liu, M-R.Gao, C. Ling, L. Li, X-W. Du, A top-down strategy towards monodisperse colloidal lead sulphide quantum dots. Nat. Commun., 4 (2013) 1695. https://doi.org/10.1038/ncomms2637
[22] H. B.Zeng, S. K. Yang, W. P.Cai, Reshaping formation and luminescence evolution of Zno quantum dots by laser-induced fragmentation in liquid. J. Phys. Chem. C.,115 (2011) 5038-5043. https://doi.org/10.1021/jp109010c
[23] K. Jagannadham, J. Howe andL. F. Allard, laser physical vapor deposition of nanocrystalline dots using nanopore filters. Appl. Phys. A: Mater. Sci. Process.,98 (2010) 285-292. https://doi.org/10.1007/s00339-009-5432-7
[24] H. B. Zeng, X. W. Du, S. C. Singh, S. A.Kulinich, S. K. Yang, J. P. He and W. P.Cai, Nanomaterials via laser ablation/irradiation in liquid: A Review. Adv. Funct. Mater., 22 (2012) 1333-1353. https://doi.org/10.1002/adfm.201102295
[25] S. C. Singh, S. K. Mishra, R. K. Srivastava and R. Gopal, Optical properties of selenium quantum dots produced with laser irradiation of water suspended Se nanoparticles. J. Phys. Chem. C,114 (2010) 17374-17384. https://doi.org/10.1021/jp105037w
[26] C. B. Murray, D. J. Norris and M. G.Bawendi, synthesis and characterization of nearly monodisperse CdE(E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc.,115 (1993) 8706-8715. https://doi.org/10.1021/ja00072a025
[27] N. Gaponik, D. V. Talapin, A. L.Rogach, K. Hoppe, E. V. Shevchenko, A.Kornowski, A.Eychmuller, and H. Weller, Thiolcapping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J. Phys. Chem. B,106 (2002) 7177-7185. https://doi.org/10.1021/jp025541k
[28] T. Rajh, O. I. Micic and A. J.Nozik, Synthesis and characterization of surface-modified colloidal cdte quantum dots. J. Phys.Chem., 97 (1993) 11999-12003. https://doi.org/10.1021/j100148a026
[29] D. Zhou, M. Lin, Z. Chen, H. Sun, H. Zhang, H. Sun and B.Yang, Simple synthesis of highly luminescent water-soluble CdTe quantum dots with controllable surface functionality. Chem. Mater., 23 (2011) 4857-4862. https://doi.org/10.1021/cm202368w
[30] L. H.Qu, Z. A. Peng and X. G. Peng, Alternative routes toward high quality CdSenanocrystals. Nano Lett., 1 (2001) 333-337. https://doi.org/10.1021/nl0155532
[31] Q. Wang, T. Fang, P. Liu, B. Deng, X. Min, X. Li, Direct synthesis of high-quality water-soluble CdTe:Zn2+ quantum dots. Inorg. Chem..51 (2012) 9208-9213. https://doi.org/10.1021/ic300473u
[32] L. H. Qu and X. G. Peng, Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 124 (2002) 2049-2055. https://doi.org/10.1021/ja017002j
[33] Z. A. Peng, X. G. Peng, Formation of high-quality CdTe, CdSe, and CdSnanocrystals using CdO as precursor. J. Am. Chem. Soc..123 (2001) 183-184. https://doi.org/10.1021/ja003633m
[34] K. Yu, B. Zaman, S. Romanova, D-S. Wang and J. A. Ripmeester, Sequential synthesis of type II colloidal CdTe/ CdSe core-shell nanocrystals, Small, 1 (2005) 332-338. https://doi.org/10.1002/smll.200400069
[35] S. Kim, B. Fisher, H.-J. Eisler and M. Bawendi, Type-II quantum dots: CdTe/ CdSe (Core/ Shell) and CdSe/ ZnTe (Core/ Shell) heterostructures, J. Am. Chem. Soc., 125 (2003) 11466-11467. https://doi.org/10.1021/ja0361749
[36] S. Kim, W. Shim, H. Seo, J. H. Bae, J. Sung, S. H. Choi, W. K. Moon, G. Lee, B. Lee and S.-W. Kim, Bandgap engineered reverse type-I CdTe/InP/ZnS core–shell nanocrystals for the near-infrared, Chem. Commun., (2009) 1267-1269. https://doi.org/10.1039/b820864f
[37] J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov and J. A. Hollingsworth, Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission, J. Am. Chem. Soc., 130 (2008) 4879-4885. https://doi.org/10.1021/ja710437r
[38] R. Cui, Y.-P. Gu, Z.-L. Zhang, Z.-X. Xie, Z.-Q. Tian and D.-W. Pang, Controllable synthesis of PbSe nanocubes in aqueous phase using a quasi-biosystem, J. Mater. Chem., 22 (2012) 3713-3716. https://doi.org/10.1039/c2jm15691a
[39] M. A. Hines and G. D. Scholes, Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution, Adv. Mater., 15 (2003) 1844-1849. https://doi.org/10.1002/adma.200305395
[40] T. Rauch, M. Bo ¨berl, S. F. Tedde, J. Fu¨rst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss and O. Hayden, Near-infrared imaging with quantum-dot-sensitized organic photodiodes, Nat. Photonics, 3 (2009) 332-336. https://doi.org/10.1038/nphoton.2009.72
[41] N. Gaponik, I. L. Radtchenko, M. R. Gerstenberger, Y. A. Fedutik, G. B. Sukhorukov and A. L. Rogach, Labeling of biocompatible polymer microcapsules with near-infrared emitting nanocrystals, Nano Lett., 3 (2003) 369-372. https://doi.org/10.1021/nl0259333
[42] H. Korbekandi, S. Iravani andS. Abbasi, Production of nanoparticles using organisms. Crit. Rev. Biotechnol. 29 (2009) 279-306. https://doi.org/10.3109/07388550903062462
[43] K. B. Narayanan andN. Sakthivel, biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 156 (2010) 1-13. https://doi.org/10.1016/j.cis.2010.02.001
[44] J. R. Lloyd, J. M. Byrne andV. S. Coker, Biotechnological synthesis of functional nanomaterials. Curr. Opin. Biotechnol. 22 (2011) 509-515. https://doi.org/10.1016/j.copbio.2011.06.008
[45] G. S. Dhillon, S. K.Brar, S. Kaur and M. Verma, Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit. Rev. Biotechnol. 32 (2012) 49-73. https://doi.org/10.3109/07388551.2010.550568
[46] V. Pavlov, Enzymatic growth of metal and semiconductor nanoparticles in bioanalysis. Particle & Particle Systems Characterization, 31 (2014) 36-45. https://doi.org/10.1002/ppsc.201300295
[47] L. Saa, A.Virel, J. Sanchez-Lopez andV. Pavlov, analytical applications of enzymatic growth of quantum dots. Chem. – Eur. J. 16 (2010) 6187-6192. https://doi.org/10.1002/chem.200903373
[48] L. Saa and V. Pavlov, Enzymatic growth of quantum dots: applications to probe glucose oxidase and horseradish peroxidase and sense glucose. Small, 8 (2012) 3449-3455. https://doi.org/10.1002/smll.201201364
[49] L. Saa, J.M. Mato and V. Pavlov, Assays for methionine gammalyase and s-adenosyl-l-homocysteine hydrolase based on enzymatic formation of CdSquantum dots in situ. Anal. Chem. 84 (2012) 8961-8965. https://doi.org/10.1021/ac302770q
[50] S. R. Stuerzenbaum, M.Hoeckner, A. Panneerselvam, J. Levitt, J. S. Bouillard, S. Taniguchi, L. A. Dailey, R. A. Khanbeigi, E. V. Rosca and M.Thanou, Biosynthesis of luminescent quantum dots in an earthworm. Nat. Nanotechnol. 8 (2013) 57-60. https://doi.org/10.1038/nnano.2012.232
[51] R. Cui, H-H. Liu, H-Y. Xie, Z-L. Zhang, Y-R. Yang, D-W. Pang, Z-X.Xie, B-B. Chen, B. Hu andP. Shen, Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots. Adv. Funct. Mater. 19 (2009) 2359-2364. https://doi.org/10.1002/adfm.200801492
[52] H. Bao, Z. Lu, X. Cui, Y.Qiao, J.Guo, J. M. Anderson and C. M. Li, Extracellular microbial synthesis of biocompatible CdTequantum dots. Acta. Biomater. 6 (2010) 3534-3541. https://doi.org/10.1016/j.actbio.2010.03.030
[53] W. Shenton, T. Douglas, M. Young, G. Stubbs andS. Mann, inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater. 11 (1999) 253-256. https://doi.org/10.1002/(SICI)1521-4095(199903)11:3<253::AID-ADMA253>3.0.CO;2-7
[54] C. Mi, Y. Wang, J. Zhang, H. Huang, L. Xu, S. Wang, X. Fang, J. Fang, C. Mao andS. Xu, Biosynthesis and characterization of CdSquantum dots in genetically engineered escherichia coli. J. Biotechnol.,153 (2011) 125-132. https://doi.org/10.1016/j.jbiotec.2011.03.014
[55] C. I. Pearce, V. S. Coker, J. M. Charnock, R. A. D.Pattrick, J. F. W.Mosselmans, N. Law, T. J. Beveridge and J. R. Lloyd, Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using veillonellaaatypica: an in situ EXAFS study. Nanotechnology, 19 (2008) 155603. https://doi.org/10.1088/0957-4484/19/15/155603
[56] M. Labrenz, G. K. Druschel, T. Thomsen-Ebert, B. Gilbert, S. A. Welch, K. M.Kemner, G. A. Logan, R. E. Summons, G. De Stasio, and P. L. Bond, Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science, 290 (2000) 1744-1747. https://doi.org/10.1126/science.290.5497.1744
[57] A. Y. Chen, Z. Deng, A. N. Billings, U. O. S.Seker, M. Y. Lu, R. J.Citorik, B. Zakeri andT. K. Lu, synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 13 (2014) 515-523. https://doi.org/10.1038/nmat3912
[58] J. P. Monras, V. Diaz, D. Bravo, R. A. Montes, T. G.Chasteen, I.O. Osorio-Roman, C. C. Vasquez andJ. M. Perez-Donoso, Enhanced glutathione content allows the in vivo synthesis of fluorescent CdTe nanoparticles by escherichia coli. PLoS One 7 (2012) e48657. https://doi.org/10.1371/journal.pone.0048657
[59] J. W. Fellowes, R. A. D.Pattrick, J. R. Lloyd, J. M. Charnock, V. S. Coker, J. F. W.Mosselmans, T. C.Weng, and C. I. Pearce, Ex situ formation of metal selenide quantum dots using bacterially derived selenide precursors. Nanotechnology, 24 (2013) 145603. https://doi.org/10.1088/0957-4484/24/14/145603
[60] L-H. Xiong, R. Cui, Z-L. Zhang, X. Yu, Z. Xie, Y-B. Shi andD-W. Pang, Uniform fluorescent nanobioprobes for pathogen detection. ACS Nano, 8 (2014) 5116-5124. https://doi.org/10.1021/nn501174g
[61] X. Li, S. Chen, W. Hu, S. Shi, W. Shen, X. Zhang and H. Wang, In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers. Carbohydr. Polym., 76 (2009) 509-512. https://doi.org/10.1016/j.carbpol.2008.11.014
[62] C. B. Mao, C. E. Flynn, A.Hayhurst, R. Sweeney, J. F. Qi, G. Georgiou, B. Iverson and A. M. Belcher, Viral assembly of oriented quantum dot nanowires. Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 6946-6951. https://doi.org/10.1073/pnas.0832310100
[63] H. Bao, N.Hao, Y. Yang and D. Zhao, Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res. 3 (2010) 481-489. https://doi.org/10.1007/s12274-010-0008-6
[64] M. Kowshik, W. Vogel, J. Urban, S. K. Kulkarni andK. M. Paknikar,Microbial synthesis of semiconductor PbSnanocrystallites. Adv. Mater., 14(2002) 815-818. https://doi.org/10.1002/1521-4095(20020605)14:11<815::AID-ADMA815>3.0.CO;2-K
[65] J. G. S. Mala and C. Rose, Facile production of ZnS quantum dot nanoparticles by saccharomyces cerevisiae MTCC 2918. J. Biotechnol., 170 (2014) 73-78. https://doi.org/10.1016/j.jbiotec.2013.11.017
[66] C. T. Dameron, R. N. Reese, R. K.Mehra, A. R.Kortan, P. J. Carroll, M. L.Steigerwald, L. E. Brus and Winge, Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature,338 (1989) 596-597. https://doi.org/10.1038/338596a0
[67] R. Y. Sweeney, C. B. Mao, X. X. Gao, J. L. Burt, A. M. Belcher, G. Georgiou and B. L. Iverson, Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem. Biol.,11 (2004) 1553-1559. https://doi.org/10.1016/j.chembiol.2004.08.022
[68] A. K. Suresh,Extracellular bio-production and characterization of small monodispersed CdSe quantum dot nanocrystallites. Spectrochim. Acta, Part A, 130 (2014) 344-349. https://doi.org/10.1016/j.saa.2014.04.021
[69] G. Chen, B. Yi, G. Zeng, Q.Niu, M. Yan, A. Chen, J. Du, J. Huang andQ. Zhang, Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus phanerochaetechrysosporium. Colloids Surf., B, 117 (2014) 199-205. https://doi.org/10.1016/j.colsurfb.2014.02.027
[70] A. Syed andA. Ahmad, Extracellular biosynthesis of CdTe quantum dots by the fungus fusariumoxysporum and their anti-bacterial activity. Spectrochim. Acta, Part A, 106 (2013) 41-47. https://doi.org/10.1016/j.saa.2013.01.002
[71] A. Ahmad, P. Mukherjee, D. Mandal, S.Senapati, M. I. Khan, R. Kumar and M.Sastry, Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, fusariumoxysporum. J. Am. Chem. Soc.,124 (2002) 12108-12109. https://doi.org/10.1021/ja027296o
[72] H. Trabelsi, I. Azzouz, M. Sakly andH.Abdelmelek, Subacute toxicity of cadmium on hepatocytes and nephrocytes in the rat could be considered as a green biosynthesis of nanoparticles. Int. J. Nanomed.,8 (2013) 1121-1128. https://doi.org/10.2147/IJN.S39426
[73] H. Trabelsi, I. Azzouz, S.Ferchichi, O.Tebourbi, M. Sakly andH.Abdelmelek, Nanotoxicological evaluation of oxidative responses in rat nephrocytes induced by cadmium. Int. J. Nanomed.,8 (2013) 3447-3453. https://doi.org/10.2147/IJN.S49323
[74] L. Tan, A. Wan andH. Li, Synthesis of near-infrared quantum dots in cultured cancer cells. ACS Appl. Mater. Interfaces,6 (2014) 18-23. https://doi.org/10.1021/am404534v
[75] A. Kumar andV. Kumar, Biotemplated inorganic nanostructures: supramolecular directed nanosystems of semiconductor(s)/metal(s) mediated by nucleic acids and their properties. Chem. Rev.,114 (2014) 7044-7078. https://doi.org/10.1021/cr4007285
[76] N. Ma, G. Tikhomirov and S. O. G.; Kelley, Nucleic acid-passivated semiconductor nanocrystals: biomoleculartemplating of form and function. Acc. Chem. Res., 43 (2010) 173-180. https://doi.org/10.1021/ar900046n
[77] S. Hinds, B. J. Taft, L.Levina, V.Sukhovatkin, C. J. Dooley, M. D. Roy, D. D.MacNeil, E. H. Sargent and S. O. Kelley, Nucleotidedirected growth of semiconductor nanocrystals. J. Am. Chem. Soc., 128 (2006) 64-65. https://doi.org/10.1021/ja057002+
[78] L. Berti andG. Burley, Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles. Nat. Nanotechnol.,3 (2008) 81-87. https://doi.org/10.1038/nnano.2007.460
[79] G. Tikhomirov, S. Hoogland, P.E. Lee, A. Fischer, E. H. Sargent andS. O. Kelley, DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat. Nanotechnol.,6 (2011) 485-490. https://doi.org/10.1038/nnano.2011.100
[80] L. Gao and N. Ma, DNA-templated semiconductor nanocrystal growth for controlled DNA packing and gene delivery. ACS Nano,6 (2012) 689-695. https://doi.org/10.1021/nn204162y
[81] Q. B. Wang, Y. Liu, Y. G. Ke and H. Yan, Quantum dot bioconjugation during core-shell synthesis, Angew. Chem., Int. Ed., 47 (2008) 316-319. https://doi.org/10.1002/anie.200703648
[82] Z. Deng, A. Samanta, J. Nangreave, H. Yan and Y. Liu, Robust DNA-functionalized core/shell quantum dots with fluorescent emission spanning from UV–vis to near-IR and compatible with DNA-directed self-assembly, J. Am. Chem. Soc., 134 (2012) 17424-17427. https://doi.org/10.1021/ja3081023
[83] A. Samanta, Z. Deng and Y. Liu, Infrared emitting quantum dots: DNA conjugation and DNA origami directed self-assembly. Nanoscale,6 (2014) 4486-4490. https://doi.org/10.1039/C3NR06578B
[84] Y. Xu, D. W. Piston and C. H. Johnson, A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins, Proc. Natl. Acad. Sci. U.S.A. 96 (1999) 151-156. https://doi.org/10.1073/pnas.96.1.151
[85] M-K. So, C. Xu, A. M.Loening, S. S. Gambhir and J. Rao, Self-illuminating quantum dot conjugates for in vivo imaging, Nat. Biotechnol. 24 (2006) 339-343. https://doi.org/10.1038/nbt1188
[86] N. Ma, A. F. Marshall and J. H. Rao, Near-infrared light emitting luciferase via biomineralization. J. Am. Chem. Soc.,132 (2010) 6884-6885. https://doi.org/10.1021/ja101378g
[87] H-Y. Yang, Y-W. Zhao, Z-Y. Zhang, H-M. Xiong and S-N. Yu, One-pot synthesis of water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-infrared window. Nanotechnology,24 (2013) 055706. https://doi.org/10.1088/0957-4484/24/5/055706
[88] J. Chen, T. Zhang, L. Feng, M. Zhang, X. Zhang, H. Su and D. Cui, Synthesis of Ribonuclease-A conjugated Ag2S quantum dots clusters via biomimetic route. Mater. Lett.,96 (2013) 224-227. https://doi.org/10.1016/j.matlet.2012.11.067
[89] C. Zhang, J. Xu, S. Zhang, X. Ji and Z. He, One-pot synthesized DNA-CdTe quantum dots applied in a biosensor for the detection of sequence-specific oligonucleotides. Chem. – Eur. J.,18 (20120 8296-8300. https://doi.org/10.1002/chem.201200107
[90] X. He andN. Ma, Biomimetic synthesis of fluorogenic quantum dots for ultrasensitive label-free detection of protease activities. Small,9 (2013) 2527-2531. https://doi.org/10.1002/smll.201202570
[91] J. M. Perez-Donoso, J. P. Monras, D. Bravo, A. Aguirre, A. F. Quest, I. O. Osorio-Roman, R. F.Aroca, T. G. Chasteen andC. C. Vasquez, biomimetic, mild chemical synthesis of CdTe-GSH quantum dots with improved biocompatibility. PLoS One 7 (2012) e30741. https://doi.org/10.1371/journal.pone.0030741
[92] S. S. Narayanan, R. Sarkar and S. K. Pal, Structural and functional characterization of enzyme-quantum dot conjugates: covalent attachment of CdS nanocrystal to alpha-chymotrypsin. J. Phys. Chem. C,111 (2007) 11539-11543. https://doi.org/10.1021/jp072636j
[93] J. H. Choi, K. H. Chen andM. S. Strano, Aptamer-capped nanocrystal quantum dots: a new method for label-free protein detection. J. Am. Chem. Soc.,128 (2006) 15584-15585. https://doi.org/10.1021/ja066506k
[94] T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, A. M. Seifalian, Biological applications of quantum dots, Biomaterials, 28 (2007) 4717-4732. https://doi.org/10.1016/j.biomaterials.2007.07.014
[95] B. A. Kairdolf, A. S. Smith, T. H. Stokes, M. D. Wang, A. N. Young, S. Nie, Semiconductor quantum dots for bioimaging and biodiagnostic applications, Annu Rev Anal Chem (Palo Alto Calif)., 6 (2013) 143-162. https://doi.org/10.1146/annurev-anchem-060908-155136
[96] H. Kuang, Y. Zhao, W. Ma, L. Xua, L. Wang, C. Xu, Recent developments in analytical applications of quantum dots, Trends Analyt Chem., 30 (2011) 1620-1636. https://doi.org/10.1016/j.trac.2011.04.022
[97] K. D. Wegner, N. Hildebrandt, Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors, ChemSoc Rev., 21 (2015) 4792-834. https://doi.org/10.1039/C4CS00532E
[98] H. C. Ishikawa- Ankerhold, R. Ankerhold, G. P. Drummen, Advanced fluorescence microscopy techniques-FRAP, FLIP, FLAP, FRET and FLIM,Molecules., 17 (2012) 4047-4132. https://doi.org/10.3390/molecules17044047
[99] U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Quantum dots versus organic dyes as fluorescent labels, Nat Methods., 5 (2008) 763-775. https://doi.org/10.1038/nmeth.1248
[100] A. C. Vinayaka, M. S. Thakur, Photoabsorption and resonance energy transfer phenomenon in CdTe-protein bioconjugates: an insight into QD-biomolecular interactions, Bioconjug Chem., 22 (2011) 968-975. https://doi.org/10.1021/bc200034a
[101] R. Gill, I. Willner, I. Shweky and U. Banin, Fluorescence Resonance Energy Transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA Cleavage. J. Phys. Chem. B.109 (2005) 23715-23719. https://doi.org/10.1021/jp054874p
[102] M. O. Noor, A. Shahmuradyan andU. J.Krull, Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer. Anal. Chem.,85 (2013) 1860-1867. https://doi.org/10.1021/ac3032383
[103] R. Freeman, R. Gill, I.Shweky, M. Kotler, U. Banin andI. Willner, Biosensing and probing of intracellular metabolic pathways by NADH-sensitive quantum dots. Angew. Chem., Int. Ed..48 (2009) 309-313. https://doi.org/10.1002/anie.200803421
[104] W. R. Algar, A. P. Malanoski, K. Susumu, M. H. Stewart, N. Hildebrandt and I. L. Medintz, Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-Gated Förster Resonance Energy Transfer relay, Anal. Chem., 84 (2012) 10136-10146. https://doi.org/10.1021/ac3028068
[105] M. O. Noor and U. J. Krull, Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer. Anal. Chem.,85 (2013) 7502-7511. https://doi.org/10.1021/ac401471n
[106] X. Chu, X. Dou, R. Liang, M. Li, W. Kong, X. Yang, J. Luo, M. Yang and M. Zhao, A self-assembly aptasensor based on thick-shell quantum dots for sensing of ochratoxin A, Nanoscale, 8 (2016) 4127. https://doi.org/10.1039/C5NR08284F
[107] N. Boute, The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends PharmacolSci, 23 (2002) 351-4. https://doi.org/10.1016/S0165-6147(02)02062-X
[108] K. Matthiesenand J. Nielsen, Cyclic AMP control measured in two compartments in HEK293 cells: phosphodiesterase K(M) is more important than phosphodiesterase localization. PLoS One, 6 (2011) e24392. https://doi.org/10.1371/journal.pone.0024392
[109] Y. Percherancier, Bioluminescence resonance energy transfer reveals ligand-induced conformational changes in CXCR4 homo- and heterodimers. J BiolChem, 280 (2005) 9895903. https://doi.org/10.1074/jbc.M411151200
[110] M. Kumar, D. Zhang, D. Broyles and S. K. Deo, A rapid, sensitive, and selective bioluminescence resonance energy transfer (BRET)-based nucleic acid sensing system, Biosens. Bioelectron., 30 (2011) 133-139. https://doi.org/10.1016/j.bios.2011.08.043
[111] Z. Xia, Y. Xing, M-K.So, A. L.Koh, R. Sinclair and J. Rao, multiplex detection of protease activity with quantum dot nanosensors prepared by intein-mediated specific bioconjugation, Anal. Chem.,80 (2008) 8649-8655. https://doi.org/10.1021/ac801562f
[112] C-Y. Hsu, C-W. Chen, H-P. Yu, Y-F. Lin and P-S. Lai, Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy, Biomaterials 34 (2013) 1204-1212. https://doi.org/10.1016/j.biomaterials.2012.08.044
[113] X. Y Huang andJ. C. Re, Nanomaterial-based chemiluminescence resonance energy transfer: a strategy to develop new analytical methods. Trac-Trends Anal Chem, 40 (2012) 77-89. https://doi.org/10.1016/j.trac.2012.07.014
[114] M. Amjadi, J. L. Manzoori, T. Hallaj, M. H. Sorouraddin, Strong enhancement of the chemiluminescence of the cerium(IV)-thiosulfate reaction by carbon dots, and its application to the sensitive determination of dopamine. MicrochimActa, 181(2014)671-677. https://doi.org/10.1007/s00604-014-1172-2
[115] S. Q. Han, J. B. Wang and S. Z. Ji, Determination of formaldehyde based on the enhancement of the chemiluminescence produced by CdTe quantum dots and hydrogen peroxide. MicrochimActa, 181(2014)147-153. https://doi.org/10.1007/s00604-013-1083-7
[116] L. Chen and H. Y. Han, Recent advances in the use of near-infrared quantum dots as optical probes for bioanalytical, imaging and solar cell application. MicrochimActa, 181(2014)1485-1495. https://doi.org/10.1007/s00604-014-1204-y
[117] F. Liu, W. P. Deng, Y. Zhang, S. G. Ge, J. H. Yu, M. Yan, Highly sensitive hybridization assay using the electrochemiluminescence of an ITO electrode, CdTe quantum dots functionalized with hierarchical nanoporousPtFe nanoparticles, and magnetic graphene nanosheets. MicrochimActa, 181(2014)213-222. https://doi.org/10.1007/s00604-013-1102-8
[118] X. Y. Huang,L. Li, H. F. Qian, C. Q. Dong and J. C. Ren, A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). AngewChemInt Ed, 45(2006) 5140-5143. https://doi.org/10.1002/anie.200601196
[119] Z. Li, Y. X. W, G. X. Zhang, W. B. Xu and Y. J. Han, Chemiluminescence resonance energy transfer in the luminol-CdTe quantum dots conjugates. J Lumin, 130(2010) 995-999. https://doi.org/10.1016/j.jlumin.2010.01.013
[120] Z. M. Zhou, Y. Yu, Y. D. Zhao, A new strategy for the detection of adenosine triphosphate by aptamer/quantum dot biosensor based on chemiluminescence resonance energy transfer. Analyst, 137(2012)4262-4266. https://doi.org/10.1039/c2an35520e
[121] X. Q. Liu, R. Freeman, E. Golu and I. Willner, Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes. ACS Nano, 5(2011)7648-7655. https://doi.org/10.1021/nn202799d
[122] H. Q. Wang, Y. Q. Li, J. H. Wang, Q. Xu, X. Q. Li and Y. D. Zhao, Influence of quantum dot’s quantum yield to chemiluminescent resonance energy transfer. Anal ChimActa, 610(2008) 68-73. https://doi.org/10.1016/j.aca.2008.01.018
[123] E. Golub, A. Niazov, R. Freeman, M. Zatsepin and I. Willner, Photoelectrochemical biosensors without external irradiation: probing enzyme activities and DNA sensing using hemin/G-quadruplex-stimulated chemiluminescence resonance energy transfer (CRET) generation of photocurrents. J PhysChem C, 116(2012)13827-13834. https://doi.org/10.1021/jp303741x
[124] R. Freeman, X. Liu and I.Willner, Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamers substrate complexes using hemin/G-quadruplexes and CdSe/ZnSquantum dots, J. Am. Chem. Soc. 133 (2011) 11597-11604. https://doi.org/10.1021/ja202639m
[125] X. Liu, R. Freeman, E. Golub and I.Willner, chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes, ACS Nano, 5 (2011) 7648-7655. https://doi.org/10.1021/nn202799d
[126] A.Niazov, R. Freeman, J.Girsh and I.Willner, Following glucose oxidase activity by chemiluminescence and chemiluminescence resonance energy transfer (CRET) processes involving enzyme-DNAzymeconjugates, Sensors, 11 (2011) 10388-10397; https://doi.org/10.3390/s111110388
[127] X. Michalet, F. F. Pinaud, L. A. Bentolila, Quantum dots for live cells, in vivo imaging, and diagnostics, Science., 307 (2005) 538-544. https://doi.org/10.1126/science.1104274
[128] S. W. Lee, C. Mao, C. E. Flynn, Ordering of quantum dots using genetically engineered viruses, Science., 296 (2002) 892-895. https://doi.org/10.1126/science.1068054
[129] J. Li, J. J. Zhu, Quantum dots for fluorescent biosensing and bio-imaging applications, Analyst., 2013, 138, 2506–2515. https://doi.org/10.1039/c3an36705c
[130] Y. Park, S. Jeonga, S. Kim, Medically translatable quantum dots for biosensing and imaging, J PhotochemPhotobiol C., 30 (2017) 51-70. https://doi.org/10.1016/j.jphotochemrev.2017.01.002
[131] I. Martinic, S. V. Eliseeva, S. Petoud, Near-infrared emitting probes for biological imaging: Organic fluorophores, quantum dots, fluorescent proteins, lanthanide(III) complexes and nanomaterials, J Lumin., 189 (2017) 19-43. https://doi.org/10.1016/j.jlumin.2016.09.058
[132] A. P. Alivisatos, semiconductor clusters, nanocrystals, and quantum dots, Science., 271 (1996) 933-937. https://doi.org/10.1126/science.271.5251.933
[133] H. S. Choi, W. Liu, P. Misra, Renal clearance of quantum dots, Nat Biotechnol. 25 (2007) 1165-1170. https://doi.org/10.1038/nbt1340
[134] R. Wang, F. Zhang, NIR luminescent nanomaterials for biomedical imaging,J Mater Chem B., 2 (2014) 2422-2443. https://doi.org/10.1039/c3tb21447h
[135] E. Hemmer, A. Benayas, F. Legare, Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm,Nanoscale Horiz., 1 (2016) 168-184. https://doi.org/10.1039/C5NH00073D
[136] J. Zhao, D. Zhong, S. Zhou, NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy,J Mater Chem B., 6 (2018) 349-365. https://doi.org/10.1039/C7TB02573D
[137] K-T. Yong, I. Roy, R. Hu, H. Ding, H.Cai, J. Zhu, X. Zhang, E. J. Bergeya and P. N. Prasada, Synthesis of ternary CuInS2/ZnS quantum dot bioconjugates and their applications for targeted cancer bioimaging, ntegr. Biol., 2 (2010) 121-129. https://doi.org/10.1039/b916663g
[138] D. Hu, P. Zhang, P. Gong, S.Lian, Y. Lu, D. Gao and L.Cai, A fast synthesis of near-infrared emitting CdTe/CdSe quantum dots with small hydrodynamic diameter for in vivo imaging probes, Nanoscale, 3 (2011) 4724-4732. https://doi.org/10.1039/c1nr10933b
[139] Y. T. Lim, Y-W. Noh, J-H. Cho, J. H. Han, B. S. Choi, J. Kwon, K. S. Hong, A.Gokarna, Y-H. Cho and B. H. Chung, Multiplexed imaging of therapeutic cells with multispectrally encoded magnetofluorescent nanocomposite emulsions, J. Am. Chem. Soc. 131 (2009) 17145-17154. https://doi.org/10.1021/ja904472z
[140] T. Deng, Y. Peng, R. Zhang, J. Wang, J. Zhang, Y.Gu, D. Huang and D. Deng, Water-solubilizing hydrophobic ZnAgInSe/ZnS QDs with tumortargetedcRGD-sulfobetaine-PIMA-histamine ligands via a self-assembly strategy for bioimaging, ACS Appl. Mater. Interfaces,9 (2017) 11405-11414. https://doi.org/10.1021/acsami.6b16639
[141] J. Zhang, G.Hao, C. Yao, J.i Yu, J. Wang, W. Yang, C. Hu and B. Zhang, Albumin-mediated biomineralization of paramagnetic NIR Ag2S QDs for tiny tumor bimodal targeted imaging in vivo, ACS Appl. Mater. Interfaces,8 (2016) 16612-16621. https://doi.org/10.1021/acsami.6b04738
[142] S.Jeong, N. Won, J. Lee, J. Bang, J.Yoo, S. G. Kim, J. Ah Chang, J. Kim and S. Kim, Multiplexed near-infrared in vivo imaging complementarily using quantum dots and upconverting NaYF4:Yb3+,Tm3+ nanoparticles, Chem. Commun., 47 (2011) 8022-8024. https://doi.org/10.1039/c1cc12746b